linux/arch/mips/lantiq/xway/sysctrl.c
Martin Schiller 44a374c066 MIPS: Lantiq: Fix ASC0/ASC1 clocks
ASC1 is available on every Lantiq SoC (also AmazonSE) and should be
enabled like the other generic xway clocks instead of ASC0, which is
only available for AR9 and Danube.

Signed-off-by: Martin Schiller <ms@dev.tdt.de>
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: John Crispin <john@phrozen.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Felix Fietkau <nbd@nbd.name>
Cc: Martin Schiller <ms@dev.tdt.de>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/16145/
[jhogan@kernel.org: Drop braces]
Signed-off-by: James Hogan <jhogan@kernel.org>
2017-11-07 22:40:15 +00:00

571 lines
17 KiB
C

/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Copyright (C) 2011-2012 John Crispin <john@phrozen.org>
* Copyright (C) 2013-2015 Lantiq Beteiligungs-GmbH & Co.KG
*/
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/clkdev.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <lantiq_soc.h>
#include "../clk.h"
#include "../prom.h"
/* clock control register for legacy */
#define CGU_IFCCR 0x0018
#define CGU_IFCCR_VR9 0x0024
/* system clock register for legacy */
#define CGU_SYS 0x0010
/* pci control register */
#define CGU_PCICR 0x0034
#define CGU_PCICR_VR9 0x0038
/* ephy configuration register */
#define CGU_EPHY 0x10
/* Legacy PMU register for ar9, ase, danube */
/* power control register */
#define PMU_PWDCR 0x1C
/* power status register */
#define PMU_PWDSR 0x20
/* power control register */
#define PMU_PWDCR1 0x24
/* power status register */
#define PMU_PWDSR1 0x28
/* power control register */
#define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
/* power status register */
#define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
/* PMU register for ar10 and grx390 */
/* First register set */
#define PMU_CLK_SR 0x20 /* status */
#define PMU_CLK_CR_A 0x24 /* Enable */
#define PMU_CLK_CR_B 0x28 /* Disable */
/* Second register set */
#define PMU_CLK_SR1 0x30 /* status */
#define PMU_CLK_CR1_A 0x34 /* Enable */
#define PMU_CLK_CR1_B 0x38 /* Disable */
/* Third register set */
#define PMU_ANA_SR 0x40 /* status */
#define PMU_ANA_CR_A 0x44 /* Enable */
#define PMU_ANA_CR_B 0x48 /* Disable */
/* Status */
static u32 pmu_clk_sr[] = {
PMU_CLK_SR,
PMU_CLK_SR1,
PMU_ANA_SR,
};
/* Enable */
static u32 pmu_clk_cr_a[] = {
PMU_CLK_CR_A,
PMU_CLK_CR1_A,
PMU_ANA_CR_A,
};
/* Disable */
static u32 pmu_clk_cr_b[] = {
PMU_CLK_CR_B,
PMU_CLK_CR1_B,
PMU_ANA_CR_B,
};
#define PWDCR_EN_XRX(x) (pmu_clk_cr_a[(x)])
#define PWDCR_DIS_XRX(x) (pmu_clk_cr_b[(x)])
#define PWDSR_XRX(x) (pmu_clk_sr[(x)])
/* clock gates that we can en/disable */
#define PMU_USB0_P BIT(0)
#define PMU_ASE_SDIO BIT(2) /* ASE special */
#define PMU_PCI BIT(4)
#define PMU_DMA BIT(5)
#define PMU_USB0 BIT(6)
#define PMU_ASC0 BIT(7)
#define PMU_EPHY BIT(7) /* ase */
#define PMU_USIF BIT(7) /* from vr9 until grx390 */
#define PMU_SPI BIT(8)
#define PMU_DFE BIT(9)
#define PMU_EBU BIT(10)
#define PMU_STP BIT(11)
#define PMU_GPT BIT(12)
#define PMU_AHBS BIT(13) /* vr9 */
#define PMU_FPI BIT(14)
#define PMU_AHBM BIT(15)
#define PMU_SDIO BIT(16) /* danube, ar9, vr9 */
#define PMU_ASC1 BIT(17)
#define PMU_PPE_QSB BIT(18)
#define PMU_PPE_SLL01 BIT(19)
#define PMU_DEU BIT(20)
#define PMU_PPE_TC BIT(21)
#define PMU_PPE_EMA BIT(22)
