linux/drivers/net/wireless/rt2x00/rt2800lib.c
Johannes Berg 18b559d5db mac80211: split TX aggregation stop action
When TX aggregation is stopped, there are a few
different cases:
 - connection with the peer was dropped
 - session stop was requested locally
 - session stop was requested by the peer
 - connection was dropped while a session is stopping

The behaviour in these cases should be different, if
the connection is dropped then the driver should drop
all frames, otherwise the frames may continue to be
transmitted, aggregated in the case of a locally
requested session stop or unaggregated in the case of
the peer requesting session stop.

Split these different cases so that the driver can
act accordingly; however, treat local and remote stop
the same way and ask the driver to not send frames as
aggregated packets any more.

In the case of connection drop, the stop callback the
driver is otherwise supposed to call is no longer
required.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-03 13:01:42 +01:00

5540 lines
176 KiB
C

/*
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
Based on the original rt2800pci.c and rt2800usb.c.
Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2800lib
Abstract: rt2800 generic device routines.
*/
#include <linux/crc-ccitt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "rt2x00.h"
#include "rt2800lib.h"
#include "rt2800.h"
/*
* Register access.
* All access to the CSR registers will go through the methods
* rt2800_register_read and rt2800_register_write.
* BBP and RF register require indirect register access,
* and use the CSR registers BBPCSR and RFCSR to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
* The _lock versions must be used if you already hold the csr_mutex
*/
#define WAIT_FOR_BBP(__dev, __reg) \
rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RFCSR(__dev, __reg) \
rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
H2M_MAILBOX_CSR_OWNER, (__reg))
static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
{
/* check for rt2872 on SoC */
if (!rt2x00_is_soc(rt2x00dev) ||
!rt2x00_rt(rt2x00dev, RT2872))
return false;
/* we know for sure that these rf chipsets are used on rt305x boards */
if (rt2x00_rf(rt2x00dev, RF3020) ||
rt2x00_rf(rt2x00dev, RF3021) ||
rt2x00_rf(rt2x00dev, RF3022))
return true;
NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
return false;
}
static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
WAIT_FOR_BBP(rt2x00dev, &reg);
}
*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RFCSR becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RFCSR becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
*/
if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
WAIT_FOR_RFCSR(rt2x00dev, &reg);
}
*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RF becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_RF(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
rt2x00_rf_write(rt2x00dev, word, value);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static int rt2800_enable_wlan_rt3290(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
int i, count;
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
if (rt2x00_get_field32(reg, WLAN_EN))
return 0;
rt2x00_set_field32(&reg, WLAN_GPIO_OUT_OE_BIT_ALL, 0xff);
rt2x00_set_field32(&reg, FRC_WL_ANT_SET, 1);
rt2x00_set_field32(&reg, WLAN_CLK_EN, 0);
rt2x00_set_field32(&reg, WLAN_EN, 1);
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
udelay(REGISTER_BUSY_DELAY);
count = 0;
do {
/*
* Check PLL_LD & XTAL_RDY.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, CMB_CTRL, &reg);
if (rt2x00_get_field32(reg, PLL_LD) &&
rt2x00_get_field32(reg, XTAL_RDY))
break;
udelay(REGISTER_BUSY_DELAY);
}
if (i >= REGISTER_BUSY_COUNT) {
if (count >= 10)
return -EIO;
rt2800_register_write(rt2x00dev, 0x58, 0x018);
udelay(REGISTER_BUSY_DELAY);
rt2800_register_write(rt2x00dev, 0x58, 0x418);
udelay(REGISTER_BUSY_DELAY);
rt2800_register_write(rt2x00dev, 0x58, 0x618);
udelay(REGISTER_BUSY_DELAY);
count++;
} else {
count = 0;
}
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 0);
rt2x00_set_field32(&reg, WLAN_CLK_EN, 1);
rt2x00_set_field32(&reg, WLAN_RESET, 1);
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
udelay(10);
rt2x00_set_field32(&reg, WLAN_RESET, 0);
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
udelay(10);
rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, 0x7fffffff);
} while (count != 0);
return 0;
}
void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
const u8 command, const u8 token,
const u8 arg0, const u8 arg1)
{
u32 reg;
/*
* SOC devices don't support MCU requests.
*/
if (rt2x00_is_soc(rt2x00dev))
return;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the MCU becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
reg = 0;
rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
EXPORT_SYMBOL_GPL(rt2800_mcu_request);
int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i = 0;
u32 reg;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
if (reg && reg != ~0)
return 0;
msleep(1);
}
ERROR(rt2x00dev, "Unstable hardware.\n");
return -EBUSY;
}
EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u32 reg;
/*
* Some devices are really slow to respond here. Wait a whole second
* before timing out.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
!rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
return 0;
msleep(10);
}
ERROR(rt2x00dev, "WPDMA TX/RX busy [0x%08x].\n", reg);
return -EACCES;
}
EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_disable_wpdma);
static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
{
u16 fw_crc;
u16 crc;
/*
* The last 2 bytes in the firmware array are the crc checksum itself,
* this means that we should never pass those 2 bytes to the crc
* algorithm.
*/
fw_crc = (data[len - 2] << 8 | data[len - 1]);
/*
* Use the crc ccitt algorithm.
* This will return the same value as the legacy driver which
* used bit ordering reversion on the both the firmware bytes
* before input input as well as on the final output.
* Obviously using crc ccitt directly is much more efficient.
*/
crc = crc_ccitt(~0, data, len - 2);
/*
* There is a small difference between the crc-itu-t + bitrev and
* the crc-ccitt crc calculation. In the latter method the 2 bytes
* will be swapped, use swab16 to convert the crc to the correct
* value.
*/
crc = swab16(crc);
return fw_crc == crc;
}
int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
size_t offset = 0;
size_t fw_len;
bool multiple;
/*
* PCI(e) & SOC devices require firmware with a length
* of 8kb. USB devices require firmware files with a length
* of 4kb. Certain USB chipsets however require different firmware,
* which Ralink only provides attached to the original firmware
* file. Thus for USB devices, firmware files have a length
* which is a multiple of 4kb. The firmware for rt3290 chip also
* have a length which is a multiple of 4kb.
*/
if (rt2x00_is_usb(rt2x00dev) || rt2x00_rt(rt2x00dev, RT3290))
fw_len = 4096;
else
fw_len = 8192;
multiple = true;
/*
* Validate the firmware length
*/
if (len != fw_len && (!multiple || (len % fw_len) != 0))
return FW_BAD_LENGTH;
/*
* Check if the chipset requires one of the upper parts
* of the firmware.
*/
if (rt2x00_is_usb(rt2x00dev) &&
!rt2x00_rt(rt2x00dev, RT2860) &&
!rt2x00_rt(rt2x00dev, RT2872) &&
!rt2x00_rt(rt2x00dev, RT3070) &&
((len / fw_len) == 1))
return FW_BAD_VERSION;
/*
* 8kb firmware files must be checked as if it were
* 2 separate firmware files.
*/
while (offset < len) {
if (!rt2800_check_firmware_crc(data + offset, fw_len))
return FW_BAD_CRC;
offset += fw_len;
}
return FW_OK;
}
EXPORT_SYMBOL_GPL(rt2800_check_firmware);
int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
unsigned int i;
u32 reg;
int retval;
if (rt2x00_rt(rt2x00dev, RT3290)) {
retval = rt2800_enable_wlan_rt3290(rt2x00dev);
if (retval)
return -EBUSY;
}
/*
* If driver doesn't wake up firmware here,
* rt2800_load_firmware will hang forever when interface is up again.
*/
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
/*
* Wait for stable hardware.
*/
if (rt2800_wait_csr_ready(rt2x00dev))
return -EBUSY;
if (rt2x00_is_pci(rt2x00dev)) {
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_register_read(rt2x00dev, AUX_CTRL, &reg);
rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
}
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
}
rt2800_disable_wpdma(rt2x00dev);
/*
* Write firmware to the device.
*/
rt2800_drv_write_firmware(rt2x00dev, data, len);
/*
* Wait for device to stabilize.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
break;
msleep(1);
}
if (i == REGISTER_BUSY_COUNT) {
ERROR(rt2x00dev, "PBF system register not ready.\n");
return -EBUSY;
}
/*
* Disable DMA, will be reenabled later when enabling
* the radio.
*/
rt2800_disable_wpdma(rt2x00dev);
/*
* Initialize firmware.
*/
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
if (rt2x00_is_usb(rt2x00dev))
rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
msleep(1);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_load_firmware);
void rt2800_write_tx_data(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
__le32 *txwi = rt2800_drv_get_txwi(entry);
u32 word;
/*
* Initialize TX Info descriptor
*/
rt2x00_desc_read(txwi, 0, &word);
rt2x00_set_field32(&word, TXWI_W0_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
rt2x00_set_field32(&word, TXWI_W0_TS,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_AMPDU,
test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
txdesc->u.ht.mpdu_density);
rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
rt2x00_set_field32(&word, TXWI_W0_BW,
test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
rt2x00_desc_write(txwi, 0, word);
rt2x00_desc_read(txwi, 1, &word);
rt2x00_set_field32(&word, TXWI_W1_ACK,
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W1_NSEQ,
test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
txdesc->key_idx : txdesc->u.ht.wcid);
rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
txdesc->length);
rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
rt2x00_desc_write(txwi, 1, word);
/*
* Always write 0 to IV/EIV fields, hardware will insert the IV
* from the IVEIV register when TXD_W3_WIV is set to 0.
* When TXD_W3_WIV is set to 1 it will use the IV data
* from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
* crypto entry in the registers should be used to encrypt the frame.
*/
_rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
_rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
}
EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
{
s8 rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
s8 rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
s8 rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
u16 eeprom;
u8 offset0;
u8 offset1;
u8 offset2;
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
} else {
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
}
/*
* Convert the value from the descriptor into the RSSI value
* If the value in the descriptor is 0, it is considered invalid
* and the default (extremely low) rssi value is assumed
*/
rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
/*
* mac80211 only accepts a single RSSI value. Calculating the
* average doesn't deliver a fair answer either since -60:-60 would
* be considered equally good as -50:-70 while the second is the one
* which gives less energy...
*/
rssi0 = max(rssi0, rssi1);
return (int)max(rssi0, rssi2);
}
void rt2800_process_rxwi(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
__le32 *rxwi = (__le32 *) entry->skb->data;
u32 word;
rt2x00_desc_read(rxwi, 0, &word);
rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
rt2x00_desc_read(rxwi, 1, &word);
if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
rxdesc->flags |= RX_FLAG_SHORT_GI;
if (rt2x00_get_field32(word, RXWI_W1_BW))
rxdesc->flags |= RX_FLAG_40MHZ;
/*
* Detect RX rate, always use MCS as signal type.
*/
rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
/*
* Mask of 0x8 bit to remove the short preamble flag.
*/
if (rxdesc->rate_mode == RATE_MODE_CCK)
rxdesc->signal &= ~0x8;
rt2x00_desc_read(rxwi, 2, &word);
/*
* Convert descriptor AGC value to RSSI value.
*/
rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
/*
* Remove RXWI descriptor from start of buffer.
*/
skb_pull(entry->skb, RXWI_DESC_SIZE);
}
EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct txdone_entry_desc txdesc;
u32 word;
u16 mcs, real_mcs;
int aggr, ampdu;
/*
* Obtain the status about this packet.
*/
txdesc.flags = 0;
rt2x00_desc_read(txwi, 0, &word);
mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
/*
* If a frame was meant to be sent as a single non-aggregated MPDU
* but ended up in an aggregate the used tx rate doesn't correlate
* with the one specified in the TXWI as the whole aggregate is sent
* with the same rate.
*
* For example: two frames are sent to rt2x00, the first one sets
* AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
* and requests MCS15. If the hw aggregates both frames into one
* AMDPU the tx status for both frames will contain MCS7 although
* the frame was sent successfully.
*
* Hence, replace the requested rate with the real tx rate to not
* confuse the rate control algortihm by providing clearly wrong
* data.
*/
if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) {
skbdesc->tx_rate_idx = real_mcs;
mcs = real_mcs;
}
if (aggr == 1 || ampdu == 1)
__set_bit(TXDONE_AMPDU, &txdesc.flags);
/*
* Ralink has a retry mechanism using a global fallback
* table. We setup this fallback table to try the immediate
* lower rate for all rates. In the TX_STA_FIFO, the MCS field
* always contains the MCS used for the last transmission, be
* it successful or not.
