bce048d77d
This is the initial step in allowing ath9k to register multiple virtual radios (wiphys). The goal of virtual radios is to allow the same radio to be shared for multiple virtual interfaces that may operate on different channels. The mac80211 virtual interface support is designed only for single channel operation and as such, it is not suitable for this type of use. Anyway, it can be used on top of the virtual radio concept, if desired (e.g., use two virtual radios to handle two channels and then add multiple mac80211 virtual interfaces on top of each virtual radio). The new struct ath_wiphy is now registered as the driver data structure for wiphy. This structure has a pointer to the shared (among virtual wiphys of the same physical radio) struct ath_softc data. The primary wiphy maintains the allocated memory for ath_softc. Secondary (virtual) wiphys will only allocate the new ath_wiphy structure. Registration of secondary wiphys is added in a separate patch. Signed-off-by: Jouni Malinen <jouni.malinen@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1754 lines
52 KiB
C
1754 lines
52 KiB
C
/*
|
|
* Copyright (c) 2004 Video54 Technologies, Inc.
|
|
* Copyright (c) 2004-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "ath9k.h"
|
|
|
|
static struct ath_rate_table ar5416_11na_ratetable = {
|
|
42,
|
|
{
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
|
|
5400, 0x0b, 0x00, 12,
|
|
0, 2, 1, 0, 0, 0, 0, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
|
|
7800, 0x0f, 0x00, 18,
|
|
0, 3, 1, 1, 1, 1, 1, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
|
|
10000, 0x0a, 0x00, 24,
|
|
2, 4, 2, 2, 2, 2, 2, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
|
|
13900, 0x0e, 0x00, 36,
|
|
2, 6, 2, 3, 3, 3, 3, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
|
|
17300, 0x09, 0x00, 48,
|
|
4, 10, 3, 4, 4, 4, 4, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
|
|
23000, 0x0d, 0x00, 72,
|
|
4, 14, 3, 5, 5, 5, 5, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
|
|
27400, 0x08, 0x00, 96,
|
|
4, 20, 3, 6, 6, 6, 6, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
|
|
29300, 0x0c, 0x00, 108,
|
|
4, 23, 3, 7, 7, 7, 7, 0 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
|
|
6400, 0x80, 0x00, 0,
|
|
0, 2, 3, 8, 24, 8, 24, 3216 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
|
|
12700, 0x81, 0x00, 1,
|
|
2, 4, 3, 9, 25, 9, 25, 6434 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
|
|
18800, 0x82, 0x00, 2,
|
|
2, 6, 3, 10, 26, 10, 26, 9650 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
|
|
25000, 0x83, 0x00, 3,
|
|
4, 10, 3, 11, 27, 11, 27, 12868 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
|
|
36700, 0x84, 0x00, 4,
|
|
4, 14, 3, 12, 28, 12, 28, 19304 },
|
|
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
|
|
48100, 0x85, 0x00, 5,
|
|
4, 20, 3, 13, 29, 13, 29, 25740 },
|
|
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
|
|
53500, 0x86, 0x00, 6,
|
|
4, 23, 3, 14, 30, 14, 30, 28956 },
|
|
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
|
|
59000, 0x87, 0x00, 7,
|
|
4, 25, 3, 15, 31, 15, 32, 32180 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
|
|
12700, 0x88, 0x00,
|
|
8, 0, 2, 3, 16, 33, 16, 33, 6430 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
|
|
24800, 0x89, 0x00, 9,
|
|
2, 4, 3, 17, 34, 17, 34, 12860 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
|
|
36600, 0x8a, 0x00, 10,
|
|
2, 6, 3, 18, 35, 18, 35, 19300 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
|
|
48100, 0x8b, 0x00, 11,
|
|
4, 10, 3, 19, 36, 19, 36, 25736 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
|
|
69500, 0x8c, 0x00, 12,
|
|
4, 14, 3, 20, 37, 20, 37, 38600 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
|
|
89500, 0x8d, 0x00, 13,
|
|
4, 20, 3, 21, 38, 21, 38, 51472 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
|
|
98900, 0x8e, 0x00, 14,
|
|
4, 23, 3, 22, 39, 22, 39, 57890 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
|
|
108300, 0x8f, 0x00, 15,
|
|
4, 25, 3, 23, 40, 23, 41, 64320 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
|
|
13200, 0x80, 0x00, 0,
|
|
0, 2, 3, 8, 24, 24, 24, 6684 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
|
|
25900, 0x81, 0x00, 1,
|
|
2, 4, 3, 9, 25, 25, 25, 13368 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
|
|
38600, 0x82, 0x00, 2,
|
|
2, 6, 3, 10, 26, 26, 26, 20052 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
|
|
49800, 0x83, 0x00, 3,
|
|
4, 10, 3, 11, 27, 27, 27, 26738 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
|
|
72200, 0x84, 0x00, 4,
|
|
4, 14, 3, 12, 28, 28, 28, 40104 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
|
|
92900, 0x85, 0x00, 5,
|
|
4, 20, 3, 13, 29, 29, 29, 53476 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
|
|
102700, 0x86, 0x00, 6,
|
|
4, 23, 3, 14, 30, 30, 30, 60156 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
|
|
112000, 0x87, 0x00, 7,
|
|
4, 25, 3, 15, 31, 32, 32, 66840 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
|
|
122000, 0x87, 0x00, 7,
|
|
4, 25, 3, 15, 31, 32, 32, 74200 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
|
|
25800, 0x88, 0x00, 8,
|
|
0, 2, 3, 16, 33, 33, 33, 13360 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
|
|
49800, 0x89, 0x00, 9,
|
|
2, 4, 3, 17, 34, 34, 34, 26720 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
|
|
71900, 0x8a, 0x00, 10,
|
|
2, 6, 3, 18, 35, 35, 35, 40080 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
|
|
92500, 0x8b, 0x00, 11,
|
|
4, 10, 3, 19, 36, 36, 36, 53440 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
|
|
130300, 0x8c, 0x00, 12,
|
|
4, 14, 3, 20, 37, 37, 37, 80160 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
|
|
162800, 0x8d, 0x00, 13,
|
|
4, 20, 3, 21, 38, 38, 38, 106880 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
|
|
178200, 0x8e, 0x00, 14,
|
|
4, 23, 3, 22, 39, 39, 39, 120240 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
|
|
192100, 0x8f, 0x00, 15,
|
|
4, 25, 3, 23, 40, 41, 41, 133600 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
|
|
207000, 0x8f, 0x00, 15,
|
|
4, 25, 3, 23, 40, 41, 41, 148400 },
|
|
},
|
|
50, /* probe interval */
|
|
50, /* rssi reduce interval */
|
|
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
|
|
};
|
|
|
|
/* 4ms frame limit not used for NG mode. The values filled
|
|
* for HT are the 64K max aggregate limit */
|
|
|
|
static struct ath_rate_table ar5416_11ng_ratetable = {
|
|
46,
|
|
{
|
|
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
|
|
900, 0x1b, 0x00, 2,
|
|
0, 0, 1, 0, 0, 0, 0, 0 },
|
|
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
|
|
1900, 0x1a, 0x04, 4,
|
|
1, 1, 1, 1, 1, 1, 1, 0 },
|
|
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
|
|
4900, 0x19, 0x04, 11,
|
|
2, 2, 2, 2, 2, 2, 2, 0 },
|
|
{ VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
|
|
8100, 0x18, 0x04, 22,
|
|
3, 3, 2, 3, 3, 3, 3, 0 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
|
|
5400, 0x0b, 0x00, 12,
|
|
4, 2, 1, 4, 4, 4, 4, 0 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