#define PMU_PPE_DPLUM BIT(23)
#define PMU_PPE_DP BIT(23)
#define PMU_PPE_DPLUS BIT(24)
#define PMU_USB1_P BIT(26)
#define PMU_USB1 BIT(27)
#define PMU_SWITCH BIT(28)
#define PMU_PPE_TOP BIT(29)
#define PMU_GPHY BIT(30)
#define PMU_PCIE_CLK BIT(31)
#define PMU1_PCIE_PHY BIT(0) /* vr9-specific,moved in ar10/grx390 */
#define PMU1_PCIE_CTL BIT(1)
#define PMU1_PCIE_PDI BIT(4)
#define PMU1_PCIE_MSI BIT(5)
#define PMU1_CKE BIT(6)
#define PMU1_PCIE1_CTL BIT(17)
#define PMU1_PCIE1_PDI BIT(20)
#define PMU1_PCIE1_MSI BIT(21)
#define PMU1_PCIE2_CTL BIT(25)
#define PMU1_PCIE2_PDI BIT(26)
#define PMU1_PCIE2_MSI BIT(27)
#define PMU_ANALOG_USB0_P BIT(0)
#define PMU_ANALOG_USB1_P BIT(1)
#define PMU_ANALOG_PCIE0_P BIT(8)
#define PMU_ANALOG_PCIE1_P BIT(9)
#define PMU_ANALOG_PCIE2_P BIT(10)
#define PMU_ANALOG_DSL_AFE BIT(16)
#define PMU_ANALOG_DCDC_2V5 BIT(17)
#define PMU_ANALOG_DCDC_1VX BIT(18)
#define PMU_ANALOG_DCDC_1V0 BIT(19)
#define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y))
#define pmu_r32(x) ltq_r32(pmu_membase + (x))
static void __iomem *pmu_membase;
void __iomem *ltq_cgu_membase;
void __iomem *ltq_ebu_membase;
static u32 ifccr = CGU_IFCCR;
static u32 pcicr = CGU_PCICR;
static DEFINE_SPINLOCK(g_pmu_lock);
/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_enable(unsigned int module)
{
int retry = 1000000;
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
do {} while (--retry && (pmu_r32(PMU_PWDSR) & module));
spin_unlock(&g_pmu_lock);
if (!retry)
panic("activating PMU module failed!");
}
EXPORT_SYMBOL(ltq_pmu_enable);
/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_disable(unsigned int module)
{
int retry = 1000000;
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
do {} while (--retry && (!(pmu_r32(PMU_PWDSR) & module)));
spin_unlock(&g_pmu_lock);
if (!retry)
pr_warn("deactivating PMU module failed!");
}
EXPORT_SYMBOL(ltq_pmu_disable);
/* enable a hw clock */
static int cgu_enable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
return 0;
}
/* disable a hw clock */
static void cgu_disable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
}
/* enable a clock gate */
static int pmu_enable(struct clk *clk)
{
int retry = 1000000;
if (of_machine_is_compatible("lantiq,ar10")
|| of_machine_is_compatible("lantiq,grx390")) {
pmu_w32(clk->bits, PWDCR_EN_XRX(clk->module));
do {} while (--retry &&
(!(pmu_r32(PWDSR_XRX(clk->module)) & clk->bits)));
} else {
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
PWDCR(clk->module));
do {} while (--retry &&
(pmu_r32(PWDSR(clk->module)) & clk->bits));
spin_unlock(&g_pmu_lock);
}
if (!retry)
panic("activating PMU module failed!");
return 0;
}
/* disable a clock gate */
static void pmu_disable(struct clk *clk)
{
int retry = 1000000;
if (of_machine_is_compatible("lantiq,ar10")
|| of_machine_is_compatible("lantiq,grx390")) {
pmu_w32(clk->bits, PWDCR_DIS_XRX(clk->module));
do {} while (--retry &&
(pmu_r32(PWDSR_XRX(clk->module)) & clk->bits));
} else {
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
PWDCR(clk->module));
do {} while (--retry &&
(!(pmu_r32(PWDSR(clk->module)) & clk->bits)));
spin_unlock(&g_pmu_lock);
}
if (!retry)
pr_warn("deactivating PMU module failed!");
}
/* the pci enable helper */
static int pci_enable(struct clk *clk)
{
unsigned int val = ltq_cgu_r32(ifccr);
/* set bus clock speed */