*/
if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
/*
* Transmission succeeded. The number of retries is
* mcs - real_mcs
*/
__set_bit(TXDONE_SUCCESS, &txdesc.flags);
txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
} else {
/*
* Transmission failed. The number of retries is
* always 7 in this case (for a total number of 8
* frames sent).
*/
__set_bit(TXDONE_FAILURE, &txdesc.flags);
txdesc.retry = rt2x00dev->long_retry;
}
/*
* the frame was retried at least once
* -> hw used fallback rates
*/
if (txdesc.retry)
__set_bit(TXDONE_FALLBACK, &txdesc.flags);
rt2x00lib_txdone(entry, &txdesc);
}
EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
unsigned int beacon_base;
unsigned int padding_len;
u32 orig_reg, reg;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
orig_reg = reg;
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
/*
* Add space for the TXWI in front of the skb.
*/
memset(skb_push(entry->skb, TXWI_DESC_SIZE), 0, TXWI_DESC_SIZE);
/*
* Register descriptor details in skb frame descriptor.
*/
skbdesc->flags |= SKBDESC_DESC_IN_SKB;
skbdesc->desc = entry->skb->data;
skbdesc->desc_len = TXWI_DESC_SIZE;
/*
* Add the TXWI for the beacon to the skb.
*/
rt2800_write_tx_data(entry, txdesc);
/*
* Dump beacon to userspace through debugfs.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
/*
* Write entire beacon with TXWI and padding to register.
*/
padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
if (padding_len && skb_pad(entry->skb, padding_len)) {
ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
/* skb freed by skb_pad() on failure */
entry->skb = NULL;
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
return;
}
beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
entry->skb->len + padding_len);
/*
* Enable beaconing again.
*/
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
/*
* Clean up beacon skb.
*/
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2800_write_beacon);
static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
unsigned int beacon_base)
{
int i;
/*
* For the Beacon base registers we only need to clear
* the whole TXWI which (when set to 0) will invalidate
* the entire beacon.
*/
for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
rt2800_register_write(rt2x00dev, beacon_base + i, 0);
}
void rt2800_clear_beacon(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
u32 reg;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
/*
* Clear beacon.
*/
rt2800_clear_beacon_register(rt2x00dev,
HW_BEACON_OFFSET(entry->entry_idx));
/*
* Enabled beaconing again.
*/
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
const struct rt2x00debug rt2800_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt2800_register_read,
.write = rt2800_register_write,
.flags = RT2X00DEBUGFS_OFFSET,
.word_base = CSR_REG_BASE,
.word_size = sizeof(u32),
.word_count = CSR_REG_SIZE / sizeof(u32),
},
.eeprom = {
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_base = EEPROM_BASE,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt2800_bbp_read,
.write = rt2800_bbp_write,
.word_base = BBP_BASE,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt2800_rf_write,
.word_base = RF_BASE,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
.rfcsr = {
.read = rt2800_rfcsr_read,
.write = rt2800_rfcsr_write,
.word_base = RFCSR_BASE,
.word_size = sizeof(u8),
.word_count = RFCSR_SIZE / sizeof(u8),
},
};
EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
if (rt2x00_rt(rt2x00dev, RT3290)) {
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
return rt2x00_get_field32(reg, WLAN_GPIO_IN_BIT0);
} else {
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
return rt2x00_get_field32(reg, GPIO_CTRL_VAL2);
}
}
EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt2800_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
unsigned int enabled = brightness != LED_OFF;
unsigned int bg_mode =
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
unsigned int polarity =
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
EEPROM_FREQ_LED_POLARITY);
unsigned int ledmode =
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
EEPROM_FREQ_LED_MODE);
u32 reg;
/* Check for SoC (SOC devices don't support MCU requests) */
if (rt2x00_is_soc(led->rt2x00dev)) {
rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
/* Set LED Polarity */
rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, polarity);
/* Set LED Mode */
if (led->type == LED_TYPE_RADIO) {
rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE,
enabled ? 3 : 0);
} else if (led->type == LED_TYPE_ASSOC) {
rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE,
enabled ? 3 : 0);
} else if (led->type == LED_TYPE_QUALITY) {
rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE,
enabled ? 3 : 0);
}
rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
} else {
if (led->type == LED_TYPE_RADIO) {
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
enabled ? 0x20 : 0);
} else if (led->type == LED_TYPE_ASSOC) {
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
} else if (led->type == LED_TYPE_QUALITY) {
/*
* The brightness is divided into 6 levels (0 - 5),
* The specs tell us the following levels:
* 0, 1 ,3, 7, 15, 31
* to determine the level in a simple way we can simply
* work with bitshifting:
* (1 << level) - 1
*/
rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
(1 << brightness / (LED_FULL / 6)) - 1,
polarity);
}
}
}
static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
struct rt2x00_led *led, enum led_type type)
{
led->rt2x00dev = rt2x00dev;
led->type = type;
led->led_dev.brightness_set = rt2800_brightness_set;
led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */
/*
* Configuration handlers.
*/
static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev,
const u8 *address,
int wcid)
{
struct mac_wcid_entry wcid_entry;
u32 offset;
offset = MAC_WCID_ENTRY(wcid);
memset(&wcid_entry, 0xff, sizeof(wcid_entry));
if (address)
memcpy(wcid_entry.mac, address, ETH_ALEN);
rt2800_register_multiwrite(rt2x00dev, offset,
&wcid_entry, sizeof(wcid_entry));
}
static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid)
{
u32 offset;
offset = MAC_WCID_ATTR_ENTRY(wcid);
rt2800_register_write(rt2x00dev, offset, 0);
}
static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev,
int wcid, u32 bssidx)
{
u32 offset = MAC_WCID_ATTR_ENTRY(wcid);
u32 reg;
/*
* The BSS Idx numbers is split in a main value of 3 bits,
* and a extended field for adding one additional bit to the value.
*/
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7));
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
(bssidx & 0x8) >> 3);
rt2800_register_write(rt2x00dev, offset, reg);
}
static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct mac_iveiv_entry iveiv_entry;
u32 offset;
u32 reg;
offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
if (crypto->cmd == SET_KEY) {
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
!!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
/*
* Both the cipher as the BSS Idx numbers are split in a main
* value of 3 bits, and a extended field for adding one additional
* bit to the value.
*/
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
(crypto->cipher & 0x7));
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
(crypto->cipher & 0x8) >> 3);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
rt2800_register_write(rt2x00dev, offset, reg);
} else {
/* Delete the cipher without touching the bssidx */
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB, 0);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER, 0);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
rt2800_register_write(rt2x00dev, offset, reg);
}
offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
memset(&iveiv_entry, 0, sizeof(iveiv_entry));
if ((crypto->cipher == CIPHER_TKIP) ||
(crypto->cipher == CIPHER_TKIP_NO_MIC) ||
(crypto->cipher == CIPHER_AES))
iveiv_entry.iv[3] |= 0x20;
iveiv_entry.iv[3] |= key->keyidx << 6;
rt2800_register_multiwrite(rt2x00dev, offset,
&iveiv_entry, sizeof(iveiv_entry));
}
int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
struct rt2x00_field32 field;
u32 offset;
u32 reg;
if (crypto->cmd == SET_KEY) {
key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
offset = SHARED_KEY_ENTRY(key->hw_key_idx);
rt2800_register_multiwrite(rt2x00dev, offset,
&key_entry, sizeof(key_entry));
}
/*
* The cipher types are stored over multiple registers
* starting with SHARED_KEY_MODE_BASE each word will have
* 32 bits and contains the cipher types for 2 bssidx each.
* Using the correct defines correctly will cause overhead,
* so just calculate the correct offset.
*/
field.bit_offset = 4 * (key->hw_key_idx % 8);
field.bit_mask = 0x7 << field.bit_offset;
offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, field,
(crypto->cmd == SET_KEY) * crypto->cipher);
rt2800_register_write(rt2x00dev, offset, reg);
/*
* Update WCID information
*/
rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx);
rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx,
crypto->bssidx);
rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
static inline int rt2800_find_wcid(struct rt2x00_dev *rt2x00dev)
{
struct mac_wcid_entry wcid_entry;
int idx;
u32 offset;
/*
* Search for the first free WCID entry and return the corresponding
* index.
*
* Make sure the WCID starts _after_ the last possible shared key
* entry (>32).
*
* Since parts of the pairwise key table might be shared with
* the beacon frame buffers 6 & 7 we should only write into the
* first 222 entries.
*/
for (idx = 33; idx <= 222; idx++) {
offset = MAC_WCID_ENTRY(idx);
rt2800_register_multiread(rt2x00dev, offset, &wcid_entry,
sizeof(wcid_entry));
if (is_broadcast_ether_addr(wcid_entry.mac))
return idx;
}
/*
* Use -1 to indicate that we don't have any more space in the WCID
* table.
*/
return -1;
}
int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
u32 offset;
if (crypto->cmd == SET_KEY) {
/*
* Allow key configuration only for STAs that are
* known by the hw.
*/
if (crypto->wcid < 0)
return -ENOSPC;
key->hw_key_idx = crypto->wcid;
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
rt2800_register_multiwrite(rt2x00dev, offset,
&key_entry, sizeof(key_entry));
}
/*
* Update WCID information
*/
rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
int rt2800_sta_add(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
int wcid;
struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
/*
* Find next free WCID.
*/
wcid = rt2800_find_wcid(rt2x00dev);
/*
* Store selected wcid even if it is invalid so that we can
* later decide if the STA is uploaded into the hw.
*/
sta_priv->wcid = wcid;
/*
* No space left in the device, however, we can still communicate
* with the STA -> No error.
*/
if (wcid < 0)
return 0;
/*
* Clean up WCID attributes and write STA address to the device.
*/
rt2800_delete_wcid_attr(rt2x00dev, wcid);
rt2800_config_wcid(rt2x00dev, sta->addr, wcid);
rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid,
rt2x00lib_get_bssidx(rt2x00dev, vif));
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_sta_add);
int rt2800_sta_remove(struct rt2x00_dev *rt2x00dev, int wcid)
{
/*
* Remove WCID entry, no need to clean the attributes as they will
* get renewed when the WCID is reused.
*/
rt2800_config_wcid(rt2x00dev, NULL, wcid);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_sta_remove);
void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags)
{
u32 reg;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
!(filter_flags & FIF_FCSFAIL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
!(filter_flags & FIF_PLCPFAIL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
!(filter_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
!(filter_flags & FIF_ALLMULTI));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
!(filter_flags & FIF_PSPOLL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
!(filter_flags & FIF_CONTROL));
rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_config_filter);
void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf, const unsigned int flags)
{
u32 reg;
bool update_bssid = false;
if (flags & CONFIG_UPDATE_TYPE) {
/*
* Enable synchronisation.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
if (conf->sync == TSF_SYNC_AP_NONE) {
/*
* Tune beacon queue transmit parameters for AP mode
*/
rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 0);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 1);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
} else {
rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 4);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 2);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
}
}
if (flags & CONFIG_UPDATE_MAC) {
if (flags & CONFIG_UPDATE_TYPE &&
conf->sync == TSF_SYNC_AP_NONE) {
/*
* The BSSID register has to be set to our own mac
* address in AP mode.
*/
memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
update_bssid = true;
}
if (!is_zero_ether_addr((const u8 *)conf->mac)) {
reg = le32_to_cpu(conf->mac[1]);
rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
conf->mac[1] = cpu_to_le32(reg);
}
rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
conf->mac, sizeof(conf->mac));
}
if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
reg = le32_to_cpu(conf->bssid[1]);
rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
conf->bssid[1] = cpu_to_le32(reg);
}
rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
conf->bssid, sizeof(conf->bssid));
}
}
EXPORT_SYMBOL_GPL(rt2800_config_intf);
static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp)
{
bool any_sta_nongf = !!(erp->ht_opmode &
IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
u32 reg;
/* default protection rate for HT20: OFDM 24M */
mm20_rate = gf20_rate = 0x4004;
/* default protection rate for HT40: duplicate OFDM 24M */
mm40_rate = gf40_rate = 0x4084;
switch (protection) {
case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
/*
* All STAs in this BSS are HT20/40 but there might be
* STAs not supporting greenfield mode.
* => Disable protection for HT transmissions.
*/
mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
/*
* All STAs in this BSS are HT20 or HT20/40 but there
* might be STAs not supporting greenfield mode.
* => Protect all HT40 transmissions.