|
|
7800, 0x0f, 0x00, 18,
|
|
4, 3, 1, 5, 5, 5, 5, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
|
|
10100, 0x0a, 0x00, 24,
|
|
6, 4, 1, 6, 6, 6, 6, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
|
|
14100, 0x0e, 0x00, 36,
|
|
6, 6, 2, 7, 7, 7, 7, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
|
|
17700, 0x09, 0x00, 48,
|
|
8, 10, 3, 8, 8, 8, 8, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
|
|
23700, 0x0d, 0x00, 72,
|
|
8, 14, 3, 9, 9, 9, 9, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
|
|
27400, 0x08, 0x00, 96,
|
|
8, 20, 3, 10, 10, 10, 10, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
|
|
30900, 0x0c, 0x00, 108,
|
|
8, 23, 3, 11, 11, 11, 11, 0 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
|
|
6400, 0x80, 0x00, 0,
|
|
4, 2, 3, 12, 28, 12, 28, 3216 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
|
|
12700, 0x81, 0x00, 1,
|
|
6, 4, 3, 13, 29, 13, 29, 6434 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
|
|
18800, 0x82, 0x00, 2,
|
|
6, 6, 3, 14, 30, 14, 30, 9650 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
|
|
25000, 0x83, 0x00, 3,
|
|
8, 10, 3, 15, 31, 15, 31, 12868 },
|
|
{ VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
|
|
36700, 0x84, 0x00, 4,
|
|
8, 14, 3, 16, 32, 16, 32, 19304 },
|
|
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
|
|
48100, 0x85, 0x00, 5,
|
|
8, 20, 3, 17, 33, 17, 33, 25740 },
|
|
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
|
|
53500, 0x86, 0x00, 6,
|
|
8, 23, 3, 18, 34, 18, 34, 28956 },
|
|
{ INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
|
|
59000, 0x87, 0x00, 7,
|
|
8, 25, 3, 19, 35, 19, 36, 32180 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
|
|
12700, 0x88, 0x00, 8,
|
|
4, 2, 3, 20, 37, 20, 37, 6430 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
|
|
24800, 0x89, 0x00, 9,
|
|
6, 4, 3, 21, 38, 21, 38, 12860 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
|
|
36600, 0x8a, 0x00, 10,
|
|
6, 6, 3, 22, 39, 22, 39, 19300 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
|
|
48100, 0x8b, 0x00, 11,
|
|
8, 10, 3, 23, 40, 23, 40, 25736 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
|
|
69500, 0x8c, 0x00, 12,
|
|
8, 14, 3, 24, 41, 24, 41, 38600 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
|
|
89500, 0x8d, 0x00, 13,
|
|
8, 20, 3, 25, 42, 25, 42, 51472 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
|
|
98900, 0x8e, 0x00, 14,
|
|
8, 23, 3, 26, 43, 26, 44, 57890 },
|
|
{ VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
|
|
108300, 0x8f, 0x00, 15,
|
|
8, 25, 3, 27, 44, 27, 45, 64320 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
|
|
13200, 0x80, 0x00, 0,
|
|
8, 2, 3, 12, 28, 28, 28, 6684 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
|
|
25900, 0x81, 0x00, 1,
|
|
8, 4, 3, 13, 29, 29, 29, 13368 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
|
|
38600, 0x82, 0x00, 2,
|
|
8, 6, 3, 14, 30, 30, 30, 20052 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
|
|
49800, 0x83, 0x00, 3,
|
|
8, 10, 3, 15, 31, 31, 31, 26738 },
|
|
{ VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
|
|
72200, 0x84, 0x00, 4,
|
|
8, 14, 3, 16, 32, 32, 32, 40104 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
|
|
92900, 0x85, 0x00, 5,
|
|
8, 20, 3, 17, 33, 33, 33, 53476 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
|
|
102700, 0x86, 0x00, 6,
|
|
8, 23, 3, 18, 34, 34, 34, 60156 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
|
|
112000, 0x87, 0x00, 7,
|
|
8, 23, 3, 19, 35, 36, 36, 66840 },
|
|
{ INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
|
|
122000, 0x87, 0x00, 7,
|
|
8, 25, 3, 19, 35, 36, 36, 74200 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
|
|
25800, 0x88, 0x00, 8,
|
|
8, 2, 3, 20, 37, 37, 37, 13360 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
|
|
49800, 0x89, 0x00, 9,
|
|
8, 4, 3, 21, 38, 38, 38, 26720 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
|
|
71900, 0x8a, 0x00, 10,
|
|
8, 6, 3, 22, 39, 39, 39, 40080 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
|
|
92500, 0x8b, 0x00, 11,
|
|
8, 10, 3, 23, 40, 40, 40, 53440 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
|
|
130300, 0x8c, 0x00, 12,
|
|
8, 14, 3, 24, 41, 41, 41, 80160 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
|
|
162800, 0x8d, 0x00, 13,
|
|
8, 20, 3, 25, 42, 42, 42, 106880 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
|
|
178200, 0x8e, 0x00, 14,
|
|
8, 23, 3, 26, 43, 43, 43, 120240 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
|
|
192100, 0x8f, 0x00, 15,
|
|
8, 23, 3, 27, 44, 45, 45, 133600 },
|
|
{ VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
|
|
207000, 0x8f, 0x00, 15,
|
|
8, 25, 3, 27, 44, 45, 45, 148400 },
|
|
},
|
|
50, /* probe interval */
|
|
50, /* rssi reduce interval */
|
|
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
|
|
};
|
|
|
|
static struct ath_rate_table ar5416_11a_ratetable = {
|
|
8,
|
|
{
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
|
|
5400, 0x0b, 0x00, (0x80|12),
|
|
0, 2, 1, 0, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
|
|
7800, 0x0f, 0x00, 18,
|
|
0, 3, 1, 1, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
|
|
10000, 0x0a, 0x00, (0x80|24),
|
|
2, 4, 2, 2, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
|
|
13900, 0x0e, 0x00, 36,
|
|
2, 6, 2, 3, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
|
|
17300, 0x09, 0x00, (0x80|48),
|
|
4, 10, 3, 4, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
|
|
23000, 0x0d, 0x00, 72,
|
|
4, 14, 3, 5, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
|
|
27400, 0x08, 0x00, 96,
|
|
4, 19, 3, 6, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
|
|
29300, 0x0c, 0x00, 108,
|
|
4, 23, 3, 7, 0 },
|
|
},
|
|
50, /* probe interval */
|
|
50, /* rssi reduce interval */
|
|
0, /* Phy rates allowed initially */
|
|
};
|
|
|
|
static struct ath_rate_table ar5416_11g_ratetable = {
|
|
12,
|
|
{
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
|
|
900, 0x1b, 0x00, 2,
|
|
0, 0, 1, 0, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
|
|
1900, 0x1a, 0x04, 4,
|
|
1, 1, 1, 1, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
|
|
4900, 0x19, 0x04, 11,
|
|
2, 2, 2, 2, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
|
|
8100, 0x18, 0x04, 22,
|
|
3, 3, 2, 3, 0 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
|
|
5400, 0x0b, 0x00, 12,
|
|
4, 2, 1, 4, 0 },
|
|
{ INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
|
|
7800, 0x0f, 0x00, 18,
|
|
4, 3, 1, 5, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
|
|
10000, 0x0a, 0x00, 24,
|
|
6, 4, 1, 6, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
|
|
13900, 0x0e, 0x00, 36,
|
|
6, 6, 2, 7, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
|
|
17300, 0x09, 0x00, 48,
|
|
8, 10, 3, 8, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
|
|
23000, 0x0d, 0x00, 72,
|
|
8, 14, 3, 9, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
|
|
27400, 0x08, 0x00, 96,
|
|
8, 19, 3, 10, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
|
|
29300, 0x0c, 0x00, 108,
|
|
8, 23, 3, 11, 0 },
