linux/drivers/dma-buf/dma-resv.c
Christian König 82e1b93ad8 dma-buf: use struct_size macro
Instead of manually calculating the structure size.

Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/394252/
2020-10-08 15:39:36 +02:00

684 lines
16 KiB
C

/*
* Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst)
*
* Based on bo.c which bears the following copyright notice,
* but is dual licensed:
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#include <linux/dma-resv.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/mmu_notifier.h>
/**
* DOC: Reservation Object Overview
*
* The reservation object provides a mechanism to manage shared and
* exclusive fences associated with a buffer. A reservation object
* can have attached one exclusive fence (normally associated with
* write operations) or N shared fences (read operations). The RCU
* mechanism is used to protect read access to fences from locked
* write-side updates.
*/
DEFINE_WD_CLASS(reservation_ww_class);
EXPORT_SYMBOL(reservation_ww_class);
/**
* dma_resv_list_alloc - allocate fence list
* @shared_max: number of fences we need space for
*
* Allocate a new dma_resv_list and make sure to correctly initialize
* shared_max.
*/
static struct dma_resv_list *dma_resv_list_alloc(unsigned int shared_max)
{
struct dma_resv_list *list;
list = kmalloc(struct_size(list, shared, shared_max), GFP_KERNEL);
if (!list)
return NULL;
list->shared_max = (ksize(list) - offsetof(typeof(*list), shared)) /
sizeof(*list->shared);
return list;
}
/**
* dma_resv_list_free - free fence list
* @list: list to free
*
* Free a dma_resv_list and make sure to drop all references.
*/
static void dma_resv_list_free(struct dma_resv_list *list)
{
unsigned int i;
if (!list)
return;
for (i = 0; i < list->shared_count; ++i)
dma_fence_put(rcu_dereference_protected(list->shared[i], true));
kfree_rcu(list, rcu);
}
#if IS_ENABLED(CONFIG_LOCKDEP)
static int __init dma_resv_lockdep(void)
{
struct mm_struct *mm = mm_alloc();
struct ww_acquire_ctx ctx;
struct dma_resv obj;
struct address_space mapping;
int ret;
if (!mm)
return -ENOMEM;
dma_resv_init(&obj);
address_space_init_once(&mapping);
mmap_read_lock(mm);
ww_acquire_init(&ctx, &reservation_ww_class);
ret = dma_resv_lock(&obj, &ctx);
if (ret == -EDEADLK)
dma_resv_lock_slow(&obj, &ctx);
fs_reclaim_acquire(GFP_KERNEL);
/* for unmap_mapping_range on trylocked buffer objects in shrinkers */
i_mmap_lock_write(&mapping);
i_mmap_unlock_write(&mapping);
#ifdef CONFIG_MMU_NOTIFIER
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
__dma_fence_might_wait();
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
#else
__dma_fence_might_wait();
#endif
fs_reclaim_release(GFP_KERNEL);
ww_mutex_unlock(&obj.lock);
ww_acquire_fini(&ctx);
mmap_read_unlock(mm);
mmput(mm);
return 0;
}
subsys_initcall(dma_resv_lockdep);
#endif
/**
* dma_resv_init - initialize a reservation object
* @obj: the reservation object
*/
void dma_resv_init(struct dma_resv *obj)
{
ww_mutex_init(&obj->lock, &reservation_ww_class);
seqcount_ww_mutex_init(&obj->seq, &obj->lock);
RCU_INIT_POINTER(obj->fence, NULL);
RCU_INIT_POINTER(obj->fence_excl, NULL);
}
EXPORT_SYMBOL(dma_resv_init);
/**
* dma_resv_fini - destroys a reservation object
* @obj: the reservation object
*/
void dma_resv_fini(struct dma_resv *obj)
{
struct dma_resv_list *fobj;
struct dma_fence *excl;
/*
* This object should be dead and all references must have
* been released to it, so no need to be protected with rcu.
*/
excl = rcu_dereference_protected(obj->fence_excl, 1);
if (excl)
dma_fence_put(excl);
fobj = rcu_dereference_protected(obj->fence, 1);
dma_resv_list_free(fobj);
ww_mutex_destroy(&obj->lock);
}
EXPORT_SYMBOL(dma_resv_fini);
/**
* dma_resv_reserve_shared - Reserve space to add shared fences to
* a dma_resv.