*/
mm20_mode = gf20_mode = 0;
mm40_mode = gf40_mode = 2;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
/*
* Nonmember protection:
* According to 802.11n we _should_ protect all
* HT transmissions (but we don't have to).
*
* But if cts_protection is enabled we _shall_ protect
* all HT transmissions using a CCK rate.
*
* And if any station is non GF we _shall_ protect
* GF transmissions.
*
* We decide to protect everything
* -> fall through to mixed mode.
*/
case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
/*
* Legacy STAs are present
* => Protect all HT transmissions.
*/
mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
/*
* If erp protection is needed we have to protect HT
* transmissions with CCK 11M long preamble.
*/
if (erp->cts_protection) {
/* don't duplicate RTS/CTS in CCK mode */
mm20_rate = mm40_rate = 0x0003;
gf20_rate = gf40_rate = 0x0003;
}
break;
}
/* check for STAs not supporting greenfield mode */
if (any_sta_nongf)
gf20_mode = gf40_mode = 2;
/* Update HT protection config */
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
}
void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
u32 changed)
{
u32 reg;
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
!!erp->short_preamble);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
!!erp->short_preamble);
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
erp->cts_protection ? 2 : 0);
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
}
if (changed & BSS_CHANGED_BASIC_RATES) {
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
erp->basic_rates);
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
erp->slot_time);
rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
}
if (changed & BSS_CHANGED_BEACON_INT) {
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
erp->beacon_int * 16);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
if (changed & BSS_CHANGED_HT)
rt2800_config_ht_opmode(rt2x00dev, erp);
}
EXPORT_SYMBOL_GPL(rt2800_config_erp);
static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 eeprom;
u8 led_ctrl, led_g_mode, led_r_mode;
rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
rt2x00_set_field32(&reg, GPIO_SWITCH_0, 1);
rt2x00_set_field32(&reg, GPIO_SWITCH_1, 1);
} else {
rt2x00_set_field32(&reg, GPIO_SWITCH_0, 0);
rt2x00_set_field32(&reg, GPIO_SWITCH_1, 0);
}
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
rt2800_register_read(rt2x00dev, LED_CFG, &reg);
led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0;
led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3;
if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) ||
led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE);
if (led_ctrl == 0 || led_ctrl > 0x40) {
rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, led_g_mode);
rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, led_r_mode);
rt2800_register_write(rt2x00dev, LED_CFG, reg);
} else {
rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff,
(led_g_mode << 2) | led_r_mode, 1);
}
}
}
static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
enum antenna ant)
{
u32 reg;
u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
if (rt2x00_is_pci(rt2x00dev)) {
rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
} else if (rt2x00_is_usb(rt2x00dev))
rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
eesk_pin, 0);
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, gpio_bit3);
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
}
void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
{
u8 r1;
u8 r3;
u16 eeprom;
rt2800_bbp_read(rt2x00dev, 1, &r1);
rt2800_bbp_read(rt2x00dev, 3, &r3);
if (rt2x00_rt(rt2x00dev, RT3572) &&
test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags))
rt2800_config_3572bt_ant(rt2x00dev);
/*
* Configure the TX antenna.
*/
switch (ant->tx_chain_num) {
case 1:
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
break;
case 2:
if (rt2x00_rt(rt2x00dev, RT3572) &&
test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags))
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1);
else
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
break;
case 3:
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
break;
}
/*
* Configure the RX antenna.
*/
switch (ant->rx_chain_num) {
case 1:
if (rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT3390)) {
rt2x00_eeprom_read(rt2x00dev,
EEPROM_NIC_CONF1, &eeprom);
if (rt2x00_get_field16(eeprom,
EEPROM_NIC_CONF1_ANT_DIVERSITY))
rt2800_set_ant_diversity(rt2x00dev,
rt2x00dev->default_ant.rx);
}
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
break;
case 2:
if (rt2x00_rt(rt2x00dev, RT3572) &&
test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
rt2x00_set_field8(&r3, BBP3_RX_ADC, 1);
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA,
rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B);
} else {
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
}
break;
case 3:
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
break;
}
rt2800_bbp_write(rt2x00dev, 3, r3);
rt2800_bbp_write(rt2x00dev, 1, r1);
}
EXPORT_SYMBOL_GPL(rt2800_config_ant);
static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u16 eeprom;
short lna_gain;
if (libconf->rf.channel <= 14) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
} else if (libconf->rf.channel <= 64) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
} else if (libconf->rf.channel <= 128) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
} else {
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
}
rt2x00dev->lna_gain = lna_gain;
}
static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
if (rt2x00dev->default_ant.tx_chain_num == 1)
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
if (rt2x00dev->default_ant.rx_chain_num == 1) {
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
} else if (rt2x00dev->default_ant.rx_chain_num == 2)
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
if (rf->channel > 14) {
/*
* When TX power is below 0, we should increase it by 7 to
* make it a positive value (Minimum value is -7).
* However this means that values between 0 and 7 have
* double meaning, and we should set a 7DBm boost flag.
*/
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
(info->default_power1 >= 0));
if (info->default_power1 < 0)
info->default_power1 += 7;
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
(info->default_power2 >= 0));
if (info->default_power2 < 0)
info->default_power2 += 7;
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
} else {
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
}
rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
}
static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u8 rfcsr, calib_tx, calib_rx;
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR3_K, rf->rf3);
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
rt2x00dev->default_ant.rx_chain_num <= 1);
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD,
rt2x00dev->default_ant.rx_chain_num <= 2);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
rt2x00dev->default_ant.tx_chain_num <= 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD,
rt2x00dev->default_ant.tx_chain_num <= 2);
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
msleep(1);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
if (rt2x00_rt(rt2x00dev, RT3390)) {
calib_tx = conf_is_ht40(conf) ? 0x68 : 0x4f;
calib_rx = conf_is_ht40(conf) ? 0x6f : 0x4f;
} else {
if (conf_is_ht40(conf)) {
calib_tx = drv_data->calibration_bw40;
calib_rx = drv_data->calibration_bw40;
} else {
calib_tx = drv_data->calibration_bw20;
calib_rx = drv_data->calibration_bw20;
}
}
rt2800_rfcsr_read(rt2x00dev, 24, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR24_TX_CALIB, calib_tx);
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR31_RX_CALIB, calib_rx);
rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
msleep(1);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
}
static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u8 rfcsr;
u32 reg;
if (rf->channel <= 14) {
rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
} else {
rt2800_bbp_write(rt2x00dev, 25, 0x09);
rt2800_bbp_write(rt2x00dev, 26, 0xff);
}
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2);
else
rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 5, &rfcsr);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2);
rt2800_rfcsr_write(rt2x00dev, 5, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3);
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
info->default_power1);
} else {
rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7);
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
(info->default_power1 & 0x3) |
((info->default_power1 & 0xC) << 1));
}
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3);
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
info->default_power2);
} else {
rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7);
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
(info->default_power2 & 0x3) |
((info->default_power2 & 0xC) << 1));
}
rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
}
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
} else {
switch (rt2x00dev->default_ant.tx_chain_num) {
case 1:
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
case 2:
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
break;
}
switch (rt2x00dev->default_ant.rx_chain_num) {
case 1:
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
case 2:
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
break;
}
}
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
if (conf_is_ht40(conf)) {
rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw40);
rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw40);
} else {
rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw20);
rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw20);
}
if (rf->channel <= 14) {
rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
rfcsr = 0x4c;
rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
drv_data->txmixer_gain_24g);
rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
} else {
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_BIT2, 1);
rt2x00_set_field8(&rfcsr, RFCSR7_BIT3, 0);
rt2x00_set_field8(&rfcsr, RFCSR7_BIT4, 1);
rt2x00_set_field8(&rfcsr, RFCSR7_BITS67, 0);
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
rt2800_rfcsr_write(rt2x00dev, 15, 0x43);
rfcsr = 0x7a;
rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
drv_data->txmixer_gain_5g);
rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
if (rf->channel <= 64) {
rt2800_rfcsr_write(rt2x00dev, 19, 0xb7);
rt2800_rfcsr_write(rt2x00dev, 20, 0xf6);
rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
} else if (rf->channel <= 128) {
rt2800_rfcsr_write(rt2x00dev, 19, 0x74);
rt2800_rfcsr_write(rt2x00dev, 20, 0xf4);
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
} else {
rt2800_rfcsr_write(rt2x00dev, 19, 0x72);
rt2800_rfcsr_write(rt2x00dev, 20, 0xf3);
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
}
rt2800_rfcsr_write(rt2x00dev, 26, 0x87);
rt2800_rfcsr_write(rt2x00dev, 27, 0x01);
rt2800_rfcsr_write(rt2x00dev, 29, 0x9f);
}
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);
if (rf->channel <= 14)
rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
else
rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 0);
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
}
#define POWER_BOUND 0x27
#define FREQ_OFFSET_BOUND 0x5f
static void rt2800_config_channel_rf3290(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr;
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
if (info->default_power1 > POWER_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
if (rt2x00dev->freq_offset > FREQ_OFFSET_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, FREQ_OFFSET_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
if (rf->channel <= 14) {
if (rf->channel == 6)
rt2800_bbp_write(rt2x00dev, 68, 0x0c);
else
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
if (rf->channel >= 1 && rf->channel <= 6)
rt2800_bbp_write(rt2x00dev, 59, 0x0f);
else if (rf->channel >= 7 && rf->channel <= 11)
rt2800_bbp_write(rt2x00dev, 59, 0x0e);
else if (rf->channel >= 12 && rf->channel <= 14)
rt2800_bbp_write(rt2x00dev, 59, 0x0d);
}
}
static void rt2800_config_channel_rf3322(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr;
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
if (info->default_power1 > POWER_BOUND)
rt2800_rfcsr_write(rt2x00dev, 47, POWER_BOUND);
else
rt2800_rfcsr_write(rt2x00dev, 47, info->default_power1);
if (info->default_power2 > POWER_BOUND)
rt2800_rfcsr_write(rt2x00dev, 48, POWER_BOUND);
else
rt2800_rfcsr_write(rt2x00dev, 48, info->default_power2);
rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
if (rt2x00dev->freq_offset > FREQ_OFFSET_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, FREQ_OFFSET_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
if ( rt2x00dev->default_ant.tx_chain_num == 2 )
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
if ( rt2x00dev->default_ant.rx_chain_num == 2 )
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 31, 80);
}
static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr;
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
if (info->default_power1 > POWER_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
if (rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
if (info->default_power1 > POWER_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR50_TX, POWER_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR50_TX,
info->default_power2);
rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
}
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
if (rt2x00_rt(rt2x00dev, RT5392)) {
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
}
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
if (rt2x00dev->freq_offset > FREQ_OFFSET_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, FREQ_OFFSET_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
if (rf->channel <= 14) {
int idx = rf->channel-1;
if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
/* r55/r59 value array of channel 1~14 */
static const char r55_bt_rev[] = {0x83, 0x83,
0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
static const char r59_bt_rev[] = {0x0e, 0x0e,
0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
rt2800_rfcsr_write(rt2x00dev, 55,
r55_bt_rev[idx]);
rt2800_rfcsr_write(rt2x00dev, 59,
r59_bt_rev[idx]);
} else {
static const char r59_bt[] = {0x8b, 0x8b, 0x8b,
0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
0x88, 0x88, 0x86, 0x85, 0x84};
rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
}
} else {
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
static const char r55_nonbt_rev[] = {0x23, 0x23,
0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
static const char r59_nonbt_rev[] = {0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
rt2800_rfcsr_write(rt2x00dev, 55,
r55_nonbt_rev[idx]);
rt2800_rfcsr_write(rt2x00dev, 59,
r59_nonbt_rev[idx]);
} else if (rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
