4ede316170
Document that CPC core-other accesses must take place within the bounds of the CM lock, and begin using the CM lock functions where we access the GCRs of other cores. This is required because with CM3 the CPC began using GCR_CL_OTHER instead of CPC_CL_OTHER. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andrew Bresticker <abrestic@chromium.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: linux-kernel@vger.kernel.org Cc: Niklas Cassel <niklas.cassel@axis.com> Cc: Ezequiel Garcia <ezequiel.garcia@imgtec.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Patchwork: https://patchwork.linux-mips.org/patch/11208/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
502 lines
12 KiB
C
502 lines
12 KiB
C
/*
|
|
* Copyright (C) 2013 Imagination Technologies
|
|
* Author: Paul Burton <paul.burton@imgtec.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irqchip/mips-gic.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/bcache.h>
|
|
#include <asm/mips-cm.h>
|
|
#include <asm/mips-cpc.h>
|
|
#include <asm/mips_mt.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/pm-cps.h>
|
|
#include <asm/r4kcache.h>
|
|
#include <asm/smp-cps.h>
|
|
#include <asm/time.h>
|
|
#include <asm/uasm.h>
|
|
|
|
static DECLARE_BITMAP(core_power, NR_CPUS);
|
|
|
|
struct core_boot_config *mips_cps_core_bootcfg;
|
|
|
|
static unsigned core_vpe_count(unsigned core)
|
|
{
|
|
unsigned cfg;
|
|
|
|
if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
|
|
return 1;
|
|
|
|
mips_cm_lock_other(core, 0);
|
|
cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
|
|
mips_cm_unlock_other();
|
|
return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
|
|
}
|
|
|
|
static void __init cps_smp_setup(void)
|
|
{
|
|
unsigned int ncores, nvpes, core_vpes;
|
|
int c, v;
|
|
|
|
/* Detect & record VPE topology */
|
|
ncores = mips_cm_numcores();
|
|
pr_info("VPE topology ");
|
|
for (c = nvpes = 0; c < ncores; c++) {
|
|
core_vpes = core_vpe_count(c);
|
|
pr_cont("%c%u", c ? ',' : '{', core_vpes);
|
|
|
|
/* Use the number of VPEs in core 0 for smp_num_siblings */
|
|
if (!c)
|
|
smp_num_siblings = core_vpes;
|
|
|
|
for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
|
|
cpu_data[nvpes + v].core = c;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
cpu_data[nvpes + v].vpe_id = v;
|
|
#endif
|
|
}
|
|
|
|
nvpes += core_vpes;
|
|
}
|
|
pr_cont("} total %u\n", nvpes);
|
|
|
|
/* Indicate present CPUs (CPU being synonymous with VPE) */
|
|
for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
|
|
set_cpu_possible(v, true);
|
|
set_cpu_present(v, true);
|
|
__cpu_number_map[v] = v;
|
|
__cpu_logical_map[v] = v;
|
|
}
|
|
|
|
/* Set a coherent default CCA (CWB) */
|
|
change_c0_config(CONF_CM_CMASK, 0x5);
|
|
|
|
/* Core 0 is powered up (we're running on it) */
|
|
bitmap_set(core_power, 0, 1);
|
|
|
|
/* Initialise core 0 */
|
|
mips_cps_core_init();
|
|
|
|
/* Make core 0 coherent with everything */
|
|
write_gcr_cl_coherence(0xff);
|
|
|
|
#ifdef CONFIG_MIPS_MT_FPAFF
|
|
/* If we have an FPU, enroll ourselves in the FPU-full mask */
|
|
if (cpu_has_fpu)
|
|
cpumask_set_cpu(0, &mt_fpu_cpumask);
|
|
#endif /* CONFIG_MIPS_MT_FPAFF */
|
|
}
|
|
|
|
static void __init cps_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned ncores, core_vpes, c, cca;
|
|
bool cca_unsuitable;
|
|
u32 *entry_code;
|
|
|
|
mips_mt_set_cpuoptions();
|
|
|
|
/* Detect whether the CCA is unsuited to multi-core SMP */