|
|
},
|
|
50, /* probe interval */
|
|
50, /* rssi reduce interval */
|
|
0, /* Phy rates allowed initially */
|
|
};
|
|
|
|
static struct ath_rate_table ar5416_11b_ratetable = {
|
|
4,
|
|
{
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
|
|
900, 0x1b, 0x00, (0x80|2),
|
|
0, 0, 1, 0, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
|
|
1800, 0x1a, 0x04, (0x80|4),
|
|
1, 1, 1, 1, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
|
|
4300, 0x19, 0x04, (0x80|11),
|
|
1, 2, 2, 2, 0 },
|
|
{ VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
|
|
7100, 0x18, 0x04, (0x80|22),
|
|
1, 4, 100, 3, 0 },
|
|
},
|
|
100, /* probe interval */
|
|
100, /* rssi reduce interval */
|
|
0, /* Phy rates allowed initially */
|
|
};
|
|
|
|
static inline int8_t median(int8_t a, int8_t b, int8_t c)
|
|
{
|
|
if (a >= b) {
|
|
if (b >= c)
|
|
return b;
|
|
else if (a > c)
|
|
return c;
|
|
else
|
|
return a;
|
|
} else {
|
|
if (a >= c)
|
|
return a;
|
|
else if (b >= c)
|
|
return c;
|
|
else
|
|
return b;
|
|
}
|
|
}
|
|
|
|
static void ath_rc_sort_validrates(struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv)
|
|
{
|
|
u8 i, j, idx, idx_next;
|
|
|
|
for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
|
|
for (j = 0; j <= i-1; j++) {
|
|
idx = ath_rc_priv->valid_rate_index[j];
|
|
idx_next = ath_rc_priv->valid_rate_index[j+1];
|
|
|
|
if (rate_table->info[idx].ratekbps >
|
|
rate_table->info[idx_next].ratekbps) {
|
|
ath_rc_priv->valid_rate_index[j] = idx_next;
|
|
ath_rc_priv->valid_rate_index[j+1] = idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < ath_rc_priv->rate_table_size; i++)
|
|
ath_rc_priv->valid_rate_index[i] = 0;
|
|
}
|
|
|
|
static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
|
|
u8 index, int valid_tx_rate)
|
|
{
|
|
ASSERT(index <= ath_rc_priv->rate_table_size);
|
|
ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
|
|
}
|
|
|
|
static inline int ath_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv,
|
|
u8 index)
|
|
{
|
|
ASSERT(index <= ath_rc_priv->rate_table_size);
|
|
return ath_rc_priv->valid_rate_index[index];
|
|
}
|
|
|
|
static inline int ath_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
u8 cur_valid_txrate,
|
|
u8 *next_idx)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
|
|
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
|
|
*next_idx = ath_rc_priv->valid_rate_index[i+1];
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* No more valid rates */
|
|
*next_idx = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return true only for single stream */
|
|
|
|
static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
|
|
{
|
|
if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
|
|
return 0;
|
|
if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
|
|
return 0;
|
|
if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
|
|
return 0;
|
|
if (!ignore_cw && WLAN_RC_PHY_HT(phy))
|
|
if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
|
|
return 0;
|
|
if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static inline int
|
|
ath_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
u8 cur_valid_txrate, u8 *next_idx)
|
|
{
|
|
int8_t i;
|
|
|
|
for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
|
|
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
|
|
*next_idx = ath_rc_priv->valid_rate_index[i-1];
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
|
|
struct ath_rate_table *rate_table,
|
|
u32 capflag)
|
|
{
|
|
u8 i, hi = 0;
|
|
u32 valid;
|
|
|
|
for (i = 0; i < rate_table->rate_cnt; i++) {
|
|
valid = (ath_rc_priv->single_stream ?
|
|
rate_table->info[i].valid_single_stream :
|
|
rate_table->info[i].valid);
|
|
if (valid == 1) {
|
|
u32 phy = rate_table->info[i].phy;
|
|
u8 valid_rate_count = 0;
|
|
|
|
if (!ath_rc_valid_phyrate(phy, capflag, 0))
|
|
continue;
|
|
|
|
valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
|
|
|
|
ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
|
|
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
|
|
ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
|
|
hi = A_MAX(hi, i);
|
|
}
|
|
}
|
|
|
|
return hi;
|
|
}
|
|
|
|
static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
|
|
struct ath_rate_table *rate_table,
|
|
struct ath_rateset *rateset,
|
|
u32 capflag)
|
|
{
|
|
u8 i, j, hi = 0;
|
|
|
|
/* Use intersection of working rates and valid rates */
|
|
for (i = 0; i < rateset->rs_nrates; i++) {
|
|
for (j = 0; j < rate_table->rate_cnt; j++) {
|
|
u32 phy = rate_table->info[j].phy;
|
|
u32 valid = (ath_rc_priv->single_stream ?
|
|
rate_table->info[j].valid_single_stream :
|
|
rate_table->info[j].valid);
|
|
u8 rate = rateset->rs_rates[i];
|
|
u8 dot11rate = rate_table->info[j].dot11rate;
|
|
|
|
/* We allow a rate only if its valid and the
|
|
* capflag matches one of the validity
|
|
* (VALID/VALID_20/VALID_40) flags */
|
|
|
|
if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
|
|
((valid & WLAN_RC_CAP_MODE(capflag)) ==
|
|
WLAN_RC_CAP_MODE(capflag)) &&
|
|
!WLAN_RC_PHY_HT(phy)) {
|
|
u8 valid_rate_count = 0;
|
|
|
|
if (!ath_rc_valid_phyrate(phy, capflag, 0))
|
|
continue;
|
|
|
|
valid_rate_count =
|
|
ath_rc_priv->valid_phy_ratecnt[phy];
|
|
|
|
ath_rc_priv->valid_phy_rateidx[phy]
|
|
[valid_rate_count] = j;
|
|
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
|
|
ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
|
|
hi = A_MAX(hi, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
return hi;
|
|
}
|
|
|
|
static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
|
|
struct ath_rate_table *rate_table,
|
|
u8 *mcs_set, u32 capflag)
|
|
{
|
|
struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
|
|
|
|
u8 i, j, hi = 0;
|
|
|
|
/* Use intersection of working rates and valid rates */
|
|
for (i = 0; i < rateset->rs_nrates; i++) {
|
|
for (j = 0; j < rate_table->rate_cnt; j++) {
|
|
u32 phy = rate_table->info[j].phy;
|
|
u32 valid = (ath_rc_priv->single_stream ?
|
|
rate_table->info[j].valid_single_stream :
|
|
rate_table->info[j].valid);
|
|
u8 rate = rateset->rs_rates[i];
|
|
u8 dot11rate = rate_table->info[j].dot11rate;
|
|
|
|
if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
|
|
!WLAN_RC_PHY_HT(phy) ||
|
|
!WLAN_RC_PHY_HT_VALID(valid, capflag))
|
|
continue;
|
|
|
|
if (!ath_rc_valid_phyrate(phy, capflag, 0))
|
|
continue;
|
|
|
|
ath_rc_priv->valid_phy_rateidx[phy]
|
|
[ath_rc_priv->valid_phy_ratecnt[phy]] = j;
|
|
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
|
|
ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
|
|
hi = A_MAX(hi, j);
|
|
}
|
|
}
|
|
|
|
return hi;
|
|
}
|
|
|
|
static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ath_rate_table *rate_table,
|
|
int *is_probing)
|
|
{
|
|
u32 dt, best_thruput, this_thruput, now_msec;
|
|
u8 rate, next_rate, best_rate, maxindex, minindex;
|
|
int8_t rssi_last, rssi_reduce = 0, index = 0;
|
|
|
|
*is_probing = 0;
|
|
|
|
rssi_last = median(ath_rc_priv->rssi_last,
|
|
ath_rc_priv->rssi_last_prev,
|
|
ath_rc_priv->rssi_last_prev2);
|
|
|
|
/*
|
|
* Age (reduce) last ack rssi based on how old it is.