static const char r59_non_bt[] = {0x8f, 0x8f,
0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
rt2800_rfcsr_write(rt2x00dev, 59,
r59_non_bt[idx]);
}
}
}
}
static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u32 reg;
unsigned int tx_pin;
u8 bbp, rfcsr;
if (rf->channel <= 14) {
info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1);
info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2);
} else {
info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1);
info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2);
}
switch (rt2x00dev->chip.rf) {
case RF2020:
case RF3020:
case RF3021:
case RF3022:
case RF3320:
rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
break;
case RF3052:
rt2800_config_channel_rf3052(rt2x00dev, conf, rf, info);
break;
case RF3290:
rt2800_config_channel_rf3290(rt2x00dev, conf, rf, info);
break;
case RF3322:
rt2800_config_channel_rf3322(rt2x00dev, conf, rf, info);
break;
case RF5360:
case RF5370:
case RF5372:
case RF5390:
case RF5392:
rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
break;
default:
rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
}
if (rt2x00_rf(rt2x00dev, RF3290) ||
rt2x00_rf(rt2x00dev, RF3322) ||
rt2x00_rf(rt2x00dev, RF5360) ||
rt2x00_rf(rt2x00dev, RF5370) ||
rt2x00_rf(rt2x00dev, RF5372) ||
rt2x00_rf(rt2x00dev, RF5390) ||
rt2x00_rf(rt2x00dev, RF5392)) {
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0);
rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
}
/*
* Change BBP settings
*/
if (rt2x00_rt(rt2x00dev, RT3352)) {
rt2800_bbp_write(rt2x00dev, 27, 0x0);
rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
rt2800_bbp_write(rt2x00dev, 27, 0x20);
rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
} else {
rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
rt2800_bbp_write(rt2x00dev, 86, 0);
}
if (rf->channel <= 14) {
if (!rt2x00_rt(rt2x00dev, RT5390) &&
!rt2x00_rt(rt2x00dev, RT5392)) {
if (test_bit(CAPABILITY_EXTERNAL_LNA_BG,
&rt2x00dev->cap_flags)) {
rt2800_bbp_write(rt2x00dev, 82, 0x62);
rt2800_bbp_write(rt2x00dev, 75, 0x46);
} else {
rt2800_bbp_write(rt2x00dev, 82, 0x84);
rt2800_bbp_write(rt2x00dev, 75, 0x50);
}
}
} else {
if (rt2x00_rt(rt2x00dev, RT3572))
rt2800_bbp_write(rt2x00dev, 82, 0x94);
else
rt2800_bbp_write(rt2x00dev, 82, 0xf2);
if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
rt2800_bbp_write(rt2x00dev, 75, 0x46);
else
rt2800_bbp_write(rt2x00dev, 75, 0x50);
}
rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
if (rt2x00_rt(rt2x00dev, RT3572))
rt2800_rfcsr_write(rt2x00dev, 8, 0);
tx_pin = 0;
/* Turn on unused PA or LNA when not using 1T or 1R */
if (rt2x00dev->default_ant.tx_chain_num == 2) {
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN,
rf->channel > 14);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN,
rf->channel <= 14);
}
/* Turn on unused PA or LNA when not using 1T or 1R */
if (rt2x00dev->default_ant.rx_chain_num == 2) {
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
}
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags))
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
else
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN,
rf->channel <= 14);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
if (rt2x00_rt(rt2x00dev, RT3572))
rt2800_rfcsr_write(rt2x00dev, 8, 0x80);
rt2800_bbp_read(rt2x00dev, 4, &bbp);
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
rt2800_bbp_write(rt2x00dev, 4, bbp);
rt2800_bbp_read(rt2x00dev, 3, &bbp);
rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
rt2800_bbp_write(rt2x00dev, 3, bbp);
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
if (conf_is_ht40(conf)) {
rt2800_bbp_write(rt2x00dev, 69, 0x1a);
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
rt2800_bbp_write(rt2x00dev, 73, 0x16);
} else {
rt2800_bbp_write(rt2x00dev, 69, 0x16);
rt2800_bbp_write(rt2x00dev, 70, 0x08);
rt2800_bbp_write(rt2x00dev, 73, 0x11);
}
}
msleep(1);
/*
* Clear channel statistic counters
*/
rt2800_register_read(rt2x00dev, CH_IDLE_STA, &reg);
rt2800_register_read(rt2x00dev, CH_BUSY_STA, &reg);
rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &reg);
/*
* Clear update flag
*/
if (rt2x00_rt(rt2x00dev, RT3352)) {
rt2800_bbp_read(rt2x00dev, 49, &bbp);
rt2x00_set_field8(&bbp, BBP49_UPDATE_FLAG, 0);
rt2800_bbp_write(rt2x00dev, 49, bbp);
}
}
static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev)
{
u8 tssi_bounds[9];
u8 current_tssi;
u16 eeprom;
u8 step;
int i;
/*
* Read TSSI boundaries for temperature compensation from
* the EEPROM.
*
* Array idx 0 1 2 3 4 5 6 7 8
* Matching Delta value -4 -3 -2 -1 0 +1 +2 +3 +4
* Example TSSI bounds 0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
*/
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1, &eeprom);
tssi_bounds[0] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG1_MINUS4);
tssi_bounds[1] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG1_MINUS3);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2, &eeprom);
tssi_bounds[2] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG2_MINUS2);
tssi_bounds[3] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG2_MINUS1);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3, &eeprom);
tssi_bounds[4] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG3_REF);
tssi_bounds[5] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG3_PLUS1);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4, &eeprom);
tssi_bounds[6] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG4_PLUS2);
tssi_bounds[7] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG4_PLUS3);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5, &eeprom);
tssi_bounds[8] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG5_PLUS4);
step = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_BG5_AGC_STEP);
} else {
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1, &eeprom);
tssi_bounds[0] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A1_MINUS4);
tssi_bounds[1] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A1_MINUS3);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2, &eeprom);
tssi_bounds[2] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A2_MINUS2);
tssi_bounds[3] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A2_MINUS1);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3, &eeprom);
tssi_bounds[4] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A3_REF);
tssi_bounds[5] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A3_PLUS1);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4, &eeprom);
tssi_bounds[6] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A4_PLUS2);
tssi_bounds[7] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A4_PLUS3);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5, &eeprom);
tssi_bounds[8] = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A5_PLUS4);
step = rt2x00_get_field16(eeprom,
EEPROM_TSSI_BOUND_A5_AGC_STEP);
}
/*
* Check if temperature compensation is supported.
*/
if (tssi_bounds[4] == 0xff || step == 0xff)
return 0;
/*
* Read current TSSI (BBP 49).
*/
rt2800_bbp_read(rt2x00dev, 49, &current_tssi);
/*
* Compare TSSI value (BBP49) with the compensation boundaries
* from the EEPROM and increase or decrease tx power.
*/
for (i = 0; i <= 3; i++) {
if (current_tssi > tssi_bounds[i])
break;
}
if (i == 4) {
for (i = 8; i >= 5; i--) {
if (current_tssi < tssi_bounds[i])
break;
}
}
return (i - 4) * step;
}
static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
enum ieee80211_band band)
{
u16 eeprom;
u8 comp_en;
u8 comp_type;
int comp_value = 0;
rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom);
/*
* HT40 compensation not required.
*/
if (eeprom == 0xffff ||
!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
return 0;
if (band == IEEE80211_BAND_2GHZ) {
comp_en = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_DELTA_ENABLE_2G);
if (comp_en) {
comp_type = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_DELTA_TYPE_2G);
comp_value = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_DELTA_VALUE_2G);
if (!comp_type)
comp_value = -comp_value;
}
} else {
comp_en = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_DELTA_ENABLE_5G);
if (comp_en) {
comp_type = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_DELTA_TYPE_5G);
comp_value = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_DELTA_VALUE_5G);
if (!comp_type)
comp_value = -comp_value;
}
}
return comp_value;
}
static int rt2800_get_txpower_reg_delta(struct rt2x00_dev *rt2x00dev,
int power_level, int max_power)
{
int delta;
if (test_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags))
return 0;
/*
* XXX: We don't know the maximum transmit power of our hardware since
* the EEPROM doesn't expose it. We only know that we are calibrated
* to 100% tx power.
*
* Hence, we assume the regulatory limit that cfg80211 calulated for
* the current channel is our maximum and if we are requested to lower
* the value we just reduce our tx power accordingly.
*/
delta = power_level - max_power;
return min(delta, 0);
}
static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b,
enum ieee80211_band band, int power_level,
u8 txpower, int delta)
{
u16 eeprom;
u8 criterion;
u8 eirp_txpower;
u8 eirp_txpower_criterion;
u8 reg_limit;
if (test_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags)) {
/*
* Check if eirp txpower exceed txpower_limit.
* We use OFDM 6M as criterion and its eirp txpower
* is stored at EEPROM_EIRP_MAX_TX_POWER.
* .11b data rate need add additional 4dbm
* when calculating eirp txpower.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + 1,
&eeprom);
criterion = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE0);
rt2x00_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER,
&eeprom);
if (band == IEEE80211_BAND_2GHZ)
eirp_txpower_criterion = rt2x00_get_field16(eeprom,
EEPROM_EIRP_MAX_TX_POWER_2GHZ);
else
eirp_txpower_criterion = rt2x00_get_field16(eeprom,
EEPROM_EIRP_MAX_TX_POWER_5GHZ);
eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
(is_rate_b ? 4 : 0) + delta;
reg_limit = (eirp_txpower > power_level) ?
(eirp_txpower - power_level) : 0;
} else
reg_limit = 0;
txpower = max(0, txpower + delta - reg_limit);
return min_t(u8, txpower, 0xc);
}
/*
* We configure transmit power using MAC TX_PWR_CFG_{0,...,N} registers and
* BBP R1 register. TX_PWR_CFG_X allow to configure per rate TX power values,
* 4 bits for each rate (tune from 0 to 15 dBm). BBP_R1 controls transmit power
* for all rates, but allow to set only 4 discrete values: -12, -6, 0 and 6 dBm.
* Reference per rate transmit power values are located in the EEPROM at
* EEPROM_TXPOWER_BYRATE offset. We adjust them and BBP R1 settings according to
* current conditions (i.e. band, bandwidth, temperature, user settings).
*/
static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
struct ieee80211_channel *chan,
int power_level)
{
u8 txpower, r1;
u16 eeprom;
u32 reg, offset;
int i, is_rate_b, delta, power_ctrl;
enum ieee80211_band band = chan->band;
/*
* Calculate HT40 compensation. For 40MHz we need to add or subtract
* value read from EEPROM (different for 2GHz and for 5GHz).
*/
delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);
/*
* Calculate temperature compensation. Depends on measurement of current
* TSSI (Transmitter Signal Strength Indication) we know TX power (due
* to temperature or maybe other factors) is smaller or bigger than
* expected. We adjust it, based on TSSI reference and boundaries values
* provided in EEPROM.
*/
delta += rt2800_get_gain_calibration_delta(rt2x00dev);
/*
* Decrease power according to user settings, on devices with unknown
* maximum tx power. For other devices we take user power_level into
* consideration on rt2800_compensate_txpower().
*/
delta += rt2800_get_txpower_reg_delta(rt2x00dev, power_level,
chan->max_power);
/*
* BBP_R1 controls TX power for all rates, it allow to set the following
* gains -12, -6, 0, +6 dBm by setting values 2, 1, 0, 3 respectively.
*
* TODO: we do not use +6 dBm option to do not increase power beyond
* regulatory limit, however this could be utilized for devices with
* CAPABILITY_POWER_LIMIT.
*/
rt2800_bbp_read(rt2x00dev, 1, &r1);
if (delta <= -12) {
power_ctrl = 2;
delta += 12;
} else if (delta <= -6) {
power_ctrl = 1;
delta += 6;
} else {
power_ctrl = 0;
}
rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, power_ctrl);
rt2800_bbp_write(rt2x00dev, 1, r1);
offset = TX_PWR_CFG_0;
for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
/* just to be safe */
if (offset > TX_PWR_CFG_4)
break;
rt2800_register_read(rt2x00dev, offset, &reg);
/* read the next four txpower values */
rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
&eeprom);
is_rate_b = i ? 0 : 1;
/*
* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
* TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE0);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0, txpower);
/*
* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
* TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE1);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1, txpower);
/*
* TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
* TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE2);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2, txpower);
/*
* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
* TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE3);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3, txpower);
/* read the next four txpower values */
rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
&eeprom);
is_rate_b = 0;
/*
* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
* TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE0);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4, txpower);
/*
* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
* TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE1);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5, txpower);
/*
* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
* TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE2);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6, txpower);
/*
* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
* TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
* TX_PWR_CFG_4: unknown
*/
txpower = rt2x00_get_field16(eeprom,
EEPROM_TXPOWER_BYRATE_RATE3);
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
power_level, txpower, delta);
rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7, txpower);
rt2800_register_write(rt2x00dev, offset, reg);
/* next TX_PWR_CFG register */
offset += 4;
}
}
void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev)
{
rt2800_config_txpower(rt2x00dev, rt2x00dev->hw->conf.channel,
rt2x00dev->tx_power);
}
EXPORT_SYMBOL_GPL(rt2800_gain_calibration);
void rt2800_vco_calibration(struct rt2x00_dev *rt2x00dev)
{
u32 tx_pin;
u8 rfcsr;
/*
* A voltage-controlled oscillator(VCO) is an electronic oscillator
* designed to be controlled in oscillation frequency by a voltage
* input. Maybe the temperature will affect the frequency of
* oscillation to be shifted. The VCO calibration will be called
* periodically to adjust the frequency to be precision.