|
|
cca = read_c0_config() & CONF_CM_CMASK;
|
|
switch (cca) {
|
|
case 0x4: /* CWBE */
|
|
case 0x5: /* CWB */
|
|
/* The CCA is coherent, multi-core is fine */
|
|
cca_unsuitable = false;
|
|
break;
|
|
|
|
default:
|
|
/* CCA is not coherent, multi-core is not usable */
|
|
cca_unsuitable = true;
|
|
}
|
|
|
|
/* Warn the user if the CCA prevents multi-core */
|
|
ncores = mips_cm_numcores();
|
|
if (cca_unsuitable && ncores > 1) {
|
|
pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
|
|
cca);
|
|
|
|
for_each_present_cpu(c) {
|
|
if (cpu_data[c].core)
|
|
set_cpu_present(c, false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Patch the start of mips_cps_core_entry to provide:
|
|
*
|
|
* s0 = kseg0 CCA
|
|
*/
|
|
entry_code = (u32 *)&mips_cps_core_entry;
|
|
uasm_i_addiu(&entry_code, 16, 0, cca);
|
|
blast_dcache_range((unsigned long)&mips_cps_core_entry,
|
|
(unsigned long)entry_code);
|
|
bc_wback_inv((unsigned long)&mips_cps_core_entry,
|
|
(void *)entry_code - (void *)&mips_cps_core_entry);
|
|
__sync();
|
|
|
|
/* Allocate core boot configuration structs */
|
|
mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
|
|
GFP_KERNEL);
|
|
if (!mips_cps_core_bootcfg) {
|
|
pr_err("Failed to allocate boot config for %u cores\n", ncores);
|
|
goto err_out;
|
|
}
|
|
|
|
/* Allocate VPE boot configuration structs */
|
|
for (c = 0; c < ncores; c++) {
|
|
core_vpes = core_vpe_count(c);
|
|
mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
|
|
sizeof(*mips_cps_core_bootcfg[c].vpe_config),
|
|
GFP_KERNEL);
|
|
if (!mips_cps_core_bootcfg[c].vpe_config) {
|
|
pr_err("Failed to allocate %u VPE boot configs\n",
|
|
core_vpes);
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
/* Mark this CPU as booted */
|
|
atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
|
|
1 << cpu_vpe_id(¤t_cpu_data));
|
|
|
|
return;
|
|
err_out:
|
|
/* Clean up allocations */
|
|
if (mips_cps_core_bootcfg) {
|
|
for (c = 0; c < ncores; c++)
|
|
kfree(mips_cps_core_bootcfg[c].vpe_config);
|
|
kfree(mips_cps_core_bootcfg);
|
|
mips_cps_core_bootcfg = NULL;
|
|
}
|
|
|
|
/* Effectively disable SMP by declaring CPUs not present */
|
|
for_each_possible_cpu(c) {
|
|
if (c == 0)
|
|
continue;
|
|
set_cpu_present(c, false);
|
|
}
|
|
}
|
|
|
|
static void boot_core(unsigned core)
|
|
{
|
|
u32 access, stat, seq_state;
|
|
unsigned timeout;
|
|
|
|
/* Select the appropriate core */
|
|
mips_cm_lock_other(core, 0);
|
|
|
|
/* Set its reset vector */
|
|
write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
|
|
|
|
/* Ensure its coherency is disabled */
|
|
write_gcr_co_coherence(0);
|
|
|
|
/* Ensure the core can access the GCRs */
|
|
access = read_gcr_access();
|
|
access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
|
|
write_gcr_access(access);
|
|
|
|
if (mips_cpc_present()) {
|
|
/* Reset the core */
|
|
mips_cpc_lock_other(core);
|
|
write_cpc_co_cmd(CPC_Cx_CMD_RESET);
|
|
|
|
timeout = 100;
|
|
while (true) {
|
|
stat = read_cpc_co_stat_conf();
|
|
seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
|
|
|
|
/* U6 == coherent execution, ie. the core is up */
|
|
if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
|
|
break;
|
|
|
|
/* Delay a little while before we start warning */
|
|
if (timeout) {
|
|
timeout--;
|
|
mdelay(10);
|
|
continue;
|
|
}
|
|
|
|
pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
|
|
core, stat);
|
|
mdelay(1000);
