linux/drivers/gpu/drm/sti/sti_hda.c
Daniel Vetter cde4c44d87 drm: drop _mode_ from drm_mode_connector_attach_encoder
Again to align with the usual prefix of just drm_connector_. Again
done with sed + manual fixup for indent issues.

Reviewed-by: Sean Paul <seanpaul@chromium.org>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180709084016.23750-7-daniel.vetter@ffwll.ch
2018-07-13 18:40:27 +02:00

819 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics SA 2014
* Author: Fabien Dessenne <fabien.dessenne@st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
/* HDformatter registers */
#define HDA_ANA_CFG 0x0000
#define HDA_ANA_SCALE_CTRL_Y 0x0004
#define HDA_ANA_SCALE_CTRL_CB 0x0008
#define HDA_ANA_SCALE_CTRL_CR 0x000C
#define HDA_ANA_ANC_CTRL 0x0010
#define HDA_ANA_SRC_Y_CFG 0x0014
#define HDA_COEFF_Y_PH1_TAP123 0x0018
#define HDA_COEFF_Y_PH1_TAP456 0x001C
#define HDA_COEFF_Y_PH2_TAP123 0x0020
#define HDA_COEFF_Y_PH2_TAP456 0x0024
#define HDA_COEFF_Y_PH3_TAP123 0x0028
#define HDA_COEFF_Y_PH3_TAP456 0x002C
#define HDA_COEFF_Y_PH4_TAP123 0x0030
#define HDA_COEFF_Y_PH4_TAP456 0x0034
#define HDA_ANA_SRC_C_CFG 0x0040
#define HDA_COEFF_C_PH1_TAP123 0x0044
#define HDA_COEFF_C_PH1_TAP456 0x0048
#define HDA_COEFF_C_PH2_TAP123 0x004C
#define HDA_COEFF_C_PH2_TAP456 0x0050
#define HDA_COEFF_C_PH3_TAP123 0x0054
#define HDA_COEFF_C_PH3_TAP456 0x0058
#define HDA_COEFF_C_PH4_TAP123 0x005C
#define HDA_COEFF_C_PH4_TAP456 0x0060
#define HDA_SYNC_AWGI 0x0300
/* HDA_ANA_CFG */
#define CFG_AWG_ASYNC_EN BIT(0)
#define CFG_AWG_ASYNC_HSYNC_MTD BIT(1)
#define CFG_AWG_ASYNC_VSYNC_MTD BIT(2)
#define CFG_AWG_SYNC_DEL BIT(3)
#define CFG_AWG_FLTR_MODE_SHIFT 4
#define CFG_AWG_FLTR_MODE_MASK (0xF << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_AWG_FLTR_MODE_SD (0 << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_AWG_FLTR_MODE_ED (1 << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_AWG_FLTR_MODE_HD (2 << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_SYNC_ON_PBPR_MASK BIT(8)
#define CFG_PREFILTER_EN_MASK BIT(9)
#define CFG_PBPR_SYNC_OFF_SHIFT 16
#define CFG_PBPR_SYNC_OFF_MASK (0x7FF << CFG_PBPR_SYNC_OFF_SHIFT)
#define CFG_PBPR_SYNC_OFF_VAL 0x117 /* Voltage dependent. stiH416 */
/* Default scaling values */
#define SCALE_CTRL_Y_DFLT 0x00C50256
#define SCALE_CTRL_CB_DFLT 0x00DB0249
#define SCALE_CTRL_CR_DFLT 0x00DB0249
/* Video DACs control */
#define DAC_CFG_HD_HZUVW_OFF_MASK BIT(1)
/* Upsampler values for the alternative 2X Filter */
#define SAMPLER_COEF_NB 8
#define HDA_ANA_SRC_Y_CFG_ALT_2X 0x01130000
static u32 coef_y_alt_2x[] = {
0x00FE83FB, 0x1F900401, 0x00000000, 0x00000000,
0x00F408F9, 0x055F7C25, 0x00000000, 0x00000000
};
#define HDA_ANA_SRC_C_CFG_ALT_2X 0x01750004
static u32 coef_c_alt_2x[] = {
0x001305F7, 0x05274BD0, 0x00000000, 0x00000000,
0x0004907C, 0x09C80B9D, 0x00000000, 0x00000000
};
/* Upsampler values for the 4X Filter */
#define HDA_ANA_SRC_Y_CFG_4X 0x01ED0005
#define HDA_ANA_SRC_C_CFG_4X 0x01ED0004
static u32 coef_yc_4x[] = {
0x00FC827F, 0x008FE20B, 0x00F684FC, 0x050F7C24,
0x00F4857C, 0x0A1F402E, 0x00FA027F, 0x0E076E1D
};
/* AWG instructions for some video modes */
#define AWG_MAX_INST 64
/* 720p@50 */
static u32 AWGi_720p_50[] = {
0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA,