*/
rt2800_register_read(rt2x00dev, TX_PIN_CFG, &tx_pin);
tx_pin &= TX_PIN_CFG_PA_PE_DISABLE;
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
switch (rt2x00dev->chip.rf) {
case RF2020:
case RF3020:
case RF3021:
case RF3022:
case RF3320:
case RF3052:
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
break;
case RF3290:
case RF5360:
case RF5370:
case RF5372:
case RF5390:
case RF5392:
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
break;
default:
return;
}
mdelay(1);
rt2800_register_read(rt2x00dev, TX_PIN_CFG, &tx_pin);
if (rt2x00dev->rf_channel <= 14) {
switch (rt2x00dev->default_ant.tx_chain_num) {
case 3:
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN, 1);
/* fall through */
case 2:
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
/* fall through */
case 1:
default:
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
break;
}
} else {
switch (rt2x00dev->default_ant.tx_chain_num) {
case 3:
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN, 1);
/* fall through */
case 2:
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
/* fall through */
case 1:
default:
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, 1);
break;
}
}
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
}
EXPORT_SYMBOL_GPL(rt2800_vco_calibration);
static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u32 reg;
rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
libconf->conf->short_frame_max_tx_count);
rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
libconf->conf->long_frame_max_tx_count);
rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
}
static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
enum dev_state state =
(libconf->conf->flags & IEEE80211_CONF_PS) ?
STATE_SLEEP : STATE_AWAKE;
u32 reg;
if (state == STATE_SLEEP) {
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
libconf->conf->listen_interval - 1);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
} else {
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}
}
void rt2800_config(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf,
const unsigned int flags)
{
/* Always recalculate LNA gain before changing configuration */
rt2800_config_lna_gain(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_CHANNEL) {
rt2800_config_channel(rt2x00dev, libconf->conf,
&libconf->rf, &libconf->channel);
rt2800_config_txpower(rt2x00dev, libconf->conf->channel,
libconf->conf->power_level);
}
if (flags & IEEE80211_CONF_CHANGE_POWER)
rt2800_config_txpower(rt2x00dev, libconf->conf->channel,
libconf->conf->power_level);
if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
rt2800_config_retry_limit(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_PS)
rt2800_config_ps(rt2x00dev, libconf);
}
EXPORT_SYMBOL_GPL(rt2800_config);
/*
* Link tuning
*/
void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
{
u32 reg;
/*
* Update FCS error count from register.
*/
rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
}
EXPORT_SYMBOL_GPL(rt2800_link_stats);
static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
{
u8 vgc;
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
if (rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3390) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
vgc = 0x1c + (2 * rt2x00dev->lna_gain);
else
vgc = 0x2e + rt2x00dev->lna_gain;
} else { /* 5GHZ band */
if (rt2x00_rt(rt2x00dev, RT3572))
vgc = 0x22 + (rt2x00dev->lna_gain * 5) / 3;
else {
if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
vgc = 0x32 + (rt2x00dev->lna_gain * 5) / 3;
else
vgc = 0x3a + (rt2x00dev->lna_gain * 5) / 3;
}
}
return vgc;
}
static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, u8 vgc_level)
{
if (qual->vgc_level != vgc_level) {
rt2800_bbp_write(rt2x00dev, 66, vgc_level);
qual->vgc_level = vgc_level;
qual->vgc_level_reg = vgc_level;
}
}
void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
{
rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
}
EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
const u32 count)
{
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
return;
/*
* When RSSI is better then -80 increase VGC level with 0x10
*/
rt2800_set_vgc(rt2x00dev, qual,
rt2800_get_default_vgc(rt2x00dev) +
((qual->rssi > -80) * 0x10));
}
EXPORT_SYMBOL_GPL(rt2800_link_tuner);
/*
* Initialization functions.
*/
static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 eeprom;
unsigned int i;
int ret;
rt2800_disable_wpdma(rt2x00dev);
ret = rt2800_drv_init_registers(rt2x00dev);
if (ret)
return ret;
rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
if (rt2x00_rt(rt2x00dev, RT3290)) {
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
if (rt2x00_get_field32(reg, WLAN_EN) == 1) {
rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 1);
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
}
rt2800_register_read(rt2x00dev, CMB_CTRL, &reg);
if (!(rt2x00_get_field32(reg, LDO0_EN) == 1)) {
rt2x00_set_field32(&reg, LDO0_EN, 1);
rt2x00_set_field32(&reg, LDO_BGSEL, 3);
rt2800_register_write(rt2x00dev, CMB_CTRL, reg);
}
rt2800_register_read(rt2x00dev, OSC_CTRL, &reg);
rt2x00_set_field32(&reg, OSC_ROSC_EN, 1);
rt2x00_set_field32(&reg, OSC_CAL_REQ, 1);
rt2x00_set_field32(&reg, OSC_REF_CYCLE, 0x27);
rt2800_register_write(rt2x00dev, OSC_CTRL, reg);
rt2800_register_read(rt2x00dev, COEX_CFG0, &reg);
rt2x00_set_field32(&reg, COEX_CFG_ANT, 0x5e);
rt2800_register_write(rt2x00dev, COEX_CFG0, reg);
rt2800_register_read(rt2x00dev, COEX_CFG2, &reg);
rt2x00_set_field32(&reg, BT_COEX_CFG1, 0x00);
rt2x00_set_field32(&reg, BT_COEX_CFG0, 0x17);
rt2x00_set_field32(&reg, WL_COEX_CFG1, 0x93);
rt2x00_set_field32(&reg, WL_COEX_CFG0, 0x7f);
rt2800_register_write(rt2x00dev, COEX_CFG2, reg);
rt2800_register_read(rt2x00dev, PLL_CTRL, &reg);
rt2x00_set_field32(&reg, PLL_CONTROL, 1);
rt2800_register_write(rt2x00dev, PLL_CTRL, reg);
}
if (rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3390)) {
if (rt2x00_rt(rt2x00dev, RT3290))
rt2800_register_write(rt2x00dev, TX_SW_CFG0,
0x00000404);
else
rt2800_register_write(rt2x00dev, TX_SW_CFG0,
0x00000400);
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
rt2800_register_write(rt2x00dev, TX_SW_CFG2,
0x0000002c);
else
rt2800_register_write(rt2x00dev, TX_SW_CFG2,
0x0000000f);
} else {
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
}
} else if (rt2x00_rt(rt2x00dev, RT3070)) {
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
} else {
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
}
} else if (rt2800_is_305x_soc(rt2x00dev)) {
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030);
} else if (rt2x00_rt(rt2x00dev, RT3352)) {
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
} else if (rt2x00_rt(rt2x00dev, RT3572)) {
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
} else if (rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
} else {
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
}
rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
rt2x00_rt(rt2x00dev, RT2883) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
else
rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
rt2800_register_read(rt2x00dev, LED_CFG, &reg);
rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
rt2800_register_write(rt2x00dev, LED_CFG, reg);
rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
if (rt2x00_is_usb(rt2x00dev)) {
rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
}
/*
* The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
* although it is reserved.
*/
rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
IEEE80211_MAX_RTS_THRESHOLD);
rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
/*
* Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
* time should be set to 16. However, the original Ralink driver uses
* 16 for both and indeed using a value of 10 for CCK SIFS results in
* connection problems with 11g + CTS protection. Hence, use the same
* defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
*/
rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
/*
* ASIC will keep garbage value after boot, clear encryption keys.
*/
for (i = 0; i < 4; i++)
rt2800_register_write(rt2x00dev,
SHARED_KEY_MODE_ENTRY(i), 0);
for (i = 0; i < 256; i++) {
rt2800_config_wcid(rt2x00dev, NULL, i);
rt2800_delete_wcid_attr(rt2x00dev, i);
rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
}
/*
* Clear all beacons
*/
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0);
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1);
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2);
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3);
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4);
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5);
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6);
rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7);
if (rt2x00_is_usb(rt2x00dev)) {
rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
} else if (rt2x00_is_pcie(rt2x00dev)) {
rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
}
rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
/*
* Do not force the BA window size, we use the TXWI to set it
*/
rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
/*
* We must clear the error counters.
* These registers are cleared on read,
* so we may pass a useless variable to store the value.
*/
rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
/*
* Setup leadtime for pre tbtt interrupt to 6ms
*/
rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
/*
* Set up channel statistics timer
*/
rt2800_register_read(rt2x00dev, CH_TIME_CFG, &reg);
rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
return 0;
}
static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u32 reg;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
return 0;
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
return -EACCES;
}
static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u8 value;
/*
* BBP was enabled after firmware was loaded,
* but we need to reactivate it now.