* @obj: reservation object
* @num_fences: number of fences we want to add
*
* Should be called before dma_resv_add_shared_fence(). Must
* be called with obj->lock held.
*
* RETURNS
* Zero for success, or -errno
*/
int dma_resv_reserve_shared(struct dma_resv *obj, unsigned int num_fences)
{
struct dma_resv_list *old, *new;
unsigned int i, j, k, max;
dma_resv_assert_held(obj);
old = dma_resv_get_list(obj);
if (old && old->shared_max) {
if ((old->shared_count + num_fences) <= old->shared_max)
return 0;
else
max = max(old->shared_count + num_fences,
old->shared_max * 2);
} else {
max = 4;
}
new = dma_resv_list_alloc(max);
if (!new)
return -ENOMEM;
/*
* no need to bump fence refcounts, rcu_read access
* requires the use of kref_get_unless_zero, and the
* references from the old struct are carried over to
* the new.
*/
for (i = 0, j = 0, k = max; i < (old ? old->shared_count : 0); ++i) {
struct dma_fence *fence;
fence = rcu_dereference_protected(old->shared[i],
dma_resv_held(obj));
if (dma_fence_is_signaled(fence))
RCU_INIT_POINTER(new->shared[--k], fence);
else
RCU_INIT_POINTER(new->shared[j++], fence);
}
new->shared_count = j;
/*
* We are not changing the effective set of fences here so can
* merely update the pointer to the new array; both existing
* readers and new readers will see exactly the same set of
* active (unsignaled) shared fences. Individual fences and the
* old array are protected by RCU and so will not vanish under
* the gaze of the rcu_read_lock() readers.
*/
rcu_assign_pointer(obj->fence, new);
if (!old)
return 0;
/* Drop the references to the signaled fences */
for (i = k; i < max; ++i) {
struct dma_fence *fence;
fence = rcu_dereference_protected(new->shared[i],
dma_resv_held(obj));
dma_fence_put(fence);
}
kfree_rcu(old, rcu);
return 0;
}
EXPORT_SYMBOL(dma_resv_reserve_shared);
/**
* dma_resv_add_shared_fence - Add a fence to a shared slot
* @obj: the reservation object
* @fence: the shared fence to add
*
* Add a fence to a shared slot, obj->lock must be held, and
* dma_resv_reserve_shared() has been called.
*/
void dma_resv_add_shared_fence(struct dma_resv *obj, struct dma_fence *fence)
{
struct dma_resv_list *fobj;
struct dma_fence *old;
unsigned int i, count;
dma_fence_get(fence);
dma_resv_assert_held(obj);
fobj = dma_resv_get_list(obj);
count = fobj->shared_count;
write_seqcount_begin(&obj->seq);
for (i = 0; i < count; ++i) {
old = rcu_dereference_protected(fobj->shared[i],
dma_resv_held(obj));
if (old->context == fence->context ||
dma_fence_is_signaled(old))
goto replace;
}
BUG_ON(fobj->shared_count >= fobj->shared_max);
old = NULL;
count++;
replace:
RCU_INIT_POINTER(fobj->shared[i], fence);
/* pointer update must be visible before we extend the shared_count */
smp_store_mb(fobj->shared_count, count);
write_seqcount_end(&obj->seq);
dma_fence_put(old);
}
EXPORT_SYMBOL(dma_resv_add_shared_fence);
/**
* dma_resv_add_excl_fence - Add an exclusive fence.
* @obj: the reservation object
* @fence: the shared fence to add
*
* Add a fence to the exclusive slot. The obj->lock must be held.
*/
void dma_resv_add_excl_fence(struct dma_resv *obj, struct dma_fence *fence)
{
struct dma_fence *old_fence = dma_resv_get_excl(obj);
struct dma_resv_list *old;
u32 i = 0;
dma_resv_assert_held(obj);
old = dma_resv_get_list(obj);
if (old)
i = old->shared_count;
if (fence)
dma_fence_get(fence);
write_seqcount_begin(&obj->seq);
/* write_seqcount_begin provides the necessary memory barrier */
RCU_INIT_POINTER(obj->fence_excl, fence);
if (old)
old->shared_count = 0;
write_seqcount_end(&obj->seq);
/* inplace update, no shared fences */
while (i--)
dma_fence_put(rcu_dereference_protected(old->shared[i],
dma_resv_held(obj)));
dma_fence_put(old_fence);
}
EXPORT_SYMBOL(dma_resv_add_excl_fence);
/**
* dma_resv_copy_fences - Copy all fences from src to dst.