|
|
* The bizarre numbers are so the delta is 160msec,
|
|
* meaning we divide by 16.
|
|
* 0msec <= dt <= 25msec: don't derate
|
|
* 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
|
|
* 185msec <= dt: derate by 10dB
|
|
*/
|
|
|
|
now_msec = jiffies_to_msecs(jiffies);
|
|
dt = now_msec - ath_rc_priv->rssi_time;
|
|
|
|
if (dt >= 185)
|
|
rssi_reduce = 10;
|
|
else if (dt >= 25)
|
|
rssi_reduce = (u8)((dt - 25) >> 4);
|
|
|
|
/* Now reduce rssi_last by rssi_reduce */
|
|
if (rssi_last < rssi_reduce)
|
|
rssi_last = 0;
|
|
else
|
|
rssi_last -= rssi_reduce;
|
|
|
|
/*
|
|
* Now look up the rate in the rssi table and return it.
|
|
* If no rates match then we return 0 (lowest rate)
|
|
*/
|
|
|
|
best_thruput = 0;
|
|
maxindex = ath_rc_priv->max_valid_rate-1;
|
|
|
|
minindex = 0;
|
|
best_rate = minindex;
|
|
|
|
/*
|
|
* Try the higher rate first. It will reduce memory moving time
|
|
* if we have very good channel characteristics.
|
|
*/
|
|
for (index = maxindex; index >= minindex ; index--) {
|
|
u8 per_thres;
|
|
|
|
rate = ath_rc_priv->valid_rate_index[index];
|
|
if (rate > ath_rc_priv->rate_max_phy)
|
|
continue;
|
|
|
|
/*
|
|
* For TCP the average collision rate is around 11%,
|
|
* so we ignore PERs less than this. This is to
|
|
* prevent the rate we are currently using (whose
|
|
* PER might be in the 10-15 range because of TCP
|
|
* collisions) looking worse than the next lower
|
|
* rate whose PER has decayed close to 0. If we
|
|
* used to next lower rate, its PER would grow to
|
|
* 10-15 and we would be worse off then staying
|
|
* at the current rate.
|
|
*/
|
|
per_thres = ath_rc_priv->state[rate].per;
|
|
if (per_thres < 12)
|
|
per_thres = 12;
|
|
|
|
this_thruput = rate_table->info[rate].user_ratekbps *
|
|
(100 - per_thres);
|
|
|
|
if (best_thruput <= this_thruput) {
|
|
best_thruput = this_thruput;
|
|
best_rate = rate;
|
|
}
|
|
}
|
|
|
|
rate = best_rate;
|
|
ath_rc_priv->rssi_last_lookup = rssi_last;
|
|
|
|
/*
|
|
* Must check the actual rate (ratekbps) to account for
|
|
* non-monoticity of 11g's rate table
|
|
*/
|
|
|
|
if (rate >= ath_rc_priv->rate_max_phy) {
|
|
rate = ath_rc_priv->rate_max_phy;
|
|
|
|
/* Probe the next allowed phy state */
|
|
if (ath_rc_get_nextvalid_txrate(rate_table,
|
|
ath_rc_priv, rate, &next_rate) &&
|
|
(now_msec - ath_rc_priv->probe_time >
|
|
rate_table->probe_interval) &&
|
|
(ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
|
|
rate = next_rate;
|
|
ath_rc_priv->probe_rate = rate;
|
|
ath_rc_priv->probe_time = now_msec;
|
|
ath_rc_priv->hw_maxretry_pktcnt = 0;
|
|
*is_probing = 1;
|
|
}
|
|
}
|
|
|
|
if (rate > (ath_rc_priv->rate_table_size - 1))
|
|
rate = ath_rc_priv->rate_table_size - 1;
|
|
|
|
ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
|
|
(rate_table->info[rate].valid_single_stream &&
|
|
ath_rc_priv->single_stream));
|
|
|
|
return rate;
|
|
}
|
|
|
|
static void ath_rc_rate_set_series(struct ath_rate_table *rate_table,
|
|
struct ieee80211_tx_rate *rate,
|
|
struct ieee80211_tx_rate_control *txrc,
|
|
u8 tries, u8 rix, int rtsctsenable)
|
|
{
|
|
rate->count = tries;
|
|
rate->idx = rix;
|
|
|
|
if (txrc->short_preamble)
|
|
rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
|
|
if (txrc->rts || rtsctsenable)
|
|
rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
|
|
if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
|
|
rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
|
|
if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
|
|
rate->flags |= IEEE80211_TX_RC_SHORT_GI;
|
|
if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
|
|
rate->flags |= IEEE80211_TX_RC_MCS;
|
|
}
|
|
|
|
static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
|
|
struct ath_rate_table *rate_table,
|
|
struct ieee80211_tx_info *tx_info)
|
|
{
|
|
struct ieee80211_tx_rate *rates = tx_info->control.rates;
|
|
int i = 0, rix = 0, cix, enable_g_protection = 0;
|
|
|
|
/* get the cix for the lowest valid rix */
|
|
for (i = 3; i >= 0; i--) {
|
|
if (rates[i].count && (rates[i].idx >= 0)) {
|
|
rix = rates[i].idx;
|
|
break;
|
|
}
|
|
}
|
|
cix = rate_table->info[rix].ctrl_rate;
|
|
|
|
/* All protection frames are transmited at 2Mb/s for 802.11g,
|
|
* otherwise we transmit them at 1Mb/s */
|
|
if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
|
|
!conf_is_ht(&sc->hw->conf))
|
|
enable_g_protection = 1;
|
|
|
|
/*
|
|
* If 802.11g protection is enabled, determine whether to use RTS/CTS or
|
|
* just CTS. Note that this is only done for OFDM/HT unicast frames.
|
|
*/
|
|
if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
|
|
!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
|
|
(rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
|
|
WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
|
|
rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
|
|
cix = rate_table->info[enable_g_protection].ctrl_rate;
|
|
}
|
|
|
|
tx_info->control.rts_cts_rate_idx = cix;
|
|
}
|
|
|
|
static u8 ath_rc_rate_getidx(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ath_rate_table *rate_table,
|
|
u8 rix, u16 stepdown,
|
|
u16 min_rate)
|
|
{
|
|
u32 j;
|
|
u8 nextindex;
|
|
|
|
if (min_rate) {
|
|
for (j = RATE_TABLE_SIZE; j > 0; j--) {
|
|
if (ath_rc_get_nextlowervalid_txrate(rate_table,
|
|
ath_rc_priv, rix, &nextindex))
|
|
rix = nextindex;
|
|
else
|
|
break;
|
|
}
|
|
} else {
|
|
for (j = stepdown; j > 0; j--) {
|
|
if (ath_rc_get_nextlowervalid_txrate(rate_table,
|
|
ath_rc_priv, rix, &nextindex))
|
|
rix = nextindex;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
return rix;
|
|
}
|
|
|
|
static void ath_rc_ratefind(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ieee80211_tx_rate_control *txrc)
|
|
{
|
|
struct ath_rate_table *rate_table;
|
|
struct sk_buff *skb = txrc->skb;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_tx_rate *rates = tx_info->control.rates;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
__le16 fc = hdr->frame_control;
|
|
u8 try_per_rate = 0, i = 0, rix, nrix;
|
|
int is_probe = 0;
|
|
|
|
rate_table = sc->cur_rate_table;
|
|
rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, &is_probe);
|
|
nrix = rix;
|
|
|
|
if (is_probe) {
|
|
/* set one try for probe rates. For the
|
|
* probes don't enable rts */
|
|
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
|
|
1, nrix, 0);
|
|
|
|
try_per_rate = (ATH_11N_TXMAXTRY/4);
|
|
/* Get the next tried/allowed rate. No RTS for the next series
|
|
* after the probe rate
|
|
*/
|
|
nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
|
|
rate_table, nrix, 1, 0);
|
|
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
|
|
try_per_rate, nrix, 0);
|
|
} else {
|
|
try_per_rate = (ATH_11N_TXMAXTRY/4);
|
|
/* Set the choosen rate. No RTS for first series entry. */
|
|
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
|
|
try_per_rate, nrix, 0);
|
|
}
|
|
|
|
/* Fill in the other rates for multirate retry */
|
|
for ( ; i < 4; i++) {
|
|
u8 try_num;
|
|
u8 min_rate;
|
|
|
|
try_num = ((i + 1) == 4) ?