*/
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
msleep(1);
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_bbp_read(rt2x00dev, 0, &value);
if ((value != 0xff) && (value != 0x00))
return 0;
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
return -EACCES;
}
static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u16 eeprom;
u8 reg_id;
u8 value;
if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
rt2800_wait_bbp_ready(rt2x00dev)))
return -EACCES;
if (rt2x00_rt(rt2x00dev, RT3352)) {
rt2800_bbp_write(rt2x00dev, 3, 0x00);
rt2800_bbp_write(rt2x00dev, 4, 0x50);
}
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_bbp_read(rt2x00dev, 4, &value);
rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1);
rt2800_bbp_write(rt2x00dev, 4, value);
}
if (rt2800_is_305x_soc(rt2x00dev) ||
rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 31, 0x08);
if (rt2x00_rt(rt2x00dev, RT3352))
rt2800_bbp_write(rt2x00dev, 47, 0x48);
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
rt2800_bbp_write(rt2x00dev, 66, 0x38);
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
rt2800_bbp_write(rt2x00dev, 69, 0x16);
rt2800_bbp_write(rt2x00dev, 73, 0x12);
} else if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_bbp_write(rt2x00dev, 69, 0x12);
rt2800_bbp_write(rt2x00dev, 73, 0x13);
rt2800_bbp_write(rt2x00dev, 75, 0x46);
rt2800_bbp_write(rt2x00dev, 76, 0x28);
if (rt2x00_rt(rt2x00dev, RT3290))
rt2800_bbp_write(rt2x00dev, 77, 0x58);
else
rt2800_bbp_write(rt2x00dev, 77, 0x59);
} else {
rt2800_bbp_write(rt2x00dev, 69, 0x12);
rt2800_bbp_write(rt2x00dev, 73, 0x10);
}
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
if (rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3390) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_bbp_write(rt2x00dev, 79, 0x13);
rt2800_bbp_write(rt2x00dev, 80, 0x05);
rt2800_bbp_write(rt2x00dev, 81, 0x33);
} else if (rt2800_is_305x_soc(rt2x00dev)) {
rt2800_bbp_write(rt2x00dev, 78, 0x0e);
rt2800_bbp_write(rt2x00dev, 80, 0x08);
} else if (rt2x00_rt(rt2x00dev, RT3290)) {
rt2800_bbp_write(rt2x00dev, 74, 0x0b);
rt2800_bbp_write(rt2x00dev, 79, 0x18);
rt2800_bbp_write(rt2x00dev, 80, 0x09);
rt2800_bbp_write(rt2x00dev, 81, 0x33);
} else if (rt2x00_rt(rt2x00dev, RT3352)) {
rt2800_bbp_write(rt2x00dev, 78, 0x0e);
rt2800_bbp_write(rt2x00dev, 80, 0x08);
rt2800_bbp_write(rt2x00dev, 81, 0x37);
} else {
rt2800_bbp_write(rt2x00dev, 81, 0x37);
}
rt2800_bbp_write(rt2x00dev, 82, 0x62);
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 83, 0x7a);
else
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
rt2800_bbp_write(rt2x00dev, 84, 0x19);
else if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 84, 0x9a);
else
rt2800_bbp_write(rt2x00dev, 84, 0x99);
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 86, 0x38);
else
rt2800_bbp_write(rt2x00dev, 86, 0x00);
if (rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 88, 0x90);
rt2800_bbp_write(rt2x00dev, 91, 0x04);
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 92, 0x02);
else
rt2800_bbp_write(rt2x00dev, 92, 0x00);
if (rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_bbp_write(rt2x00dev, 95, 0x9a);
rt2800_bbp_write(rt2x00dev, 98, 0x12);
}
if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392) ||
rt2800_is_305x_soc(rt2x00dev))
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
else
rt2800_bbp_write(rt2x00dev, 103, 0x00);
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 104, 0x92);
if (rt2800_is_305x_soc(rt2x00dev))
rt2800_bbp_write(rt2x00dev, 105, 0x01);
else if (rt2x00_rt(rt2x00dev, RT3290))
rt2800_bbp_write(rt2x00dev, 105, 0x1c);
else if (rt2x00_rt(rt2x00dev, RT3352))
rt2800_bbp_write(rt2x00dev, 105, 0x34);
else if (rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 105, 0x3c);
else
rt2800_bbp_write(rt2x00dev, 105, 0x05);
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT5390))
rt2800_bbp_write(rt2x00dev, 106, 0x03);
else if (rt2x00_rt(rt2x00dev, RT3352))
rt2800_bbp_write(rt2x00dev, 106, 0x05);
else if (rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 106, 0x12);
else
rt2800_bbp_write(rt2x00dev, 106, 0x35);
if (rt2x00_rt(rt2x00dev, RT3352))
rt2800_bbp_write(rt2x00dev, 120, 0x50);
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))
rt2800_bbp_write(rt2x00dev, 128, 0x12);
if (rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_bbp_write(rt2x00dev, 134, 0xd0);
rt2800_bbp_write(rt2x00dev, 135, 0xf6);
}
if (rt2x00_rt(rt2x00dev, RT3352))
rt2800_bbp_write(rt2x00dev, 137, 0x0f);
if (rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3390) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_bbp_read(rt2x00dev, 138, &value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
value |= 0x20;
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
value &= ~0x02;
rt2800_bbp_write(rt2x00dev, 138, value);
}
if (rt2x00_rt(rt2x00dev, RT3290)) {
rt2800_bbp_write(rt2x00dev, 67, 0x24);
rt2800_bbp_write(rt2x00dev, 143, 0x04);
rt2800_bbp_write(rt2x00dev, 142, 0x99);
rt2800_bbp_write(rt2x00dev, 150, 0x30);
rt2800_bbp_write(rt2x00dev, 151, 0x2e);
rt2800_bbp_write(rt2x00dev, 152, 0x20);
rt2800_bbp_write(rt2x00dev, 153, 0x34);
rt2800_bbp_write(rt2x00dev, 154, 0x40);
rt2800_bbp_write(rt2x00dev, 155, 0x3b);
rt2800_bbp_write(rt2x00dev, 253, 0x04);
rt2800_bbp_read(rt2x00dev, 47, &value);
rt2x00_set_field8(&value, BBP47_TSSI_ADC6, 1);
rt2800_bbp_write(rt2x00dev, 47, value);
/* Use 5-bit ADC for Acquisition and 8-bit ADC for data */
rt2800_bbp_read(rt2x00dev, 3, &value);
rt2x00_set_field8(&value, BBP3_ADC_MODE_SWITCH, 1);
rt2x00_set_field8(&value, BBP3_ADC_INIT_MODE, 1);
rt2800_bbp_write(rt2x00dev, 3, value);
}
if (rt2x00_rt(rt2x00dev, RT3352)) {
rt2800_bbp_write(rt2x00dev, 163, 0xbd);
/* Set ITxBF timeout to 0x9c40=1000msec */
rt2800_bbp_write(rt2x00dev, 179, 0x02);
rt2800_bbp_write(rt2x00dev, 180, 0x00);
rt2800_bbp_write(rt2x00dev, 182, 0x40);
rt2800_bbp_write(rt2x00dev, 180, 0x01);
rt2800_bbp_write(rt2x00dev, 182, 0x9c);
rt2800_bbp_write(rt2x00dev, 179, 0x00);
/* Reprogram the inband interface to put right values in RXWI */
rt2800_bbp_write(rt2x00dev, 142, 0x04);
rt2800_bbp_write(rt2x00dev, 143, 0x3b);
rt2800_bbp_write(rt2x00dev, 142, 0x06);
rt2800_bbp_write(rt2x00dev, 143, 0xa0);
rt2800_bbp_write(rt2x00dev, 142, 0x07);
rt2800_bbp_write(rt2x00dev, 143, 0xa1);
rt2800_bbp_write(rt2x00dev, 142, 0x08);
rt2800_bbp_write(rt2x00dev, 143, 0xa2);
rt2800_bbp_write(rt2x00dev, 148, 0xc8);
}
if (rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
int ant, div_mode;
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
div_mode = rt2x00_get_field16(eeprom,
EEPROM_NIC_CONF1_ANT_DIVERSITY);
ant = (div_mode == 3) ? 1 : 0;
/* check if this is a Bluetooth combo card */
if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
u32 reg;
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
rt2x00_set_field32(&reg, GPIO_CTRL_DIR6, 0);
rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, 0);
rt2x00_set_field32(&reg, GPIO_CTRL_VAL6, 0);
if (ant == 0)
rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, 1);
else if (ant == 1)
rt2x00_set_field32(&reg, GPIO_CTRL_VAL6, 1);
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
}
/* This chip has hardware antenna diversity*/
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R)) {
rt2800_bbp_write(rt2x00dev, 150, 0); /* Disable Antenna Software OFDM */
rt2800_bbp_write(rt2x00dev, 151, 0); /* Disable Antenna Software CCK */
rt2800_bbp_write(rt2x00dev, 154, 0); /* Clear previously selected antenna */
}
rt2800_bbp_read(rt2x00dev, 152, &value);
if (ant == 0)
rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
else
rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
rt2800_bbp_write(rt2x00dev, 152, value);
/* Init frequency calibration */
rt2800_bbp_write(rt2x00dev, 142, 1);
rt2800_bbp_write(rt2x00dev, 143, 57);
}
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
if (eeprom != 0xffff && eeprom != 0x0000) {
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
rt2800_bbp_write(rt2x00dev, reg_id, value);
}
}
return 0;
}
static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
bool bw40, u8 rfcsr24, u8 filter_target)
{
unsigned int i;
u8 bbp;
u8 rfcsr;
u8 passband;
u8 stopband;
u8 overtuned = 0;
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
rt2800_bbp_read(rt2x00dev, 4, &bbp);
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
rt2800_bbp_write(rt2x00dev, 4, bbp);
rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
/*
* Set power & frequency of passband test tone
*/
rt2800_bbp_write(rt2x00dev, 24, 0);
for (i = 0; i < 100; i++) {
rt2800_bbp_write(rt2x00dev, 25, 0x90);
msleep(1);
rt2800_bbp_read(rt2x00dev, 55, &passband);
if (passband)
break;
}
/*
* Set power & frequency of stopband test tone
*/
rt2800_bbp_write(rt2x00dev, 24, 0x06);
for (i = 0; i < 100; i++) {
rt2800_bbp_write(rt2x00dev, 25, 0x90);
msleep(1);
rt2800_bbp_read(rt2x00dev, 55, &stopband);
if ((passband - stopband) <= filter_target) {
rfcsr24++;
overtuned += ((passband - stopband) == filter_target);
} else
break;
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
}
rfcsr24 -= !!overtuned;
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
return rfcsr24;
}
static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u8 rfcsr;
u8 bbp;
u32 reg;
u16 eeprom;
if (!rt2x00_rt(rt2x00dev, RT3070) &&
!rt2x00_rt(rt2x00dev, RT3071) &&
!rt2x00_rt(rt2x00dev, RT3090) &&
!rt2x00_rt(rt2x00dev, RT3290) &&
!rt2x00_rt(rt2x00dev, RT3352) &&
!rt2x00_rt(rt2x00dev, RT3390) &&
!rt2x00_rt(rt2x00dev, RT3572) &&
!rt2x00_rt(rt2x00dev, RT5390) &&
!rt2x00_rt(rt2x00dev, RT5392) &&
!rt2800_is_305x_soc(rt2x00dev))
return 0;
/*
* Init RF calibration.
*/
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
msleep(1);
rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 0);
rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
} else {
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
msleep(1);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
}
if (rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090)) {
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
} else if (rt2x00_rt(rt2x00dev, RT3290)) {
rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
rt2800_rfcsr_write(rt2x00dev, 8, 0xf3);
rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
rt2800_rfcsr_write(rt2x00dev, 18, 0x02);
rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
rt2800_rfcsr_write(rt2x00dev, 25, 0x83);
rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
rt2800_rfcsr_write(rt2x00dev, 34, 0x05);
rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
rt2800_rfcsr_write(rt2x00dev, 43, 0x7b);
rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
rt2800_rfcsr_write(rt2x00dev, 49, 0x98);
rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
rt2800_rfcsr_write(rt2x00dev, 56, 0x02);
rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
rt2800_rfcsr_write(rt2x00dev, 59, 0x09);
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
rt2800_rfcsr_write(rt2x00dev, 61, 0xc1);
} else if (rt2x00_rt(rt2x00dev, RT3390)) {
rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
} else if (rt2x00_rt(rt2x00dev, RT3572)) {
rt2800_rfcsr_write(rt2x00dev, 0, 0x70);
rt2800_rfcsr_write(rt2x00dev, 1, 0x81);
rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 3, 0x02);
rt2800_rfcsr_write(rt2x00dev, 4, 0x4c);
rt2800_rfcsr_write(rt2x00dev, 5, 0x05);
rt2800_rfcsr_write(rt2x00dev, 6, 0x4a);
rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
rt2800_rfcsr_write(rt2x00dev, 12, 0x70);
rt2800_rfcsr_write(rt2x00dev, 13, 0x65);
rt2800_rfcsr_write(rt2x00dev, 14, 0xa0);
rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
rt2800_rfcsr_write(rt2x00dev, 16, 0x4c);
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
rt2800_rfcsr_write(rt2x00dev, 18, 0xac);
rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
rt2800_rfcsr_write(rt2x00dev, 21, 0xd0);
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
rt2800_rfcsr_write(rt2x00dev, 23, 0x3c);
rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
rt2800_rfcsr_write(rt2x00dev, 30, 0x09);
rt2800_rfcsr_write(rt2x00dev, 31, 0x10);
} else if (rt2800_is_305x_soc(rt2x00dev)) {
rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
return 0;
} else if (rt2x00_rt(rt2x00dev, RT3352)) {
rt2800_rfcsr_write(rt2x00dev, 0, 0xf0);
rt2800_rfcsr_write(rt2x00dev, 1, 0x23);
rt2800_rfcsr_write(rt2x00dev, 2, 0x50);
rt2800_rfcsr_write(rt2x00dev, 3, 0x18);
rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
rt2800_rfcsr_write(rt2x00dev, 6, 0x33);
rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
rt2800_rfcsr_write(rt2x00dev, 10, 0xd2);
rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
rt2800_rfcsr_write(rt2x00dev, 14, 0x5a);
rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
rt2800_rfcsr_write(rt2x00dev, 16, 0x01);
rt2800_rfcsr_write(rt2x00dev, 18, 0x45);
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
rt2800_rfcsr_write(rt2x00dev, 28, 0x03);
rt2800_rfcsr_write(rt2x00dev, 29, 0x00);
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
rt2800_rfcsr_write(rt2x00dev, 34, 0x01);
rt2800_rfcsr_write(rt2x00dev, 35, 0x03);
rt2800_rfcsr_write(rt2x00dev, 36, 0xbd);
rt2800_rfcsr_write(rt2x00dev, 37, 0x3c);
rt2800_rfcsr_write(rt2x00dev, 38, 0x5f);
rt2800_rfcsr_write(rt2x00dev, 39, 0xc5);
rt2800_rfcsr_write(rt2x00dev, 40, 0x33);
rt2800_rfcsr_write(rt2x00dev, 41, 0x5b);
rt2800_rfcsr_write(rt2x00dev, 42, 0x5b);
rt2800_rfcsr_write(rt2x00dev, 43, 0xdb);
rt2800_rfcsr_write(rt2x00dev, 44, 0xdb);
rt2800_rfcsr_write(rt2x00dev, 45, 0xdb);
rt2800_rfcsr_write(rt2x00dev, 46, 0xdd);