if (of_machine_is_compatible("lantiq,ar9") ||
of_machine_is_compatible("lantiq,vr9")) {
val &= ~0x1f00000;
if (clk->rate == CLOCK_33M)
val |= 0xe00000;
else
val |= 0x700000; /* 62.5M */
} else {
val &= ~0xf00000;
if (clk->rate == CLOCK_33M)
val |= 0x800000;
else
val |= 0x400000; /* 62.5M */
}
ltq_cgu_w32(val, ifccr);
pmu_enable(clk);
return 0;
}
/* enable the external clock as a source */
static int pci_ext_enable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
ltq_cgu_w32((1 << 30), pcicr);
return 0;
}
/* disable the external clock as a source */
static void pci_ext_disable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
}
/* enable a clockout source */
static int clkout_enable(struct clk *clk)
{
int i;
/* get the correct rate */
for (i = 0; i < 4; i++) {
if (clk->rates[i] == clk->rate) {
int shift = 14 - (2 * clk->module);
int enable = 7 - clk->module;
unsigned int val = ltq_cgu_r32(ifccr);
val &= ~(3 << shift);
val |= i << shift;
val |= enable;
ltq_cgu_w32(val, ifccr);
return 0;
}
}
return -1;
}
/* manage the clock gates via PMU */
static void clkdev_add_pmu(const char *dev, const char *con, bool deactivate,
unsigned int module, unsigned int bits)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = dev;
clk->cl.con_id = con;
clk->cl.clk = clk;
clk->enable = pmu_enable;
clk->disable = pmu_disable;
clk->module = module;
clk->bits = bits;
if (deactivate) {
/*
* Disable it during the initialization. Module should enable
* when used
*/
pmu_disable(clk);
}
clkdev_add(&clk->cl);
}
/* manage the clock generator */
static void clkdev_add_cgu(const char *dev, const char *con,
unsigned int bits)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = dev;
clk->cl.con_id = con;
clk->cl.clk = clk;
clk->enable = cgu_enable;
clk->disable = cgu_disable;
clk->bits = bits;
clkdev_add(&clk->cl);
}
/* pci needs its own enable function as the setup is a bit more complex */
static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};
static void clkdev_add_pci(void)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
/* main pci clock */
clk->cl.dev_id = "17000000.pci";
clk->cl.con_id = NULL;
clk->cl.clk = clk;
clk->rate = CLOCK_33M;
clk->rates = valid_pci_rates;
clk->enable = pci_enable;
clk->disable = pmu_disable;
clk->module = 0;
clk->bits = PMU_PCI;
clkdev_add(&clk->cl);
/* use internal/external bus clock */
clk_ext->cl.dev_id = "17000000.pci";
clk_ext->cl.con_id = "external";
clk_ext->cl.clk = clk_ext;
clk_ext->enable = pci_ext_enable;
clk_ext->disable = pci_ext_disable;
clkdev_add(&clk_ext->cl);
}
/* xway socs can generate clocks on gpio pins */
static unsigned long valid_clkout_rates[4][5] = {
{CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
{CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
{CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
{CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
};
static void clkdev_add_clkout(void)
{
int i;
for (i = 0; i < 4; i++) {
struct clk *clk;
char *name;
name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
sprintf(name, "clkout%d", i);
clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = "1f103000.cgu";
clk->cl.con_id = name;
clk->cl.clk = clk;
clk->rate = 0;
clk->rates = valid_clkout_rates[i];
clk->enable = clkout_enable;
clk->module = i;
clkdev_add(&clk->cl);
}
}
/* bring up all register ranges that we need for basic system control */