|
|
ATH_11N_TXMAXTRY - (try_per_rate * i) : try_per_rate ;
|
|
min_rate = (((i + 1) == 4) && 0);
|
|
|
|
nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
|
|
rate_table, nrix, 1, min_rate);
|
|
/* All other rates in the series have RTS enabled */
|
|
ath_rc_rate_set_series(rate_table, &rates[i], txrc,
|
|
try_num, nrix, 1);
|
|
}
|
|
|
|
/*
|
|
* NB:Change rate series to enable aggregation when operating
|
|
* at lower MCS rates. When first rate in series is MCS2
|
|
* in HT40 @ 2.4GHz, series should look like:
|
|
*
|
|
* {MCS2, MCS1, MCS0, MCS0}.
|
|
*
|
|
* When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
|
|
* look like:
|
|
*
|
|
* {MCS3, MCS2, MCS1, MCS1}
|
|
*
|
|
* So, set fourth rate in series to be same as third one for
|
|
* above conditions.
|
|
*/
|
|
if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
|
|
(conf_is_ht(&sc->hw->conf))) {
|
|
u8 dot11rate = rate_table->info[rix].dot11rate;
|
|
u8 phy = rate_table->info[rix].phy;
|
|
if (i == 4 &&
|
|
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
|
|
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
|
|
rates[3].idx = rates[2].idx;
|
|
rates[3].flags = rates[2].flags;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force hardware to use computed duration for next
|
|
* fragment by disabling multi-rate retry, which
|
|
* updates duration based on the multi-rate duration table.
|
|
*
|
|
* FIXME: Fix duration
|
|
*/
|
|
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
|
|
(ieee80211_has_morefrags(fc) ||
|
|
(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG))) {
|
|
rates[1].count = rates[2].count = rates[3].count = 0;
|
|
rates[1].idx = rates[2].idx = rates[3].idx = 0;
|
|
rates[0].count = ATH_TXMAXTRY;
|
|
}
|
|
|
|
/* Setup RTS/CTS */
|
|
ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
|
|
}
|
|
|
|
static bool ath_rc_update_per(struct ath_softc *sc,
|
|
struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ath_tx_info_priv *tx_info_priv,
|
|
int tx_rate, int xretries, int retries,
|
|
u32 now_msec)
|
|
{
|
|
bool state_change = false;
|
|
int count;
|
|
u8 last_per;
|
|
static u32 nretry_to_per_lookup[10] = {
|
|
100 * 0 / 1,
|
|
100 * 1 / 4,
|
|
100 * 1 / 2,
|
|
100 * 3 / 4,
|
|
100 * 4 / 5,
|
|
100 * 5 / 6,
|
|
100 * 6 / 7,
|
|
100 * 7 / 8,
|
|
100 * 8 / 9,
|
|
100 * 9 / 10
|
|
};
|
|
|
|
last_per = ath_rc_priv->state[tx_rate].per;
|
|
|
|
if (xretries) {
|
|
if (xretries == 1) {
|
|
ath_rc_priv->state[tx_rate].per += 30;
|
|
if (ath_rc_priv->state[tx_rate].per > 100)
|
|
ath_rc_priv->state[tx_rate].per = 100;
|
|
} else {
|
|
/* xretries == 2 */
|
|
count = ARRAY_SIZE(nretry_to_per_lookup);
|
|
if (retries >= count)
|
|
retries = count - 1;
|
|
|
|
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
|
|
ath_rc_priv->state[tx_rate].per =
|
|
(u8)(last_per - (last_per >> 3) + (100 >> 3));
|
|
}
|
|
|
|
/* xretries == 1 or 2 */
|
|
|
|
if (ath_rc_priv->probe_rate == tx_rate)
|
|
ath_rc_priv->probe_rate = 0;
|
|
|
|
} else { /* xretries == 0 */
|
|
count = ARRAY_SIZE(nretry_to_per_lookup);
|
|
if (retries >= count)
|
|
retries = count - 1;
|
|
|
|
if (tx_info_priv->n_bad_frames) {
|
|
/* new_PER = 7/8*old_PER + 1/8*(currentPER)
|
|
* Assuming that n_frames is not 0. The current PER
|
|
* from the retries is 100 * retries / (retries+1),
|
|
* since the first retries attempts failed, and the
|
|
* next one worked. For the one that worked,
|
|
* n_bad_frames subframes out of n_frames wored,
|
|
* so the PER for that part is
|
|
* 100 * n_bad_frames / n_frames, and it contributes
|
|
* 100 * n_bad_frames / (n_frames * (retries+1)) to
|
|
* the above PER. The expression below is a
|
|
* simplified version of the sum of these two terms.
|
|
*/
|
|
if (tx_info_priv->n_frames > 0) {
|
|
int n_frames, n_bad_frames;
|
|
u8 cur_per, new_per;
|
|
|
|
n_bad_frames = retries * tx_info_priv->n_frames +
|
|
tx_info_priv->n_bad_frames;
|
|
n_frames = tx_info_priv->n_frames * (retries + 1);
|
|
cur_per = (100 * n_bad_frames / n_frames) >> 3;
|
|
new_per = (u8)(last_per - (last_per >> 3) + cur_per);
|
|
ath_rc_priv->state[tx_rate].per = new_per;
|
|
}
|
|
} else {
|
|
ath_rc_priv->state[tx_rate].per =
|
|
(u8)(last_per - (last_per >> 3) +
|
|
(nretry_to_per_lookup[retries] >> 3));
|
|
}
|
|
|
|
ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
|
|
ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
|
|
ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
|
|
ath_rc_priv->rssi_time = now_msec;
|
|
|
|
/*
|
|
* If we got at most one retry then increase the max rate if
|
|
* this was a probe. Otherwise, ignore the probe.
|
|
*/
|
|
if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
|
|
if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
|
|
tx_info_priv->n_frames) {
|
|
/*
|
|
* Since we probed with just a single attempt,
|
|
* any retries means the probe failed. Also,
|
|
* if the attempt worked, but more than half
|
|
* the subframes were bad then also consider
|
|
* the probe a failure.
|
|
*/
|
|
ath_rc_priv->probe_rate = 0;
|
|
} else {
|
|
u8 probe_rate = 0;
|
|
|
|
ath_rc_priv->rate_max_phy =
|
|
ath_rc_priv->probe_rate;
|
|
probe_rate = ath_rc_priv->probe_rate;
|
|
|
|
if (ath_rc_priv->state[probe_rate].per > 30)
|
|
ath_rc_priv->state[probe_rate].per = 20;
|
|
|
|
ath_rc_priv->probe_rate = 0;
|
|
|
|
/*
|
|
* Since this probe succeeded, we allow the next
|
|
* probe twice as soon. This allows the maxRate
|
|
* to move up faster if the probes are
|
|
* succesful.
|
|
*/
|
|
ath_rc_priv->probe_time =
|
|
now_msec - rate_table->probe_interval / 2;
|
|
}
|
|
}
|
|
|
|
if (retries > 0) {
|
|
/*
|
|
* Don't update anything. We don't know if
|
|
* this was because of collisions or poor signal.