rt2800_rfcsr_write(rt2x00dev, 47, 0x0d);
rt2800_rfcsr_write(rt2x00dev, 48, 0x14);
rt2800_rfcsr_write(rt2x00dev, 49, 0x00);
rt2800_rfcsr_write(rt2x00dev, 50, 0x2d);
rt2800_rfcsr_write(rt2x00dev, 51, 0x7f);
rt2800_rfcsr_write(rt2x00dev, 52, 0x00);
rt2800_rfcsr_write(rt2x00dev, 53, 0x52);
rt2800_rfcsr_write(rt2x00dev, 54, 0x1b);
rt2800_rfcsr_write(rt2x00dev, 55, 0x7f);
rt2800_rfcsr_write(rt2x00dev, 56, 0x00);
rt2800_rfcsr_write(rt2x00dev, 57, 0x52);
rt2800_rfcsr_write(rt2x00dev, 58, 0x1b);
rt2800_rfcsr_write(rt2x00dev, 59, 0x00);
rt2800_rfcsr_write(rt2x00dev, 60, 0x00);
rt2800_rfcsr_write(rt2x00dev, 61, 0x00);
rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
} else if (rt2x00_rt(rt2x00dev, RT5390)) {
rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
else
rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
rt2800_rfcsr_write(rt2x00dev, 12, 0xc6);
rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
else
rt2800_rfcsr_write(rt2x00dev, 25, 0xc0);
rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
else
rt2800_rfcsr_write(rt2x00dev, 40, 0x4b);
rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
rt2800_rfcsr_write(rt2x00dev, 42, 0xd2);
rt2800_rfcsr_write(rt2x00dev, 43, 0x9a);
rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
else
rt2800_rfcsr_write(rt2x00dev, 46, 0x7b);
rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
else
rt2800_rfcsr_write(rt2x00dev, 53, 0x84);
rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
rt2800_rfcsr_write(rt2x00dev, 55, 0x44);
rt2800_rfcsr_write(rt2x00dev, 56, 0x22);
rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
rt2800_rfcsr_write(rt2x00dev, 59, 0x63);
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
else
rt2800_rfcsr_write(rt2x00dev, 61, 0xdd);
rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
} else if (rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_rfcsr_write(rt2x00dev, 1, 0x17);
rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
rt2800_rfcsr_write(rt2x00dev, 19, 0x4d);
rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
rt2800_rfcsr_write(rt2x00dev, 21, 0x8d);
rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
rt2800_rfcsr_write(rt2x00dev, 23, 0x0b);
rt2800_rfcsr_write(rt2x00dev, 24, 0x44);
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
rt2800_rfcsr_write(rt2x00dev, 32, 0x20);
rt2800_rfcsr_write(rt2x00dev, 33, 0xC0);
rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
rt2800_rfcsr_write(rt2x00dev, 40, 0x0f);
rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
rt2800_rfcsr_write(rt2x00dev, 43, 0x9b);
rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
rt2800_rfcsr_write(rt2x00dev, 47, 0x0c);
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
rt2800_rfcsr_write(rt2x00dev, 50, 0x94);
rt2800_rfcsr_write(rt2x00dev, 51, 0x3a);
rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
rt2800_rfcsr_write(rt2x00dev, 53, 0x44);
rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
rt2800_rfcsr_write(rt2x00dev, 56, 0xa1);
rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
rt2800_rfcsr_write(rt2x00dev, 59, 0x07);
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
rt2800_rfcsr_write(rt2x00dev, 63, 0x07);
}
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
} else if (rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090)) {
rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
else
rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
}
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
} else if (rt2x00_rt(rt2x00dev, RT3390)) {
rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
} else if (rt2x00_rt(rt2x00dev, RT3572)) {
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
msleep(1);
rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
}
/*
* Set RX Filter calibration for 20MHz and 40MHz
*/
if (rt2x00_rt(rt2x00dev, RT3070)) {
drv_data->calibration_bw20 =
rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
drv_data->calibration_bw40 =
rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
} else if (rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT3390) ||
rt2x00_rt(rt2x00dev, RT3572)) {
drv_data->calibration_bw20 =
rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
drv_data->calibration_bw40 =
rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
}
/*
* Save BBP 25 & 26 values for later use in channel switching
*/
rt2800_bbp_read(rt2x00dev, 25, &drv_data->bbp25);
rt2800_bbp_read(rt2x00dev, 26, &drv_data->bbp26);
if (!rt2x00_rt(rt2x00dev, RT5390) &&
!rt2x00_rt(rt2x00dev, RT5392)) {
/*
* Set back to initial state
*/
rt2800_bbp_write(rt2x00dev, 24, 0);
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
/*
* Set BBP back to BW20
*/
rt2800_bbp_read(rt2x00dev, 4, &bbp);
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
rt2800_bbp_write(rt2x00dev, 4, bbp);
}
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
if (!rt2x00_rt(rt2x00dev, RT5390) &&
!rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
if (rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
if (!test_bit(CAPABILITY_EXTERNAL_LNA_BG,
&rt2x00dev->cap_flags))
rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
}
rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
drv_data->txmixer_gain_24g);
rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
}
if (rt2x00_rt(rt2x00dev, RT3090)) {
rt2800_bbp_read(rt2x00dev, 138, &bbp);
/* Turn off unused DAC1 and ADC1 to reduce power consumption */
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
rt2800_bbp_write(rt2x00dev, 138, bbp);
}
if (rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3390)) {
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
}
if (rt2x00_rt(rt2x00dev, RT3070)) {
rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
else
rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
}
if (rt2x00_rt(rt2x00dev, RT3290)) {
rt2800_rfcsr_read(rt2x00dev, 29, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR29_RSSI_GAIN, 3);
rt2800_rfcsr_write(rt2x00dev, 29, rfcsr);
}
if (rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0);
rt2800_rfcsr_write(rt2x00dev, 38, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0);
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
}
return 0;
}
int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 word;
/*
* Initialize all registers.
*/
if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
rt2800_init_registers(rt2x00dev) ||
rt2800_init_bbp(rt2x00dev) ||
rt2800_init_rfcsr(rt2x00dev)))
return -EIO;
/*
* Send signal to firmware during boot time.
*/
rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
if (rt2x00_is_usb(rt2x00dev) &&
(rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt(rt2x00dev, RT3071) ||
rt2x00_rt(rt2x00dev, RT3572))) {
udelay(200);
rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
udelay(10);
}
/*
* Enable RX.
*/
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
udelay(50);
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
/*
* Initialize LED control
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
word & 0xff, (word >> 8) & 0xff);
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
word & 0xff, (word >> 8) & 0xff);
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
word & 0xff, (word >> 8) & 0xff);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_enable_radio);
void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2800_disable_wpdma(rt2x00dev);
/* Wait for DMA, ignore error */
rt2800_wait_wpdma_ready(rt2x00dev);
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
}
EXPORT_SYMBOL_GPL(rt2800_disable_radio);
int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 efuse_ctrl_reg;
if (rt2x00_rt(rt2x00dev, RT3290))
efuse_ctrl_reg = EFUSE_CTRL_3290;
else
efuse_ctrl_reg = EFUSE_CTRL;
rt2800_register_read(rt2x00dev, efuse_ctrl_reg, &reg);
return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
}
EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
{
u32 reg;
u16 efuse_ctrl_reg;
u16 efuse_data0_reg;
u16 efuse_data1_reg;
u16 efuse_data2_reg;
u16 efuse_data3_reg;
if (rt2x00_rt(rt2x00dev, RT3290)) {
efuse_ctrl_reg = EFUSE_CTRL_3290;
efuse_data0_reg = EFUSE_DATA0_3290;
efuse_data1_reg = EFUSE_DATA1_3290;
efuse_data2_reg = EFUSE_DATA2_3290;
efuse_data3_reg = EFUSE_DATA3_3290;
} else {
efuse_ctrl_reg = EFUSE_CTRL;
efuse_data0_reg = EFUSE_DATA0;
efuse_data1_reg = EFUSE_DATA1;
efuse_data2_reg = EFUSE_DATA2;
efuse_data3_reg = EFUSE_DATA3;
}
mutex_lock(&rt2x00dev->csr_mutex);
rt2800_register_read_lock(rt2x00dev, efuse_ctrl_reg, &reg);
rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
rt2800_register_write_lock(rt2x00dev, efuse_ctrl_reg, reg);
/* Wait until the EEPROM has been loaded */
rt2800_regbusy_read(rt2x00dev, efuse_ctrl_reg, EFUSE_CTRL_KICK, &reg);
/* Apparently the data is read from end to start */
rt2800_register_read_lock(rt2x00dev, efuse_data3_reg, &reg);
/* The returned value is in CPU order, but eeprom is le */
*(u32 *)&rt2x00dev->eeprom[i] = cpu_to_le32(reg);
rt2800_register_read_lock(rt2x00dev, efuse_data2_reg, &reg);
*(u32 *)&rt2x00dev->eeprom[i + 2] = cpu_to_le32(reg);
rt2800_register_read_lock(rt2x00dev, efuse_data1_reg, &reg);
*(u32 *)&rt2x00dev->eeprom[i + 4] = cpu_to_le32(reg);
rt2800_register_read_lock(rt2x00dev, efuse_data0_reg, &reg);
*(u32 *)&rt2x00dev->eeprom[i + 6] = cpu_to_le32(reg);
mutex_unlock(&rt2x00dev->csr_mutex);
}
void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
rt2800_efuse_read(rt2x00dev, i);
}
EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
static int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u16 word;
u8 *mac;
u8 default_lna_gain;
/*
* Read the EEPROM.
*/
rt2800_read_eeprom(rt2x00dev);
/*
* Start validation of the data that has been read.
*/
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
if (!is_valid_ether_addr(mac)) {
eth_random_addr(mac);
EEPROM(rt2x00dev, "MAC: %pM\n", mac);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
} else if (rt2x00_rt(rt2x00dev, RT2860) ||
rt2x00_rt(rt2x00dev, RT2872)) {
/*
* There is a max of 2 RX streams for RT28x0 series
*/
if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
if ((word & 0x00ff) == 0x00ff) {
rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
}
if ((word & 0xff00) == 0xff00) {
rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
LED_MODE_TXRX_ACTIVITY);
rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
}
/*
* During the LNA validation we are going to use
* lna0 as correct value. Note that EEPROM_LNA
* is never validated.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &word);
if ((word & 0x00ff) != 0x00ff) {
drv_data->txmixer_gain_24g =
rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_BG_VAL);
} else {
drv_data->txmixer_gain_24g = 0;
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
default_lna_gain);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_A, &word);
if ((word & 0x00ff) != 0x00ff) {
drv_data->txmixer_gain_5g =
rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_A_VAL);
} else {
drv_data->txmixer_gain_5g = 0;
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
default_lna_gain);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
return 0;
}
static int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 value;
u16 eeprom;
/*
* Read EEPROM word for configuration.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
/*
* Identify RF chipset by EEPROM value
* RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
* RT53xx: defined in "EEPROM_CHIP_ID" field
*/
if (rt2x00_rt(rt2x00dev, RT3290))
rt2800_register_read(rt2x00dev, MAC_CSR0_3290, &reg);
else
rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
if (rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT3290 ||
rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT5390 ||
rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT5392)
rt2x00_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &value);
else
value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
switch (rt2x00dev->chip.rt) {
case RT2860:
case RT2872:
case RT2883:
case RT3070:
case RT3071:
case RT3090:
case RT3290:
case RT3352:
case RT3390:
case RT3572:
case RT5390:
case RT5392:
break;
default:
ERROR(rt2x00dev, "Invalid RT chipset 0x%04x detected.\n", rt2x00dev->chip.rt);
return -ENODEV;
}
switch (rt2x00dev->chip.rf) {
case RF2820:
case RF2850:
case RF2720:
case RF2750:
case RF3020:
case RF2020:
case RF3021:
case RF3022:
case RF3052:
case RF3290:
case RF3320:
case RF3322:
case RF5360:
case RF5370:
case RF5372:
case RF5390:
case RF5392:
break;
default:
ERROR(rt2x00dev, "Invalid RF chipset 0x%04x detected.\n",
rt2x00dev->chip.rf);
return -ENODEV;
}
/*
* Identify default antenna configuration.
*/
rt2x00dev->default_ant.tx_chain_num =
rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
rt2x00dev->default_ant.rx_chain_num =
rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
if (rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT3390)) {
value = rt2x00_get_field16(eeprom,
EEPROM_NIC_CONF1_ANT_DIVERSITY);
switch (value) {
case 0:
case 1:
case 2:
rt2x00dev->default_ant.tx = ANTENNA_A;
rt2x00dev->default_ant.rx = ANTENNA_A;
break;
case 3:
rt2x00dev->default_ant.tx = ANTENNA_A;
rt2x00dev->default_ant.rx = ANTENNA_B;
break;
}
} else {
rt2x00dev->default_ant.tx = ANTENNA_A;
rt2x00dev->default_ant.rx = ANTENNA_A;
}
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R)) {
rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; /* Unused */
rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; /* Unused */
}
/*
* Determine external LNA informations.