|
|
}
|
|
|
|
mips_cpc_unlock_other();
|
|
} else {
|
|
/* Take the core out of reset */
|
|
write_gcr_co_reset_release(0);
|
|
}
|
|
|
|
mips_cm_unlock_other();
|
|
|
|
/* The core is now powered up */
|
|
bitmap_set(core_power, core, 1);
|
|
}
|
|
|
|
static void remote_vpe_boot(void *dummy)
|
|
{
|
|
mips_cps_boot_vpes();
|
|
}
|
|
|
|
static void cps_boot_secondary(int cpu, struct task_struct *idle)
|
|
{
|
|
unsigned core = cpu_data[cpu].core;
|
|
unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
|
|
struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
|
|
struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
|
|
unsigned int remote;
|
|
int err;
|
|
|
|
vpe_cfg->pc = (unsigned long)&smp_bootstrap;
|
|
vpe_cfg->sp = __KSTK_TOS(idle);
|
|
vpe_cfg->gp = (unsigned long)task_thread_info(idle);
|
|
|
|
atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
|
|
|
|
preempt_disable();
|
|
|
|
if (!test_bit(core, core_power)) {
|
|
/* Boot a VPE on a powered down core */
|
|
boot_core(core);
|
|
goto out;
|
|
}
|
|
|
|
if (core != current_cpu_data.core) {
|
|
/* Boot a VPE on another powered up core */
|
|
for (remote = 0; remote < NR_CPUS; remote++) {
|
|
if (cpu_data[remote].core != core)
|
|
continue;
|
|
if (cpu_online(remote))
|
|
break;
|
|
}
|
|
BUG_ON(remote >= NR_CPUS);
|
|
|
|
err = smp_call_function_single(remote, remote_vpe_boot,
|
|
NULL, 1);
|
|
if (err)
|
|
panic("Failed to call remote CPU\n");
|
|
goto out;
|
|
}
|
|
|
|
BUG_ON(!cpu_has_mipsmt);
|
|
|
|
/* Boot a VPE on this core */
|
|
mips_cps_boot_vpes();
|
|
out:
|
|
preempt_enable();
|
|
}
|
|
|
|
static void cps_init_secondary(void)
|
|
{
|
|
/* Disable MT - we only want to run 1 TC per VPE */
|
|
if (cpu_has_mipsmt)
|
|
dmt();
|
|
|
|
change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
|
|
STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
|
|
}
|
|
|
|
static void cps_smp_finish(void)
|
|
{
|
|
write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
|
|
|
|
#ifdef CONFIG_MIPS_MT_FPAFF
|
|
/* If we have an FPU, enroll ourselves in the FPU-full mask */
|
|
if (cpu_has_fpu)
|
|
cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
|
|
#endif /* CONFIG_MIPS_MT_FPAFF */
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
static int cps_cpu_disable(void)
|
|
{
|
|
unsigned cpu = smp_processor_id();
|
|
struct core_boot_config *core_cfg;
|
|
|
|
if (!cpu)
|
|
return -EBUSY;
|
|
|
|
if (!cps_pm_support_state(CPS_PM_POWER_GATED))
|
|
return -EINVAL;
|
|
|
|
core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
|
|
atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask);
|
|
smp_mb__after_atomic();
|
|
set_cpu_online(cpu, false);
|
|
cpumask_clear_cpu(cpu, &cpu_callin_map);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DECLARE_COMPLETION(cpu_death_chosen);
|
|
static unsigned cpu_death_sibling;
|
|
static enum {
|
|
CPU_DEATH_HALT,
|
|
CPU_DEATH_POWER,
|
|
} cpu_death;
|
|
|
|
void play_dead(void)
|
|
{
|
|
unsigned cpu, core;
|
|
|
|
local_irq_disable();
|
|
idle_task_exit();
|
|
cpu = smp_processor_id();
|
|
cpu_death = CPU_DEATH_POWER;
|
|
|
|
if (cpu_has_mipsmt) {
|
|
core = cpu_data[cpu].core;
|
|
|
|
/* Look for another online VPE within the core */
|
|
for_each_online_cpu(cpu_death_sibling) {
|
|
if (cpu_data[cpu_death_sibling].core != core)
|
|
continue;
|
|
|
|
/*
|
|
* There is an online VPE within the core. Just halt
|
|
* this TC and leave the core alone.