0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B,
0x00000D8E, 0x00000104, 0x00001804, 0x00000971,
0x00000C26, 0x0000003B, 0x00000FB4, 0x00000FB5,
0x00000104, 0x00001AE8
};
#define NN_720p_50 ARRAY_SIZE(AWGi_720p_50)
/* 720p@60 */
static u32 AWGi_720p_60[] = {
0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA,
0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B,
0x00000C44, 0x00000104, 0x00001804, 0x00000971,
0x00000C26, 0x0000003B, 0x00000F0F, 0x00000F10,
0x00000104, 0x00001AE8
};
#define NN_720p_60 ARRAY_SIZE(AWGi_720p_60)
/* 1080p@30 */
static u32 AWGi_1080p_30[] = {
0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56,
0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B,
0x00000C2A, 0x00000104, 0x00001804, 0x00000971,
0x00000C2A, 0x0000003B, 0x00000EBE, 0x00000EBF,
0x00000EBF, 0x00000104, 0x00001A2F, 0x00001C4B,
0x00001C52
};
#define NN_1080p_30 ARRAY_SIZE(AWGi_1080p_30)
/* 1080p@25 */
static u32 AWGi_1080p_25[] = {
0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56,
0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B,
0x00000DE2, 0x00000104, 0x00001804, 0x00000971,
0x00000C2A, 0x0000003B, 0x00000F51, 0x00000F51,
0x00000F52, 0x00000104, 0x00001A2F, 0x00001C4B,
0x00001C52
};
#define NN_1080p_25 ARRAY_SIZE(AWGi_1080p_25)
/* 1080p@24 */
static u32 AWGi_1080p_24[] = {
0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56,
0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B,
0x00000E50, 0x00000104, 0x00001804, 0x00000971,
0x00000C2A, 0x0000003B, 0x00000F76, 0x00000F76,
0x00000F76, 0x00000104, 0x00001A2F, 0x00001C4B,
0x00001C52
};
#define NN_1080p_24 ARRAY_SIZE(AWGi_1080p_24)
/* 720x480p@60 */
static u32 AWGi_720x480p_60[] = {
0x00000904, 0x00000F18, 0x0000013B, 0x00001805,
0x00000904, 0x00000C3D, 0x0000003B, 0x00001A06
};
#define NN_720x480p_60 ARRAY_SIZE(AWGi_720x480p_60)
/* Video mode category */
enum sti_hda_vid_cat {
VID_SD,
VID_ED,
VID_HD_74M,
VID_HD_148M
};
struct sti_hda_video_config {
struct drm_display_mode mode;
u32 *awg_instr;
int nb_instr;
enum sti_hda_vid_cat vid_cat;
};
/* HD analog supported modes
* Interlaced modes may be added when supported by the whole display chain
*/
static const struct sti_hda_video_config hda_supported_modes[] = {
/* 1080p30 74.250Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_30, NN_1080p_30, VID_HD_74M},
/* 1080p30 74.176Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_30, NN_1080p_30, VID_HD_74M},
/* 1080p24 74.250Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_24, NN_1080p_24, VID_HD_74M},
/* 1080p24 74.176Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_24, NN_1080p_24, VID_HD_74M},
/* 1080p25 74.250Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_25, NN_1080p_25, VID_HD_74M},
/* 720p60 74.250Mhz */
{{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_720p_60, NN_720p_60, VID_HD_74M},
/* 720p60 74.176Mhz */
{{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74176, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_720p_60, NN_720p_60, VID_HD_74M},
/* 720p50 74.250Mhz */
{{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_720p_50, NN_720p_50, VID_HD_74M},
/* 720x480p60 27.027Mhz */
{{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27027, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)},