*/
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
/*
* Detect if this device has an hardware controlled radio.
*/
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
/*
* Detect if this device has Bluetooth co-existence.
*/
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST))
__set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags);
/*
* Read frequency offset and RF programming sequence.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
/*
* Store led settings, for correct led behaviour.
*/
#ifdef CONFIG_RT2X00_LIB_LEDS
rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
rt2x00dev->led_mcu_reg = eeprom;
#endif /* CONFIG_RT2X00_LIB_LEDS */
/*
* Check if support EIRP tx power limit feature.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) <
EIRP_MAX_TX_POWER_LIMIT)
__set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags);
return 0;
}
/*
* RF value list for rt28xx
* Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
*/
static const struct rf_channel rf_vals[] = {
{ 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
{ 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
{ 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
{ 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
{ 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
{ 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
{ 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
{ 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
{ 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
/* 802.11 HyperLan 2 */
{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
/* 802.11 UNII */
{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
{ 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
{ 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
{ 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
{ 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
/* 802.11 Japan */
{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
};
/*
* RF value list for rt3xxx
* Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
*/
static const struct rf_channel rf_vals_3x[] = {
{1, 241, 2, 2 },
{2, 241, 2, 7 },
{3, 242, 2, 2 },
{4, 242, 2, 7 },
{5, 243, 2, 2 },
{6, 243, 2, 7 },
{7, 244, 2, 2 },
{8, 244, 2, 7 },
{9, 245, 2, 2 },
{10, 245, 2, 7 },
{11, 246, 2, 2 },
{12, 246, 2, 7 },
{13, 247, 2, 2 },
{14, 248, 2, 4 },
/* 802.11 UNI / HyperLan 2 */
{36, 0x56, 0, 4},
{38, 0x56, 0, 6},
{40, 0x56, 0, 8},
{44, 0x57, 0, 0},
{46, 0x57, 0, 2},
{48, 0x57, 0, 4},
{52, 0x57, 0, 8},
{54, 0x57, 0, 10},
{56, 0x58, 0, 0},
{60, 0x58, 0, 4},
{62, 0x58, 0, 6},
{64, 0x58, 0, 8},
/* 802.11 HyperLan 2 */
{100, 0x5b, 0, 8},
{102, 0x5b, 0, 10},
{104, 0x5c, 0, 0},
{108, 0x5c, 0, 4},
{110, 0x5c, 0, 6},
{112, 0x5c, 0, 8},
{116, 0x5d, 0, 0},
{118, 0x5d, 0, 2},
{120, 0x5d, 0, 4},
{124, 0x5d, 0, 8},
{126, 0x5d, 0, 10},
{128, 0x5e, 0, 0},
{132, 0x5e, 0, 4},
{134, 0x5e, 0, 6},
{136, 0x5e, 0, 8},
{140, 0x5f, 0, 0},
/* 802.11 UNII */
{149, 0x5f, 0, 9},
{151, 0x5f, 0, 11},
{153, 0x60, 0, 1},
{157, 0x60, 0, 5},
{159, 0x60, 0, 7},
{161, 0x60, 0, 9},
{165, 0x61, 0, 1},
{167, 0x61, 0, 3},
{169, 0x61, 0, 5},
{171, 0x61, 0, 7},
{173, 0x61, 0, 9},
};
static int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
struct channel_info *info;
char *default_power1;
char *default_power2;
unsigned int i;
u16 eeprom;
/*
* Disable powersaving as default on PCI devices.
*/
if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
/*
* Initialize all hw fields.
*/
rt2x00dev->hw->flags =
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
IEEE80211_HW_AMPDU_AGGREGATION |
IEEE80211_HW_REPORTS_TX_ACK_STATUS |
IEEE80211_HW_TEARDOWN_AGGR_ON_BAR_FAIL;
/*
* Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
* unless we are capable of sending the buffered frames out after the
* DTIM transmission using rt2x00lib_beacondone. This will send out
* multicast and broadcast traffic immediately instead of buffering it
* infinitly and thus dropping it after some time.
*/
if (!rt2x00_is_usb(rt2x00dev))
rt2x00dev->hw->flags |=
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
rt2x00_eeprom_addr(rt2x00dev,
EEPROM_MAC_ADDR_0));
/*
* As rt2800 has a global fallback table we cannot specify
* more then one tx rate per frame but since the hw will
* try several rates (based on the fallback table) we should
* initialize max_report_rates to the maximum number of rates
* we are going to try. Otherwise mac80211 will truncate our
* reported tx rates and the rc algortihm will end up with
* incorrect data.
*/
rt2x00dev->hw->max_rates = 1;
rt2x00dev->hw->max_report_rates = 7;
rt2x00dev->hw->max_rate_tries = 1;
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
/*
* Initialize hw_mode information.
*/
spec->supported_bands = SUPPORT_BAND_2GHZ;
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
if (rt2x00_rf(rt2x00dev, RF2820) ||
rt2x00_rf(rt2x00dev, RF2720)) {
spec->num_channels = 14;
spec->channels = rf_vals;
} else if (rt2x00_rf(rt2x00dev, RF2850) ||
rt2x00_rf(rt2x00dev, RF2750)) {
spec->supported_bands |= SUPPORT_BAND_5GHZ;
spec->num_channels = ARRAY_SIZE(rf_vals);
spec->channels = rf_vals;
} else if (rt2x00_rf(rt2x00dev, RF3020) ||
rt2x00_rf(rt2x00dev, RF2020) ||
rt2x00_rf(rt2x00dev, RF3021) ||
rt2x00_rf(rt2x00dev, RF3022) ||
rt2x00_rf(rt2x00dev, RF3290) ||
rt2x00_rf(rt2x00dev, RF3320) ||
rt2x00_rf(rt2x00dev, RF3322) ||
rt2x00_rf(rt2x00dev, RF5360) ||
rt2x00_rf(rt2x00dev, RF5370) ||
rt2x00_rf(rt2x00dev, RF5372) ||
rt2x00_rf(rt2x00dev, RF5390) ||
rt2x00_rf(rt2x00dev, RF5392)) {
spec->num_channels = 14;
spec->channels = rf_vals_3x;
} else if (rt2x00_rf(rt2x00dev, RF3052)) {
spec->supported_bands |= SUPPORT_BAND_5GHZ;
spec->num_channels = ARRAY_SIZE(rf_vals_3x);
spec->channels = rf_vals_3x;
}
/*
* Initialize HT information.
*/
if (!rt2x00_rf(rt2x00dev, RF2020))
spec->ht.ht_supported = true;
else
spec->ht.ht_supported = false;
spec->ht.cap =
IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_GRN_FLD |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_SGI_40;
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2)
spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
spec->ht.cap |=
rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) <<
IEEE80211_HT_CAP_RX_STBC_SHIFT;
spec->ht.ampdu_factor = 3;
spec->ht.ampdu_density = 4;
spec->ht.mcs.tx_params =
IEEE80211_HT_MCS_TX_DEFINED |
IEEE80211_HT_MCS_TX_RX_DIFF |
((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) {
case 3:
spec->ht.mcs.rx_mask[2] = 0xff;
case 2:
spec->ht.mcs.rx_mask[1] = 0xff;
case 1:
spec->ht.mcs.rx_mask[0] = 0xff;
spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
break;
}
/*
* Create channel information array
*/
info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
spec->channels_info = info;
default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
for (i = 0; i < 14; i++) {
info[i].default_power1 = default_power1[i];
info[i].default_power2 = default_power2[i];
}
if (spec->num_channels > 14) {
default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
for (i = 14; i < spec->num_channels; i++) {
info[i].default_power1 = default_power1[i];
info[i].default_power2 = default_power2[i];
}
}
switch (rt2x00dev->chip.rf) {
case RF2020:
case RF3020:
case RF3021:
case RF3022:
case RF3320:
case RF3052:
case RF3290:
case RF5360:
case RF5370:
case RF5372:
case RF5390:
case RF5392:
__set_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags);
break;
}
return 0;
}
int rt2800_probe_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
u32 reg;
/*
* Allocate eeprom data.
*/
retval = rt2800_validate_eeprom(rt2x00dev);
if (retval)
return retval;
retval = rt2800_init_eeprom(rt2x00dev);
if (retval)
return retval;
/*
* Enable rfkill polling by setting GPIO direction of the
* rfkill switch GPIO pin correctly.
*/
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
rt2x00_set_field32(&reg, GPIO_CTRL_DIR2, 1);
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
/*
* Initialize hw specifications.
*/
retval = rt2800_probe_hw_mode(rt2x00dev);
if (retval)
return retval;
/*
* Set device capabilities.
*/
__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
if (!rt2x00_is_usb(rt2x00dev))
__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
/*
* Set device requirements.
*/
if (!rt2x00_is_soc(rt2x00dev))
__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
if (!rt2800_hwcrypt_disabled(rt2x00dev))
__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
if (rt2x00_is_usb(rt2x00dev))
__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
else {
__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
}
/*
* Set the rssi offset.
*/
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_probe_hw);
/*
* IEEE80211 stack callback functions.
*/
void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
u16 *iv16)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct mac_iveiv_entry iveiv_entry;
u32 offset;
offset = MAC_IVEIV_ENTRY(hw_key_idx);
rt2800_register_multiread(rt2x00dev, offset,
&iveiv_entry, sizeof(iveiv_entry));
memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
}
EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u32 reg;
bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
int rt2800_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue_idx,
const struct ieee80211_tx_queue_params *params)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct data_queue *queue;
struct rt2x00_field32 field;
int retval;
u32 reg;
u32 offset;
/*
* First pass the configuration through rt2x00lib, that will
* update the queue settings and validate the input. After that
* we are free to update the registers based on the value
* in the queue parameter.
*/
retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
if (retval)
return retval;
/*
* We only need to perform additional register initialization
* for WMM queues/
*/
if (queue_idx >= 4)
return 0;
queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
/* Update WMM TXOP register */
offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
field.bit_offset = (queue_idx & 1) * 16;
field.bit_mask = 0xffff << field.bit_offset;
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, field, queue->txop);
rt2800_register_write(rt2x00dev, offset, reg);
/* Update WMM registers */
field.bit_offset = queue_idx * 4;
field.bit_mask = 0xf << field.bit_offset;
rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
rt2x00_set_field32(&reg, field, queue->aifs);
rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
rt2x00_set_field32(&reg, field, queue->cw_min);
rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
rt2x00_set_field32(&reg, field, queue->cw_max);
rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
/* Update EDCA registers */
offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
rt2800_register_write(rt2x00dev, offset, reg);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_conf_tx);
u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u64 tsf;
u32 reg;
rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
return tsf;
}
EXPORT_SYMBOL_GPL(rt2800_get_tsf);
int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn,
u8 buf_size)
{
struct rt2x00_sta *sta_priv = (struct rt2x00_sta *)sta->drv_priv;
int ret = 0;
/*
* Don't allow aggregation for stations the hardware isn't aware
* of because tx status reports for frames to an unknown station
* always contain wcid=255 and thus we can't distinguish between
* multiple stations which leads to unwanted situations when the
* hw reorders frames due to aggregation.
*/
if (sta_priv->wcid < 0)
return 1;
switch (action) {
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
/*
* The hw itself takes care of setting up BlockAck mechanisms.
* So, we only have to allow mac80211 to nagotiate a BlockAck
* agreement. Once that is done, the hw will BlockAck incoming
* AMPDUs without further setup.
*/
break;
case IEEE80211_AMPDU_TX_START:
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
break;
default:
WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
}
return ret;
}
EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
u32 idle, busy, busy_ext;
if (idx != 0)
return -ENOENT;
survey->channel = conf->channel;
rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
if (idle || busy) {
survey->filled = SURVEY_INFO_CHANNEL_TIME |
SURVEY_INFO_CHANNEL_TIME_BUSY |
SURVEY_INFO_CHANNEL_TIME_EXT_BUSY;
survey->channel_time = (idle + busy) / 1000;
survey->channel_time_busy = busy / 1000;
survey->channel_time_ext_busy = busy_ext / 1000;
}
if (!(hw->conf.flags & IEEE80211_CONF_OFFCHANNEL))
survey->filled |= SURVEY_INFO_IN_USE;
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_get_survey);
MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 library");
MODULE_LICENSE("GPL");