|
|
*/
|
|
cpu_death = CPU_DEATH_HALT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* This CPU has chosen its way out */
|
|
complete(&cpu_death_chosen);
|
|
|
|
if (cpu_death == CPU_DEATH_HALT) {
|
|
/* Halt this TC */
|
|
write_c0_tchalt(TCHALT_H);
|
|
instruction_hazard();
|
|
} else {
|
|
/* Power down the core */
|
|
cps_pm_enter_state(CPS_PM_POWER_GATED);
|
|
}
|
|
|
|
/* This should never be reached */
|
|
panic("Failed to offline CPU %u", cpu);
|
|
}
|
|
|
|
static void wait_for_sibling_halt(void *ptr_cpu)
|
|
{
|
|
unsigned cpu = (unsigned long)ptr_cpu;
|
|
unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
|
|
unsigned halted;
|
|
unsigned long flags;
|
|
|
|
do {
|
|
local_irq_save(flags);
|
|
settc(vpe_id);
|
|
halted = read_tc_c0_tchalt();
|
|
local_irq_restore(flags);
|
|
} while (!(halted & TCHALT_H));
|
|
}
|
|
|
|
static void cps_cpu_die(unsigned int cpu)
|
|
{
|
|
unsigned core = cpu_data[cpu].core;
|
|
unsigned stat;
|
|
int err;
|
|
|
|
/* Wait for the cpu to choose its way out */
|
|
if (!wait_for_completion_timeout(&cpu_death_chosen,
|
|
msecs_to_jiffies(5000))) {
|
|
pr_err("CPU%u: didn't offline\n", cpu);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now wait for the CPU to actually offline. Without doing this that
|
|
* offlining may race with one or more of:
|
|
*
|
|
* - Onlining the CPU again.
|
|
* - Powering down the core if another VPE within it is offlined.
|
|
* - A sibling VPE entering a non-coherent state.
|
|
*
|
|
* In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
|
|
* with which we could race, so do nothing.
|
|
*/
|
|
if (cpu_death == CPU_DEATH_POWER) {
|
|
/*
|
|
* Wait for the core to enter a powered down or clock gated
|
|
* state, the latter happening when a JTAG probe is connected
|
|
* in which case the CPC will refuse to power down the core.
|
|
*/
|
|
do {
|
|
mips_cpc_lock_other(core);
|
|
stat = read_cpc_co_stat_conf();
|
|
stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
|
|
mips_cpc_unlock_other();
|
|
} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
|
|
stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
|
|
stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
|
|
|
|
/* Indicate the core is powered off */
|
|
bitmap_clear(core_power, core, 1);
|
|
} else if (cpu_has_mipsmt) {
|
|
/*
|
|
* Have a CPU with access to the offlined CPUs registers wait
|
|
* for its TC to halt.
|
|
*/
|
|
err = smp_call_function_single(cpu_death_sibling,
|
|
wait_for_sibling_halt,
|
|
(void *)(unsigned long)cpu, 1);
|
|
if (err)
|
|
panic("Failed to call remote sibling CPU\n");
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static struct plat_smp_ops cps_smp_ops = {
|
|
.smp_setup = cps_smp_setup,
|
|
.prepare_cpus = cps_prepare_cpus,
|
|
.boot_secondary = cps_boot_secondary,
|
|
.init_secondary = cps_init_secondary,
|
|
.smp_finish = cps_smp_finish,
|
|
.send_ipi_single = gic_send_ipi_single,
|
|
.send_ipi_mask = gic_send_ipi_mask,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_disable = cps_cpu_disable,
|
|
.cpu_die = cps_cpu_die,
|
|
#endif
|
|
};
|
|
|
|
bool mips_cps_smp_in_use(void)
|
|
{
|
|
extern struct plat_smp_ops *mp_ops;
|
|
return mp_ops == &cps_smp_ops;
|
|
}
|
|
|
|
int register_cps_smp_ops(void)
|
|
{
|
|
if (!mips_cm_present()) {
|
|
pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* check we have a GIC - we need one for IPIs */
|
|
if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
|
|
pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
register_smp_ops(&cps_smp_ops);
|
|
return 0;
|
|
}
|