AWGi_720x480p_60, NN_720x480p_60, VID_ED},
/* 720x480p60 27.000Mhz */
{{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)},
AWGi_720x480p_60, NN_720x480p_60, VID_ED}
};
/**
* STI hd analog structure
*
* @dev: driver device
* @drm_dev: pointer to drm device
* @mode: current display mode selected
* @regs: HD analog register
* @video_dacs_ctrl: video DACS control register
* @enabled: true if HD analog is enabled else false
*/
struct sti_hda {
struct device dev;
struct drm_device *drm_dev;
struct drm_display_mode mode;
void __iomem *regs;
void __iomem *video_dacs_ctrl;
struct clk *clk_pix;
struct clk *clk_hddac;
bool enabled;
};
struct sti_hda_connector {
struct drm_connector drm_connector;
struct drm_encoder *encoder;
struct sti_hda *hda;
};
#define to_sti_hda_connector(x) \
container_of(x, struct sti_hda_connector, drm_connector)
static u32 hda_read(struct sti_hda *hda, int offset)
{
return readl(hda->regs + offset);
}
static void hda_write(struct sti_hda *hda, u32 val, int offset)
{
writel(val, hda->regs + offset);
}
/**
* Search for a video mode in the supported modes table
*
* @mode: mode being searched
* @idx: index of the found mode
*
* Return true if mode is found
*/
static bool hda_get_mode_idx(struct drm_display_mode mode, int *idx)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++)
if (drm_mode_equal(&hda_supported_modes[i].mode, &mode)) {
*idx = i;
return true;
}
return false;
}
/**
* Enable the HD DACS
*
* @hda: pointer to HD analog structure
* @enable: true if HD DACS need to be enabled, else false
*/
static void hda_enable_hd_dacs(struct sti_hda *hda, bool enable)
{
if (hda->video_dacs_ctrl) {
u32 val;
val = readl(hda->video_dacs_ctrl);
if (enable)
val &= ~DAC_CFG_HD_HZUVW_OFF_MASK;
else
val |= DAC_CFG_HD_HZUVW_OFF_MASK;
writel(val, hda->video_dacs_ctrl);
}
}
#define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \
readl(hda->regs + reg))
static void hda_dbg_cfg(struct seq_file *s, int val)
{
seq_puts(s, "\tAWG ");
seq_puts(s, val & CFG_AWG_ASYNC_EN ? "enabled" : "disabled");
}
static void hda_dbg_awg_microcode(struct seq_file *s, void __iomem *reg)
{
unsigned int i;
seq_puts(s, "\n\n HDA AWG microcode:");
for (i = 0; i < AWG_MAX_INST; i++) {
if (i % 8 == 0)
seq_printf(s, "\n %04X:", i);
seq_printf(s, " %04X", readl(reg + i * 4));
}
}
static void hda_dbg_video_dacs_ctrl(struct seq_file *s, void __iomem *reg)
{
u32 val = readl(reg);
seq_printf(s, "\n\n %-25s 0x%08X", "VIDEO_DACS_CONTROL", val);
seq_puts(s, "\tHD DACs ");
seq_puts(s, val & DAC_CFG_HD_HZUVW_OFF_MASK ? "disabled" : "enabled");
}
static int hda_dbg_show(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct sti_hda *hda = (struct sti_hda *)node->info_ent->data;
seq_printf(s, "HD Analog: (vaddr = 0x%p)", hda->regs);
DBGFS_DUMP(HDA_ANA_CFG);
hda_dbg_cfg(s, readl(hda->regs + HDA_ANA_CFG));
DBGFS_DUMP(HDA_ANA_SCALE_CTRL_Y);
DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CB);
DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CR);
DBGFS_DUMP(HDA_ANA_ANC_CTRL);
DBGFS_DUMP(HDA_ANA_SRC_Y_CFG);
DBGFS_DUMP(HDA_ANA_SRC_C_CFG);
hda_dbg_awg_microcode(s, hda->regs + HDA_SYNC_AWGI);
if (hda->video_dacs_ctrl)
hda_dbg_video_dacs_ctrl(s, hda->video_dacs_ctrl);