|
|
*
|
|
* Later: if rssi_ack is close to
|
|
* ath_rc_priv->state[txRate].rssi_thres and we see lots
|
|
* of retries, then we could increase
|
|
* ath_rc_priv->state[txRate].rssi_thres.
|
|
*/
|
|
ath_rc_priv->hw_maxretry_pktcnt = 0;
|
|
} else {
|
|
int32_t rssi_ackAvg;
|
|
int8_t rssi_thres;
|
|
int8_t rssi_ack_vmin;
|
|
|
|
/*
|
|
* It worked with no retries. First ignore bogus (small)
|
|
* rssi_ack values.
|
|
*/
|
|
if (tx_rate == ath_rc_priv->rate_max_phy &&
|
|
ath_rc_priv->hw_maxretry_pktcnt < 255) {
|
|
ath_rc_priv->hw_maxretry_pktcnt++;
|
|
}
|
|
|
|
if (tx_info_priv->tx.ts_rssi <
|
|
rate_table->info[tx_rate].rssi_ack_validmin)
|
|
goto exit;
|
|
|
|
/* Average the rssi */
|
|
if (tx_rate != ath_rc_priv->rssi_sum_rate) {
|
|
ath_rc_priv->rssi_sum_rate = tx_rate;
|
|
ath_rc_priv->rssi_sum =
|
|
ath_rc_priv->rssi_sum_cnt = 0;
|
|
}
|
|
|
|
ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
|
|
ath_rc_priv->rssi_sum_cnt++;
|
|
|
|
if (ath_rc_priv->rssi_sum_cnt < 4)
|
|
goto exit;
|
|
|
|
rssi_ackAvg =
|
|
(ath_rc_priv->rssi_sum + 2) / 4;
|
|
rssi_thres =
|
|
ath_rc_priv->state[tx_rate].rssi_thres;
|
|
rssi_ack_vmin =
|
|
rate_table->info[tx_rate].rssi_ack_validmin;
|
|
|
|
ath_rc_priv->rssi_sum =
|
|
ath_rc_priv->rssi_sum_cnt = 0;
|
|
|
|
/* Now reduce the current rssi threshold */
|
|
if ((rssi_ackAvg < rssi_thres + 2) &&
|
|
(rssi_thres > rssi_ack_vmin)) {
|
|
ath_rc_priv->state[tx_rate].rssi_thres--;
|
|
}
|
|
|
|
state_change = true;
|
|
}
|
|
}
|
|
exit:
|
|
return state_change;
|
|
}
|
|
|
|
/* Update PER, RSSI and whatever else that the code thinks it is doing.
|
|
If you can make sense of all this, you really need to go out more. */
|
|
|
|
static void ath_rc_update_ht(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ath_tx_info_priv *tx_info_priv,
|
|
int tx_rate, int xretries, int retries)
|
|
{
|
|
#define CHK_RSSI(rate) \
|
|
((ath_rc_priv->state[(rate)].rssi_thres + \
|
|
rate_table->info[(rate)].rssi_ack_deltamin) > \
|
|
ath_rc_priv->state[(rate)+1].rssi_thres)
|
|
|
|
u32 now_msec = jiffies_to_msecs(jiffies);
|
|
int rate;
|
|
u8 last_per;
|
|
bool state_change = false;
|
|
struct ath_rate_table *rate_table = sc->cur_rate_table;
|
|
int size = ath_rc_priv->rate_table_size;
|
|
|
|
if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
|
|
return;
|
|
|
|
/* To compensate for some imbalance between ctrl and ext. channel */
|
|
|
|
if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
|
|
tx_info_priv->tx.ts_rssi =
|
|
tx_info_priv->tx.ts_rssi < 3 ? 0 :
|
|
tx_info_priv->tx.ts_rssi - 3;
|
|
|
|
last_per = ath_rc_priv->state[tx_rate].per;
|
|
|
|
/* Update PER first */
|
|
state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
|
|
tx_info_priv, tx_rate, xretries,
|
|
retries, now_msec);
|
|
|
|
/*
|
|
* If this rate looks bad (high PER) then stop using it for
|
|
* a while (except if we are probing).
|
|
*/
|
|
if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
|
|
rate_table->info[tx_rate].ratekbps <=
|
|
rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
|
|
ath_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv,
|
|
(u8)tx_rate, &ath_rc_priv->rate_max_phy);
|
|
|
|
/* Don't probe for a little while. */
|
|
ath_rc_priv->probe_time = now_msec;
|
|
}
|
|
|
|
if (state_change) {
|
|
/*
|
|
* Make sure the rates above this have higher rssi thresholds.
|
|
* (Note: Monotonicity is kept within the OFDM rates and
|
|
* within the CCK rates. However, no adjustment is
|
|
* made to keep the rssi thresholds monotonically
|
|
* increasing between the CCK and OFDM rates.)
|
|
*/
|
|
for (rate = tx_rate; rate < size - 1; rate++) {
|
|
if (rate_table->info[rate+1].phy !=
|
|
rate_table->info[tx_rate].phy)
|
|
break;
|
|
|
|
if (CHK_RSSI(rate)) {
|
|
ath_rc_priv->state[rate+1].rssi_thres =
|
|
ath_rc_priv->state[rate].rssi_thres +
|
|
rate_table->info[rate].rssi_ack_deltamin;
|
|
}
|
|
}
|
|
|
|
/* Make sure the rates below this have lower rssi thresholds. */
|
|
for (rate = tx_rate - 1; rate >= 0; rate--) {
|
|
if (rate_table->info[rate].phy !=
|
|
rate_table->info[tx_rate].phy)
|
|
break;
|
|
|
|
if (CHK_RSSI(rate)) {
|
|
if (ath_rc_priv->state[rate+1].rssi_thres <
|
|
rate_table->info[rate].rssi_ack_deltamin)
|
|
ath_rc_priv->state[rate].rssi_thres = 0;
|
|
else {
|
|
ath_rc_priv->state[rate].rssi_thres =
|
|
ath_rc_priv->state[rate+1].rssi_thres -
|
|
rate_table->info[rate].rssi_ack_deltamin;
|
|
}
|
|
|
|
if (ath_rc_priv->state[rate].rssi_thres <
|
|
rate_table->info[rate].rssi_ack_validmin) {
|
|
ath_rc_priv->state[rate].rssi_thres =
|
|
rate_table->info[rate].rssi_ack_validmin;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure the rates below this have lower PER */
|
|
/* Monotonicity is kept only for rates below the current rate. */
|
|
if (ath_rc_priv->state[tx_rate].per < last_per) {
|
|
for (rate = tx_rate - 1; rate >= 0; rate--) {
|
|
if (rate_table->info[rate].phy !=
|
|
rate_table->info[tx_rate].phy)
|
|
break;
|
|
|
|
if (ath_rc_priv->state[rate].per >
|
|
ath_rc_priv->state[rate+1].per) {
|
|
ath_rc_priv->state[rate].per =
|
|
ath_rc_priv->state[rate+1].per;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Maintain monotonicity for rates above the current rate */
|
|
for (rate = tx_rate; rate < size - 1; rate++) {
|
|
if (ath_rc_priv->state[rate+1].per <
|
|
ath_rc_priv->state[rate].per)
|
|
ath_rc_priv->state[rate+1].per =
|
|
ath_rc_priv->state[rate].per;
|
|
}
|
|
|
|
/* Every so often, we reduce the thresholds and
|
|
* PER (different for CCK and OFDM). */
|
|
if (now_msec - ath_rc_priv->rssi_down_time >=
|
|
rate_table->rssi_reduce_interval) {
|
|
|
|
for (rate = 0; rate < size; rate++) {
|
|
if (ath_rc_priv->state[rate].rssi_thres >
|
|
rate_table->info[rate].rssi_ack_validmin)
|
|
ath_rc_priv->state[rate].rssi_thres -= 1;
|
|
}
|
|
ath_rc_priv->rssi_down_time = now_msec;
|
|
}
|
|
|
|
/* Every so often, we reduce the thresholds
|
|
* and PER (different for CCK and OFDM). */
|
|
if (now_msec - ath_rc_priv->per_down_time >=
|
|
rate_table->rssi_reduce_interval) {
|
|
for (rate = 0; rate < size; rate++) {
|
|
ath_rc_priv->state[rate].per =
|
|
7 * ath_rc_priv->state[rate].per / 8;
|
|
}
|
|
|
|
ath_rc_priv->per_down_time = now_msec;
|
|
}
|
|
|
|
ath_debug_stat_retries(sc, tx_rate, xretries, retries,
|
|
ath_rc_priv->state[tx_rate].per);
|
|
|
|
#undef CHK_RSSI
|
|
}
|
|
|
|
static int ath_rc_get_rateindex(struct ath_rate_table *rate_table,
|
|
struct ieee80211_tx_rate *rate)
|
|
{
|
|
int rix;
|
|
|
|
if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
|
|
(rate->flags & IEEE80211_TX_RC_SHORT_GI))
|
|
rix = rate_table->info[rate->idx].ht_index;
|
|
else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
|
|
rix = rate_table->info[rate->idx].sgi_index;
|
|
else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
|
|
rix = rate_table->info[rate->idx].cw40index;
|
|
else
|
|
rix = rate_table->info[rate->idx].base_index;
|
|
|
|
return rix;
|
|
}
|
|
|
|
static void ath_rc_tx_status(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ieee80211_tx_info *tx_info,
|
|
int final_ts_idx, int xretries, int long_retry)
|
|
{
|
|
struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
|
|
struct ath_rate_table *rate_table;
|
|
struct ieee80211_tx_rate *rates = tx_info->status.rates;
|
|
u8 flags;
|
|
u32 i = 0, rix;
|
|
|
|
rate_table = sc->cur_rate_table;
|
|
|
|
/*
|
|
* If the first rate is not the final index, there
|
|
* are intermediate rate failures to be processed.