void __init ltq_soc_init(void)
{
struct resource res_pmu, res_cgu, res_ebu;
struct device_node *np_pmu =
of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
struct device_node *np_cgu =
of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
struct device_node *np_ebu =
of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");
/* check if all the core register ranges are available */
if (!np_pmu || !np_cgu || !np_ebu)
panic("Failed to load core nodes from devicetree");
if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
of_address_to_resource(np_cgu, 0, &res_cgu) ||
of_address_to_resource(np_ebu, 0, &res_ebu))
panic("Failed to get core resources");
if (!request_mem_region(res_pmu.start, resource_size(&res_pmu),
res_pmu.name) ||
!request_mem_region(res_cgu.start, resource_size(&res_cgu),
res_cgu.name) ||
!request_mem_region(res_ebu.start, resource_size(&res_ebu),
res_ebu.name))
pr_err("Failed to request core resources");
pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
ltq_cgu_membase = ioremap_nocache(res_cgu.start,
resource_size(&res_cgu));
ltq_ebu_membase = ioremap_nocache(res_ebu.start,
resource_size(&res_ebu));
if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
panic("Failed to remap core resources");
/* make sure to unprotect the memory region where flash is located */
ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
/* add our generic xway clocks */
clkdev_add_pmu("10000000.fpi", NULL, 0, 0, PMU_FPI);
clkdev_add_pmu("1e100a00.gptu", NULL, 1, 0, PMU_GPT);
clkdev_add_pmu("1e100bb0.stp", NULL, 1, 0, PMU_STP);
clkdev_add_pmu("1e100c00.serial", NULL, 0, 0, PMU_ASC1);
clkdev_add_pmu("1e104100.dma", NULL, 1, 0, PMU_DMA);
clkdev_add_pmu("1e100800.spi", NULL, 1, 0, PMU_SPI);
clkdev_add_pmu("1e105300.ebu", NULL, 0, 0, PMU_EBU);
clkdev_add_clkout();
/* add the soc dependent clocks */
if (of_machine_is_compatible("lantiq,vr9")) {
ifccr = CGU_IFCCR_VR9;
pcicr = CGU_PCICR_VR9;
} else {
clkdev_add_pmu("1e180000.etop", NULL, 1, 0, PMU_PPE);
}
if (!of_machine_is_compatible("lantiq,ase"))
clkdev_add_pci();
if (of_machine_is_compatible("lantiq,grx390") ||
of_machine_is_compatible("lantiq,ar10")) {
clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 2, PMU_ANALOG_USB0_P);
clkdev_add_pmu("1f203034.usb2-phy", "phy", 1, 2, PMU_ANALOG_USB1_P);
/* rc 0 */
clkdev_add_pmu("1d900000.pcie", "phy", 1, 2, PMU_ANALOG_PCIE0_P);
clkdev_add_pmu("1d900000.pcie", "msi", 1, 1, PMU1_PCIE_MSI);
clkdev_add_pmu("1d900000.pcie", "pdi", 1, 1, PMU1_PCIE_PDI);
clkdev_add_pmu("1d900000.pcie", "ctl", 1, 1, PMU1_PCIE_CTL);
/* rc 1 */
clkdev_add_pmu("19000000.pcie", "phy", 1, 2, PMU_ANALOG_PCIE1_P);
clkdev_add_pmu("19000000.pcie", "msi", 1, 1, PMU1_PCIE1_MSI);
clkdev_add_pmu("19000000.pcie", "pdi", 1, 1, PMU1_PCIE1_PDI);
clkdev_add_pmu("19000000.pcie", "ctl", 1, 1, PMU1_PCIE1_CTL);
}
if (of_machine_is_compatible("lantiq,ase")) {
if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
clkdev_add_static(CLOCK_266M, CLOCK_133M,
CLOCK_133M, CLOCK_266M);
else
clkdev_add_static(CLOCK_133M, CLOCK_133M,
CLOCK_133M, CLOCK_133M);
clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0);
clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e180000.etop", "ppe", 1, 0, PMU_PPE);
clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY);
clkdev_add_pmu("1e180000.etop", "ephy", 1, 0, PMU_EPHY);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_ASE_SDIO);
clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
} else if (of_machine_is_compatible("lantiq,grx390")) {
clkdev_add_static(ltq_grx390_cpu_hz(), ltq_grx390_fpi_hz(),
ltq_grx390_fpi_hz(), ltq_grx390_pp32_hz());
clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0);
clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1);
/* rc 2 */
clkdev_add_pmu("1a800000.pcie", "phy", 1, 2, PMU_ANALOG_PCIE2_P);
clkdev_add_pmu("1a800000.pcie", "msi", 1, 1, PMU1_PCIE2_MSI);
clkdev_add_pmu("1a800000.pcie", "pdi", 1, 1, PMU1_PCIE2_PDI);
clkdev_add_pmu("1a800000.pcie", "ctl", 1, 1, PMU1_PCIE2_CTL);
clkdev_add_pmu("1e108000.eth", NULL, 0, 0, PMU_SWITCH | PMU_PPE_DP);
clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
} else if (of_machine_is_compatible("lantiq,ar10")) {
clkdev_add_static(ltq_ar10_cpu_hz(), ltq_ar10_fpi_hz(),
ltq_ar10_fpi_hz(), ltq_ar10_pp32_hz());
clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0);
clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1);
clkdev_add_pmu("1e108000.eth", NULL, 0, 0, PMU_SWITCH |
PMU_PPE_DP | PMU_PPE_TC);
clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
clkdev_add_pmu("1f203020.gphy", NULL, 1, 0, PMU_GPHY);
clkdev_add_pmu("1f203068.gphy", NULL, 1, 0, PMU_GPHY);
clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
clkdev_add_pmu("1e116000.mei", "afe", 1, 2, PMU_ANALOG_DSL_AFE);
clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
} else if (of_machine_is_compatible("lantiq,vr9")) {
clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
ltq_vr9_fpi_hz(), ltq_vr9_pp32_hz());
clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0 | PMU_AHBM);
clkdev_add_pmu("1f203034.usb2-phy", "phy", 1, 0, PMU_USB1_P);
clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1 | PMU_AHBM);
clkdev_add_pmu("1d900000.pcie", "phy", 1, 1, PMU1_PCIE_PHY);
clkdev_add_pmu("1d900000.pcie", "bus", 1, 0, PMU_PCIE_CLK);
clkdev_add_pmu("1d900000.pcie", "msi", 1, 1, PMU1_PCIE_MSI);
clkdev_add_pmu("1d900000.pcie", "pdi", 1, 1, PMU1_PCIE_PDI);
clkdev_add_pmu("1d900000.pcie", "ctl", 1, 1, PMU1_PCIE_CTL);
clkdev_add_pmu(NULL, "ahb", 1, 0, PMU_AHBM | PMU_AHBS);
clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
clkdev_add_pmu("1e108000.eth", NULL, 0, 0,
PMU_SWITCH | PMU_PPE_DPLUS | PMU_PPE_DPLUM |
PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
PMU_PPE_QSB | PMU_PPE_TOP);
clkdev_add_pmu("1f203020.gphy", NULL, 0, 0, PMU_GPHY);
clkdev_add_pmu("1f203068.gphy", NULL, 0, 0, PMU_GPHY);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
} else if (of_machine_is_compatible("lantiq,ar9")) {
clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
ltq_ar9_fpi_hz(), CLOCK_250M);
clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0);
clkdev_add_pmu("1f203034.usb2-phy", "phy", 1, 0, PMU_USB1_P);
clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1);
clkdev_add_pmu("1e180000.etop", "switch", 1, 0, PMU_SWITCH);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
clkdev_add_pmu("1e100400.serial", NULL, 1, 0, PMU_ASC0);
} else {
clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
ltq_danube_fpi_hz(), ltq_danube_pp32_hz());
clkdev_add_pmu("1f203018.usb2-phy", "ctrl", 1, 0, PMU_USB0);
clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
clkdev_add_pmu("1e100400.serial", NULL, 1, 0, PMU_ASC0);
}
}