seq_putc(s, '\n');
return 0;
}
static struct drm_info_list hda_debugfs_files[] = {
{ "hda", hda_dbg_show, 0, NULL },
};
static int hda_debugfs_init(struct sti_hda *hda, struct drm_minor *minor)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(hda_debugfs_files); i++)
hda_debugfs_files[i].data = hda;
return drm_debugfs_create_files(hda_debugfs_files,
ARRAY_SIZE(hda_debugfs_files),
minor->debugfs_root, minor);
}
/**
* Configure AWG, writing instructions
*
* @hda: pointer to HD analog structure
* @awg_instr: pointer to AWG instructions table
* @nb: nb of AWG instructions
*/
static void sti_hda_configure_awg(struct sti_hda *hda, u32 *awg_instr, int nb)
{
unsigned int i;
DRM_DEBUG_DRIVER("\n");
for (i = 0; i < nb; i++)
hda_write(hda, awg_instr[i], HDA_SYNC_AWGI + i * 4);
for (i = nb; i < AWG_MAX_INST; i++)
hda_write(hda, 0, HDA_SYNC_AWGI + i * 4);
}
static void sti_hda_disable(struct drm_bridge *bridge)
{
struct sti_hda *hda = bridge->driver_private;
u32 val;
if (!hda->enabled)
return;
DRM_DEBUG_DRIVER("\n");
/* Disable HD DAC and AWG */
val = hda_read(hda, HDA_ANA_CFG);
val &= ~CFG_AWG_ASYNC_EN;
hda_write(hda, val, HDA_ANA_CFG);
hda_write(hda, 0, HDA_ANA_ANC_CTRL);
hda_enable_hd_dacs(hda, false);
/* Disable/unprepare hda clock */
clk_disable_unprepare(hda->clk_hddac);
clk_disable_unprepare(hda->clk_pix);
hda->enabled = false;
}
static void sti_hda_pre_enable(struct drm_bridge *bridge)
{
struct sti_hda *hda = bridge->driver_private;
u32 val, i, mode_idx;
u32 src_filter_y, src_filter_c;
u32 *coef_y, *coef_c;
u32 filter_mode;
DRM_DEBUG_DRIVER("\n");
if (hda->enabled)
return;
/* Prepare/enable clocks */
if (clk_prepare_enable(hda->clk_pix))
DRM_ERROR("Failed to prepare/enable hda_pix clk\n");
if (clk_prepare_enable(hda->clk_hddac))
DRM_ERROR("Failed to prepare/enable hda_hddac clk\n");
if (!hda_get_mode_idx(hda->mode, &mode_idx)) {
DRM_ERROR("Undefined mode\n");
return;
}
switch (hda_supported_modes[mode_idx].vid_cat) {
case VID_HD_148M:
DRM_ERROR("Beyond HD analog capabilities\n");
return;
case VID_HD_74M:
/* HD use alternate 2x filter */
filter_mode = CFG_AWG_FLTR_MODE_HD;
src_filter_y = HDA_ANA_SRC_Y_CFG_ALT_2X;
src_filter_c = HDA_ANA_SRC_C_CFG_ALT_2X;
coef_y = coef_y_alt_2x;
coef_c = coef_c_alt_2x;
break;
case VID_ED:
/* ED uses 4x filter */
filter_mode = CFG_AWG_FLTR_MODE_ED;
src_filter_y = HDA_ANA_SRC_Y_CFG_4X;
src_filter_c = HDA_ANA_SRC_C_CFG_4X;
coef_y = coef_yc_4x;
coef_c = coef_yc_4x;
break;
case VID_SD:
DRM_ERROR("Not supported\n");
return;
default:
DRM_ERROR("Undefined resolution\n");
return;
}
DRM_DEBUG_DRIVER("Using HDA mode #%d\n", mode_idx);
/* Enable HD Video DACs */
hda_enable_hd_dacs(hda, true);
/* Configure scaler */
hda_write(hda, SCALE_CTRL_Y_DFLT, HDA_ANA_SCALE_CTRL_Y);
hda_write(hda, SCALE_CTRL_CB_DFLT, HDA_ANA_SCALE_CTRL_CB);
hda_write(hda, SCALE_CTRL_CR_DFLT, HDA_ANA_SCALE_CTRL_CR);
/* Configure sampler */
hda_write(hda , src_filter_y, HDA_ANA_SRC_Y_CFG);
hda_write(hda, src_filter_c, HDA_ANA_SRC_C_CFG);
for (i = 0; i < SAMPLER_COEF_NB; i++) {
hda_write(hda, coef_y[i], HDA_COEFF_Y_PH1_TAP123 + i * 4);
hda_write(hda, coef_c[i], HDA_COEFF_C_PH1_TAP123 + i * 4);
}
/* Configure main HDFormatter */
val = 0;
val |= (hda->mode.flags & DRM_MODE_FLAG_INTERLACE) ?