* @dst: the destination reservation object
* @src: the source reservation object
*
* Copy all fences from src to dst. dst-lock must be held.
*/
int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src)
{
struct dma_resv_list *src_list, *dst_list;
struct dma_fence *old, *new;
unsigned i;
dma_resv_assert_held(dst);
rcu_read_lock();
src_list = rcu_dereference(src->fence);
retry:
if (src_list) {
unsigned shared_count = src_list->shared_count;
rcu_read_unlock();
dst_list = dma_resv_list_alloc(shared_count);
if (!dst_list)
return -ENOMEM;
rcu_read_lock();
src_list = rcu_dereference(src->fence);
if (!src_list || src_list->shared_count > shared_count) {
kfree(dst_list);
goto retry;
}
dst_list->shared_count = 0;
for (i = 0; i < src_list->shared_count; ++i) {
struct dma_fence *fence;
fence = rcu_dereference(src_list->shared[i]);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&fence->flags))
continue;
if (!dma_fence_get_rcu(fence)) {
dma_resv_list_free(dst_list);
src_list = rcu_dereference(src->fence);
goto retry;
}
if (dma_fence_is_signaled(fence)) {
dma_fence_put(fence);
continue;
}
rcu_assign_pointer(dst_list->shared[dst_list->shared_count++], fence);
}
} else {
dst_list = NULL;
}
new = dma_fence_get_rcu_safe(&src->fence_excl);
rcu_read_unlock();
src_list = dma_resv_get_list(dst);
old = dma_resv_get_excl(dst);
write_seqcount_begin(&dst->seq);
/* write_seqcount_begin provides the necessary memory barrier */
RCU_INIT_POINTER(dst->fence_excl, new);
RCU_INIT_POINTER(dst->fence, dst_list);
write_seqcount_end(&dst->seq);
dma_resv_list_free(src_list);
dma_fence_put(old);
return 0;
}
EXPORT_SYMBOL(dma_resv_copy_fences);
/**
* dma_resv_get_fences_rcu - Get an object's shared and exclusive
* fences without update side lock held
* @obj: the reservation object
* @pfence_excl: the returned exclusive fence (or NULL)
* @pshared_count: the number of shared fences returned
* @pshared: the array of shared fence ptrs returned (array is krealloc'd to
* the required size, and must be freed by caller)
*
* Retrieve all fences from the reservation object. If the pointer for the
* exclusive fence is not specified the fence is put into the array of the
* shared fences as well. Returns either zero or -ENOMEM.
*/
int dma_resv_get_fences_rcu(struct dma_resv *obj,
struct dma_fence **pfence_excl,
unsigned *pshared_count,
struct dma_fence ***pshared)
{
struct dma_fence **shared = NULL;
struct dma_fence *fence_excl;
unsigned int shared_count;
int ret = 1;
do {
struct dma_resv_list *fobj;
unsigned int i, seq;
size_t sz = 0;
shared_count = i = 0;
rcu_read_lock();
seq = read_seqcount_begin(&obj->seq);
fence_excl = rcu_dereference(obj->fence_excl);
if (fence_excl && !dma_fence_get_rcu(fence_excl))
goto unlock;
fobj = rcu_dereference(obj->fence);
if (fobj)
sz += sizeof(*shared) * fobj->shared_max;
if (!pfence_excl && fence_excl)
sz += sizeof(*shared);
if (sz) {
struct dma_fence **nshared;
nshared = krealloc(shared, sz,
GFP_NOWAIT | __GFP_NOWARN);
if (!nshared) {
rcu_read_unlock();
dma_fence_put(fence_excl);
fence_excl = NULL;
nshared = krealloc(shared, sz, GFP_KERNEL);
if (nshared) {
shared = nshared;
continue;
}
ret = -ENOMEM;
break;
}
shared = nshared;
shared_count = fobj ? fobj->shared_count : 0;
for (i = 0; i < shared_count; ++i) {
shared[i] = rcu_dereference(fobj->shared[i]);
if (!dma_fence_get_rcu(shared[i]))
break;
}
}
if (i != shared_count || read_seqcount_retry(&obj->seq, seq)) {
while (i--)
dma_fence_put(shared[i]);
dma_fence_put(fence_excl);
goto unlock;
}
ret = 0;
unlock:
rcu_read_unlock();
} while (ret);
if (pfence_excl)
*pfence_excl = fence_excl;
else if (fence_excl)
shared[shared_count++] = fence_excl;
if (!shared_count) {
kfree(shared);
shared = NULL;
}
*pshared_count = shared_count;
*pshared = shared;
return ret;
}
EXPORT_SYMBOL_GPL(dma_resv_get_fences_rcu);
/**
* dma_resv_wait_timeout_rcu - Wait on reservation's objects
* shared and/or exclusive fences.