|
|
*/
|
|
if (final_ts_idx != 0) {
|
|
/* Process intermediate rates that failed.*/
|
|
for (i = 0; i < final_ts_idx ; i++) {
|
|
if (rates[i].count != 0 && (rates[i].idx >= 0)) {
|
|
flags = rates[i].flags;
|
|
|
|
/* If HT40 and we have switched mode from
|
|
* 40 to 20 => don't update */
|
|
|
|
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
|
|
(ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG))
|
|
return;
|
|
|
|
rix = ath_rc_get_rateindex(rate_table, &rates[i]);
|
|
ath_rc_update_ht(sc, ath_rc_priv,
|
|
tx_info_priv, rix,
|
|
xretries ? 1 : 2,
|
|
rates[i].count);
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Handle the special case of MIMO PS burst, where the second
|
|
* aggregate is sent out with only one rate and one try.
|
|
* Treating it as an excessive retry penalizes the rate
|
|
* inordinately.
|
|
*/
|
|
if (rates[0].count == 1 && xretries == 1)
|
|
xretries = 2;
|
|
}
|
|
|
|
flags = rates[i].flags;
|
|
|
|
/* If HT40 and we have switched mode from 40 to 20 => don't update */
|
|
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
|
|
(ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) {
|
|
return;
|
|
}
|
|
|
|
rix = ath_rc_get_rateindex(rate_table, &rates[i]);
|
|
ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
|
|
xretries, long_retry);
|
|
}
|
|
|
|
static struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
|
|
enum ieee80211_band band,
|
|
bool is_ht, bool is_cw_40)
|
|
{
|
|
int mode = 0;
|
|
|
|
switch(band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
mode = ATH9K_MODE_11G;
|
|
if (is_ht)
|
|
mode = ATH9K_MODE_11NG_HT20;
|
|
if (is_cw_40)
|
|
mode = ATH9K_MODE_11NG_HT40PLUS;
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
mode = ATH9K_MODE_11A;
|
|
if (is_ht)
|
|
mode = ATH9K_MODE_11NA_HT20;
|
|
if (is_cw_40)
|
|
mode = ATH9K_MODE_11NA_HT40PLUS;
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
|
|
return NULL;
|
|
}
|
|
|
|
BUG_ON(mode >= ATH9K_MODE_MAX);
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
|
|
return sc->hw_rate_table[mode];
|
|
}
|
|
|
|
static void ath_rc_init(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta,
|
|
struct ath_rate_table *rate_table)
|
|
{
|
|
struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
|
|
u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
|
|
u8 i, j, k, hi = 0, hthi = 0;
|
|
|
|
if (!rate_table) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
|
|
return;
|
|
}
|
|
|
|
/* Initial rate table size. Will change depending
|
|
* on the working rate set */
|
|
ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
|
|
|
|
/* Initialize thresholds according to the global rate table */
|
|
for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
|
|
ath_rc_priv->state[i].rssi_thres =
|
|
rate_table->info[i].rssi_ack_validmin;
|
|
ath_rc_priv->state[i].per = 0;
|
|
}
|
|
|
|
/* Determine the valid rates */
|
|
ath_rc_init_valid_txmask(ath_rc_priv);
|
|
|
|
for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
|
|
for (j = 0; j < MAX_TX_RATE_PHY; j++)
|
|
ath_rc_priv->valid_phy_rateidx[i][j] = 0;
|
|
ath_rc_priv->valid_phy_ratecnt[i] = 0;
|
|
}
|
|
ath_rc_priv->rc_phy_mode = ath_rc_priv->ht_cap & WLAN_RC_40_FLAG;
|
|
|
|
/* Set stream capability */
|
|
ath_rc_priv->single_stream = (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1;
|
|
|
|
if (!rateset->rs_nrates) {
|
|
/* No working rate, just initialize valid rates */
|
|
hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
|
|
ath_rc_priv->ht_cap);
|
|
} else {
|
|
/* Use intersection of working rates and valid rates */
|
|
hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
|
|
rateset, ath_rc_priv->ht_cap);
|
|
if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
|
|
hthi = ath_rc_setvalid_htrates(ath_rc_priv,
|
|
rate_table,
|
|
ht_mcs,
|
|
ath_rc_priv->ht_cap);
|
|
}
|
|
hi = A_MAX(hi, hthi);
|
|
}
|
|
|
|
ath_rc_priv->rate_table_size = hi + 1;
|
|
ath_rc_priv->rate_max_phy = 0;
|
|
ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
|
|
|
|
for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
|
|
for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
|
|
ath_rc_priv->valid_rate_index[k++] =
|
|
ath_rc_priv->valid_phy_rateidx[i][j];
|
|
}
|
|
|
|
if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
|
|
|| !ath_rc_priv->valid_phy_ratecnt[i])
|
|
continue;
|
|
|
|
ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
|
|
}
|
|
ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
|
|
ASSERT(k <= RATE_TABLE_SIZE);
|
|
|
|
ath_rc_priv->max_valid_rate = k;
|
|
ath_rc_sort_validrates(rate_table, ath_rc_priv);
|
|
ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
|
|
sc->cur_rate_table = rate_table;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "RC Initialized with capabilities: 0x%x\n",
|
|
ath_rc_priv->ht_cap);
|
|
}
|
|
|
|
static u8 ath_rc_build_ht_caps(struct ath_softc *sc, bool is_ht, bool is_cw40,
|
|
bool is_sgi40)
|
|
{
|
|
u8 caps = 0;
|
|
|
|
if (is_ht) {
|
|
caps = WLAN_RC_HT_FLAG;
|
|
if (sc->sc_ah->caps.tx_chainmask != 1 &&
|
|
ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL))
|
|
caps |= WLAN_RC_DS_FLAG;
|
|
if (is_cw40)
|
|
caps |= WLAN_RC_40_FLAG;
|
|
if (is_sgi40)
|
|
caps |= WLAN_RC_SGI_FLAG;
|
|
}
|
|
|
|
return caps;
|
|
}
|
|
|
|
/***********************************/
|
|
/* mac80211 Rate Control callbacks */
|
|
/***********************************/
|
|
|
|
static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta, void *priv_sta,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
struct ath_tx_info_priv *tx_info_priv = NULL;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hdr *hdr;
|
|
int final_ts_idx, tx_status = 0, is_underrun = 0;
|
|
__le16 fc;
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
|
|
final_ts_idx = tx_info_priv->tx.ts_rateindex;
|
|
|
|
if (!priv_sta || !ieee80211_is_data(fc) ||
|
|
!tx_info_priv->update_rc)
|
|
goto exit;
|
|
|
|
if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
|
|
goto exit;
|
|
|
|
/*
|
|
* If underrun error is seen assume it as an excessive retry only
|
|
* if prefetch trigger level have reached the max (0x3f for 5416)
|
|
* Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
|
|
* times. This affects how ratectrl updates PER for the failed rate.