0 : CFG_AWG_ASYNC_VSYNC_MTD;
val |= (CFG_PBPR_SYNC_OFF_VAL << CFG_PBPR_SYNC_OFF_SHIFT);
val |= filter_mode;
hda_write(hda, val, HDA_ANA_CFG);
/* Configure AWG */
sti_hda_configure_awg(hda, hda_supported_modes[mode_idx].awg_instr,
hda_supported_modes[mode_idx].nb_instr);
/* Enable AWG */
val = hda_read(hda, HDA_ANA_CFG);
val |= CFG_AWG_ASYNC_EN;
hda_write(hda, val, HDA_ANA_CFG);
hda->enabled = true;
}
static void sti_hda_set_mode(struct drm_bridge *bridge,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct sti_hda *hda = bridge->driver_private;
u32 mode_idx;
int hddac_rate;
int ret;
DRM_DEBUG_DRIVER("\n");
memcpy(&hda->mode, mode, sizeof(struct drm_display_mode));
if (!hda_get_mode_idx(hda->mode, &mode_idx)) {
DRM_ERROR("Undefined mode\n");
return;
}
switch (hda_supported_modes[mode_idx].vid_cat) {
case VID_HD_74M:
/* HD use alternate 2x filter */
hddac_rate = mode->clock * 1000 * 2;
break;
case VID_ED:
/* ED uses 4x filter */
hddac_rate = mode->clock * 1000 * 4;
break;
default:
DRM_ERROR("Undefined mode\n");
return;
}
/* HD DAC = 148.5Mhz or 108 Mhz */
ret = clk_set_rate(hda->clk_hddac, hddac_rate);
if (ret < 0)
DRM_ERROR("Cannot set rate (%dHz) for hda_hddac clk\n",
hddac_rate);
/* HDformatter clock = compositor clock */
ret = clk_set_rate(hda->clk_pix, mode->clock * 1000);
if (ret < 0)
DRM_ERROR("Cannot set rate (%dHz) for hda_pix clk\n",
mode->clock * 1000);
}
static void sti_hda_bridge_nope(struct drm_bridge *bridge)
{
/* do nothing */
}
static const struct drm_bridge_funcs sti_hda_bridge_funcs = {
.pre_enable = sti_hda_pre_enable,
.enable = sti_hda_bridge_nope,
.disable = sti_hda_disable,
.post_disable = sti_hda_bridge_nope,
.mode_set = sti_hda_set_mode,
};
static int sti_hda_connector_get_modes(struct drm_connector *connector)
{
unsigned int i;
int count = 0;
struct sti_hda_connector *hda_connector
= to_sti_hda_connector(connector);
struct sti_hda *hda = hda_connector->hda;
DRM_DEBUG_DRIVER("\n");
for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++) {
struct drm_display_mode *mode =
drm_mode_duplicate(hda->drm_dev,
&hda_supported_modes[i].mode);
if (!mode)
continue;
mode->vrefresh = drm_mode_vrefresh(mode);
/* the first mode is the preferred mode */
if (i == 0)
mode->type |= DRM_MODE_TYPE_PREFERRED;
drm_mode_probed_add(connector, mode);
count++;
}
return count;
}
#define CLK_TOLERANCE_HZ 50
static int sti_hda_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
int target = mode->clock * 1000;
int target_min = target - CLK_TOLERANCE_HZ;
int target_max = target + CLK_TOLERANCE_HZ;
int result;
int idx;
struct sti_hda_connector *hda_connector
= to_sti_hda_connector(connector);
struct sti_hda *hda = hda_connector->hda;
if (!hda_get_mode_idx(*mode, &idx)) {
return MODE_BAD;
} else {
result = clk_round_rate(hda->clk_pix, target);
DRM_DEBUG_DRIVER("target rate = %d => available rate = %d\n",
target, result);
if ((result < target_min) || (result > target_max)) {
DRM_DEBUG_DRIVER("hda pixclk=%d not supported\n",
target);
return MODE_BAD;
}
}
return MODE_OK;
}
static const
struct drm_connector_helper_funcs sti_hda_connector_helper_funcs = {
.get_modes = sti_hda_connector_get_modes,
.mode_valid = sti_hda_connector_mode_valid,
};
static int sti_hda_late_register(struct drm_connector *connector)
{
struct sti_hda_connector *hda_connector
= to_sti_hda_connector(connector);
struct sti_hda *hda = hda_connector->hda;
if (hda_debugfs_init(hda, hda->drm_dev->primary)) {
DRM_ERROR("HDA debugfs setup failed\n");
return -EINVAL;
}
return 0;
}