* @obj: the reservation object
* @wait_all: if true, wait on all fences, else wait on just exclusive fence
* @intr: if true, do interruptible wait
* @timeout: timeout value in jiffies or zero to return immediately
*
* RETURNS
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or
* greater than zer on success.
*/
long dma_resv_wait_timeout_rcu(struct dma_resv *obj,
bool wait_all, bool intr,
unsigned long timeout)
{
struct dma_fence *fence;
unsigned seq, shared_count;
long ret = timeout ? timeout : 1;
int i;
retry:
shared_count = 0;
seq = read_seqcount_begin(&obj->seq);
rcu_read_lock();
i = -1;
fence = rcu_dereference(obj->fence_excl);
if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
if (!dma_fence_get_rcu(fence))
goto unlock_retry;
if (dma_fence_is_signaled(fence)) {
dma_fence_put(fence);
fence = NULL;
}
} else {
fence = NULL;
}
if (wait_all) {
struct dma_resv_list *fobj = rcu_dereference(obj->fence);
if (fobj)
shared_count = fobj->shared_count;
for (i = 0; !fence && i < shared_count; ++i) {
struct dma_fence *lfence = rcu_dereference(fobj->shared[i]);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&lfence->flags))
continue;
if (!dma_fence_get_rcu(lfence))
goto unlock_retry;
if (dma_fence_is_signaled(lfence)) {
dma_fence_put(lfence);
continue;
}
fence = lfence;
break;
}
}
rcu_read_unlock();
if (fence) {
if (read_seqcount_retry(&obj->seq, seq)) {
dma_fence_put(fence);
goto retry;
}
ret = dma_fence_wait_timeout(fence, intr, ret);
dma_fence_put(fence);
if (ret > 0 && wait_all && (i + 1 < shared_count))
goto retry;
}
return ret;
unlock_retry:
rcu_read_unlock();
goto retry;
}
EXPORT_SYMBOL_GPL(dma_resv_wait_timeout_rcu);
static inline int dma_resv_test_signaled_single(struct dma_fence *passed_fence)
{
struct dma_fence *fence, *lfence = passed_fence;
int ret = 1;
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &lfence->flags)) {
fence = dma_fence_get_rcu(lfence);
if (!fence)
return -1;
ret = !!dma_fence_is_signaled(fence);
dma_fence_put(fence);
}
return ret;
}
/**
* dma_resv_test_signaled_rcu - Test if a reservation object's
* fences have been signaled.
* @obj: the reservation object
* @test_all: if true, test all fences, otherwise only test the exclusive
* fence
*
* RETURNS
* true if all fences signaled, else false
*/
bool dma_resv_test_signaled_rcu(struct dma_resv *obj, bool test_all)
{
unsigned seq, shared_count;
int ret;
rcu_read_lock();
retry:
ret = true;
shared_count = 0;
seq = read_seqcount_begin(&obj->seq);
if (test_all) {
unsigned i;
struct dma_resv_list *fobj = rcu_dereference(obj->fence);
if (fobj)
shared_count = fobj->shared_count;
for (i = 0; i < shared_count; ++i) {
struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
ret = dma_resv_test_signaled_single(fence);
if (ret < 0)
goto retry;
else if (!ret)
break;
}
if (read_seqcount_retry(&obj->seq, seq))
goto retry;
}
if (!shared_count) {
struct dma_fence *fence_excl = rcu_dereference(obj->fence_excl);
if (fence_excl) {
ret = dma_resv_test_signaled_single(fence_excl);
if (ret < 0)
goto retry;
if (read_seqcount_retry(&obj->seq, seq))
goto retry;
}
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(dma_resv_test_signaled_rcu);