|
|
*/
|
|
if (tx_info_priv->tx.ts_flags &
|
|
(ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
|
|
((sc->sc_ah->tx_trig_level) >= ath_rc_priv->tx_triglevel_max)) {
|
|
tx_status = 1;
|
|
is_underrun = 1;
|
|
}
|
|
|
|
if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
|
|
(tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
|
|
tx_status = 1;
|
|
|
|
ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
|
|
(is_underrun) ? ATH_11N_TXMAXTRY :
|
|
tx_info_priv->tx.ts_longretry);
|
|
|
|
/* Check if aggregation has to be enabled for this tid */
|
|
if (conf_is_ht(&sc->hw->conf) &&
|
|
!(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
|
|
if (ieee80211_is_data_qos(fc)) {
|
|
u8 *qc, tid;
|
|
struct ath_node *an;
|
|
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
tid = qc[0] & 0xf;
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if(ath_tx_aggr_check(sc, an, tid))
|
|
ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid);
|
|
}
|
|
}
|
|
|
|
ath_debug_stat_rc(sc, skb);
|
|
exit:
|
|
kfree(tx_info_priv);
|
|
}
|
|
|
|
static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
|
|
struct ieee80211_tx_rate_control *txrc)
|
|
{
|
|
struct ieee80211_supported_band *sband = txrc->sband;
|
|
struct sk_buff *skb = txrc->skb;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
__le16 fc = hdr->frame_control;
|
|
|
|
/* lowest rate for management and multicast/broadcast frames */
|
|
if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1) ||
|
|
!sta) {
|
|
tx_info->control.rates[0].idx = rate_lowest_index(sband, sta);
|
|
tx_info->control.rates[0].count =
|
|
is_multicast_ether_addr(hdr->addr1) ? 1 : ATH_MGT_TXMAXTRY;
|
|
return;
|
|
}
|
|
|
|
/* Find tx rate for unicast frames */
|
|
ath_rc_ratefind(sc, ath_rc_priv, txrc);
|
|
}
|
|
|
|
static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta, void *priv_sta)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
struct ath_rate_table *rate_table = NULL;
|
|
bool is_cw40, is_sgi40;
|
|
int i, j = 0;
|
|
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
if (sta->supp_rates[sband->band] & BIT(i)) {
|
|
ath_rc_priv->neg_rates.rs_rates[j]
|
|
= (sband->bitrates[i].bitrate * 2) / 10;
|
|
j++;
|
|
}
|
|
}
|
|
ath_rc_priv->neg_rates.rs_nrates = j;
|
|
|
|
if (sta->ht_cap.ht_supported) {
|
|
for (i = 0, j = 0; i < 77; i++) {
|
|
if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
|
|
ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
|
|
if (j == ATH_RATE_MAX)
|
|
break;
|
|
}
|
|
ath_rc_priv->neg_ht_rates.rs_nrates = j;
|
|
}
|
|
|
|
is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
|
|
is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
|
|
|
|
/* Choose rate table first */
|
|
|
|
if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
|
|
(sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
|
|
rate_table = ath_choose_rate_table(sc, sband->band,
|
|
sta->ht_cap.ht_supported,
|
|
is_cw40);
|
|
} else if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) {
|
|
/* cur_rate_table would be set on init through config() */
|
|
rate_table = sc->cur_rate_table;
|
|
}
|
|
|
|
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta->ht_cap.ht_supported,
|
|
is_cw40, is_sgi40);
|
|
ath_rc_init(sc, priv_sta, sband, sta, rate_table);
|
|
}
|
|
|
|
static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta, void *priv_sta,
|
|
u32 changed)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
struct ath_rate_table *rate_table = NULL;
|
|
bool oper_cw40 = false, oper_sgi40;
|
|
bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
|
|
true : false;
|
|
bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
|
|
true : false;
|
|
|
|
/* FIXME: Handle AP mode later when we support CWM */
|
|
|
|
if (changed & IEEE80211_RC_HT_CHANGED) {
|
|
if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
|
|
return;
|
|
|
|
if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS ||
|
|
sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS)
|
|
oper_cw40 = true;
|
|
|
|
oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
|
|
true : false;
|
|
|
|
if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
|
|
rate_table = ath_choose_rate_table(sc, sband->band,
|
|
sta->ht_cap.ht_supported,
|
|
oper_cw40);
|
|
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc,
|
|
sta->ht_cap.ht_supported,
|
|
oper_cw40, oper_sgi40);
|
|
ath_rc_init(sc, priv_sta, sband, sta, rate_table);
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"Operating HT Bandwidth changed to: %d\n",
|
|
sc->hw->conf.channel_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
return aphy->sc;
|
|
}
|
|
|
|
static void ath_rate_free(void *priv)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *rate_priv;
|
|
|
|
rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
|
|
if (!rate_priv) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to allocate private rc structure\n");
|
|
return NULL;
|
|
}
|
|
|
|
rate_priv->rssi_down_time = jiffies_to_msecs(jiffies);
|
|
rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
|
|
|
|
return rate_priv;
|
|
}
|
|
|
|
static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
|
|
void *priv_sta)
|
|
{
|
|
struct ath_rate_priv *rate_priv = priv_sta;
|
|
kfree(rate_priv);
|
|
}
|
|
|
|
static struct rate_control_ops ath_rate_ops = {
|
|
.module = NULL,
|
|
.name = "ath9k_rate_control",
|
|
.tx_status = ath_tx_status,
|
|
.get_rate = ath_get_rate,
|
|
.rate_init = ath_rate_init,
|
|
.rate_update = ath_rate_update,
|
|
.alloc = ath_rate_alloc,
|
|
.free = ath_rate_free,
|
|
.alloc_sta = ath_rate_alloc_sta,
|
|
.free_sta = ath_rate_free_sta,
|
|
};
|
|
|
|
void ath_rate_attach(struct ath_softc *sc)
|
|
{
|
|
sc->hw_rate_table[ATH9K_MODE_11B] =
|
|
&ar5416_11b_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11A] =
|
|
&ar5416_11a_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11G] =
|
|
&ar5416_11g_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
|
|
&ar5416_11na_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
|
|
&ar5416_11ng_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
|
|
&ar5416_11na_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
|
|
&ar5416_11na_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
|
|
&ar5416_11ng_ratetable;
|
|
sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
|
|
&ar5416_11ng_ratetable;
|
|
}
|
|
|
|
int ath_rate_control_register(void)
|
|
{
|
|
return ieee80211_rate_control_register(&ath_rate_ops);
|
|
}
|
|
|
|
void ath_rate_control_unregister(void)
|
|
{
|
|
ieee80211_rate_control_unregister(&ath_rate_ops);
|
|
}
|