static const struct drm_connector_funcs sti_hda_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.late_register = sti_hda_late_register,
};
static struct drm_encoder *sti_hda_find_encoder(struct drm_device *dev)
{
struct drm_encoder *encoder;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DAC)
return encoder;
}
return NULL;
}
static int sti_hda_bind(struct device *dev, struct device *master, void *data)
{
struct sti_hda *hda = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct drm_encoder *encoder;
struct sti_hda_connector *connector;
struct drm_connector *drm_connector;
struct drm_bridge *bridge;
int err;
/* Set the drm device handle */
hda->drm_dev = drm_dev;
encoder = sti_hda_find_encoder(drm_dev);
if (!encoder)
return -ENOMEM;
connector = devm_kzalloc(dev, sizeof(*connector), GFP_KERNEL);
if (!connector)
return -ENOMEM;
connector->hda = hda;
bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
bridge->driver_private = hda;
bridge->funcs = &sti_hda_bridge_funcs;
drm_bridge_attach(encoder, bridge, NULL);
connector->encoder = encoder;
drm_connector = (struct drm_connector *)connector;
drm_connector->polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_init(drm_dev, drm_connector,
&sti_hda_connector_funcs, DRM_MODE_CONNECTOR_Component);
drm_connector_helper_add(drm_connector,
&sti_hda_connector_helper_funcs);
err = drm_connector_attach_encoder(drm_connector, encoder);
if (err) {
DRM_ERROR("Failed to attach a connector to a encoder\n");
goto err_sysfs;
}
/* force to disable hd dacs at startup */
hda_enable_hd_dacs(hda, false);
return 0;
err_sysfs:
drm_bridge_remove(bridge);
return -EINVAL;
}
static void sti_hda_unbind(struct device *dev,
struct device *master, void *data)
{
}
static const struct component_ops sti_hda_ops = {
.bind = sti_hda_bind,
.unbind = sti_hda_unbind,
};
static int sti_hda_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sti_hda *hda;
struct resource *res;
DRM_INFO("%s\n", __func__);
hda = devm_kzalloc(dev, sizeof(*hda), GFP_KERNEL);
if (!hda)
return -ENOMEM;
hda->dev = pdev->dev;
/* Get resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hda-reg");
if (!res) {
DRM_ERROR("Invalid hda resource\n");
return -ENOMEM;
}
hda->regs = devm_ioremap_nocache(dev, res->start, resource_size(res));
if (!hda->regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"video-dacs-ctrl");
if (res) {
hda->video_dacs_ctrl = devm_ioremap_nocache(dev, res->start,
resource_size(res));
if (!hda->video_dacs_ctrl)
return -ENOMEM;
} else {
/* If no existing video-dacs-ctrl resource continue the probe */
DRM_DEBUG_DRIVER("No video-dacs-ctrl resource\n");
hda->video_dacs_ctrl = NULL;
}
/* Get clock resources */
hda->clk_pix = devm_clk_get(dev, "pix");
if (IS_ERR(hda->clk_pix)) {
DRM_ERROR("Cannot get hda_pix clock\n");
return PTR_ERR(hda->clk_pix);
}
hda->clk_hddac = devm_clk_get(dev, "hddac");
if (IS_ERR(hda->clk_hddac)) {
DRM_ERROR("Cannot get hda_hddac clock\n");
return PTR_ERR(hda->clk_hddac);
}
platform_set_drvdata(pdev, hda);
return component_add(&pdev->dev, &sti_hda_ops);
}
static int sti_hda_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &sti_hda_ops);
return 0;
}
static const struct of_device_id hda_of_match[] = {
{ .compatible = "st,stih416-hda", },
{ .compatible = "st,stih407-hda", },
{ /* end node */ }
};
MODULE_DEVICE_TABLE(of, hda_of_match);
struct platform_driver sti_hda_driver = {
.driver = {
.name = "sti-hda",
.owner = THIS_MODULE,
.of_match_table = hda_of_match,
},
.probe = sti_hda_probe,
.remove = sti_hda_remove,
};
MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver");
MODULE_LICENSE("GPL");