6df5a128f0
Singal completion of every 32 scsi commands and suppress all the rest. We don't do anything upon getting the completion so no need to "just consume" it. Cleanup of scsi command is done in cleanup_task callback. Still keep dataout and control send completions as we may need to cleanup there. This helps reducing the amount of interrupts/completions in the IO path. Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
1311 lines
35 KiB
C
1311 lines
35 KiB
C
/*
|
|
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
|
|
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
|
|
* Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include "iscsi_iser.h"
|
|
|
|
#define ISCSI_ISER_MAX_CONN 8
|
|
#define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
|
|
#define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
|
|
#define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
|
|
ISCSI_ISER_MAX_CONN)
|
|
|
|
static int iser_cq_poll_limit = 512;
|
|
|
|
static void iser_cq_tasklet_fn(unsigned long data);
|
|
static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
|
|
|
|
static void iser_cq_event_callback(struct ib_event *cause, void *context)
|
|
{
|
|
iser_err("got cq event %d \n", cause->event);
|
|
}
|
|
|
|
static void iser_qp_event_callback(struct ib_event *cause, void *context)
|
|
{
|
|
iser_err("got qp event %d\n",cause->event);
|
|
}
|
|
|
|
static void iser_event_handler(struct ib_event_handler *handler,
|
|
struct ib_event *event)
|
|
{
|
|
iser_err("async event %d on device %s port %d\n", event->event,
|
|
event->device->name, event->element.port_num);
|
|
}
|
|
|
|
/**
|
|
* iser_create_device_ib_res - creates Protection Domain (PD), Completion
|
|
* Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
|
|
* the adapator.
|
|
*
|
|
* returns 0 on success, -1 on failure
|
|
*/
|
|
static int iser_create_device_ib_res(struct iser_device *device)
|
|
{
|
|
struct ib_device_attr *dev_attr = &device->dev_attr;
|
|
int ret, i;
|
|
|
|
ret = ib_query_device(device->ib_device, dev_attr);
|
|
if (ret) {
|
|
pr_warn("Query device failed for %s\n", device->ib_device->name);
|
|
return ret;
|
|
}
|
|
|
|
/* Assign function handles - based on FMR support */
|
|
if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
|
|
device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
|
|
iser_info("FMR supported, using FMR for registration\n");
|
|
device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
|
|
device->iser_free_rdma_reg_res = iser_free_fmr_pool;
|
|
device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
|
|
device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
|
|
} else
|
|
if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
|
|
iser_info("FastReg supported, using FastReg for registration\n");
|
|
device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool;
|
|
device->iser_free_rdma_reg_res = iser_free_fastreg_pool;
|
|
device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg;
|
|
device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg;
|
|
} else {
|
|
iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n");
|
|
return -1;
|
|
}
|
|
|
|
device->comps_used = min(ISER_MAX_CQ,
|
|
device->ib_device->num_comp_vectors);
|
|
iser_info("using %d CQs, device %s supports %d vectors\n",
|
|
device->comps_used, device->ib_device->name,
|
|
device->ib_device->num_comp_vectors);
|
|
|
|
device->pd = ib_alloc_pd(device->ib_device);
|
|
if (IS_ERR(device->pd))
|
|
goto pd_err;
|
|
|
|
for (i = 0; i < device->comps_used; i++) {
|
|
struct iser_comp *comp = &device->comps[i];
|
|
|
|
comp->device = device;
|
|
comp->cq = ib_create_cq(device->ib_device,
|
|
iser_cq_callback,
|
|
iser_cq_event_callback,
|
|
(void *)comp,
|
|
ISER_MAX_CQ_LEN, i);
|
|
if (IS_ERR(comp->cq)) {
|
|
comp->cq = NULL;
|
|
goto cq_err;
|
|
}
|
|
|
|
if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
|
|
goto cq_err;
|
|
|
|
tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
|
|
(unsigned long)comp);
|
|
}
|
|
|
|
device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_WRITE |
|
|
IB_ACCESS_REMOTE_READ);
|
|
if (IS_ERR(device->mr))
|
|
goto dma_mr_err;
|
|
|
|
INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
|
|
iser_event_handler);
|
|
if (ib_register_event_handler(&device->event_handler))
|
|
goto handler_err;
|
|
|
|
return 0;
|
|
|
|
handler_err:
|
|
ib_dereg_mr(device->mr);
|
|
dma_mr_err:
|
|
for (i = 0; i < device->comps_used; i++)
|
|
tasklet_kill(&device->comps[i].tasklet);
|
|
cq_err:
|
|
for (i = 0; i < device->comps_used; i++) {
|
|
struct iser_comp *comp = &device->comps[i];
|
|
|
|
if (comp->cq)
|
|
ib_destroy_cq(comp->cq);
|
|
}
|
|
ib_dealloc_pd(device->pd);
|
|
pd_err:
|
|
iser_err("failed to allocate an IB resource\n");
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
|
|
* CQ and PD created with the device associated with the adapator.
|
|
*/
|
|
static void iser_free_device_ib_res(struct iser_device *device)
|
|
{
|
|
int i;
|
|
BUG_ON(device->mr == NULL);
|
|
|
|
for (i = 0; i < device->comps_used; i++) {
|
|
struct iser_comp *comp = &device->comps[i];
|
|
|
|
tasklet_kill(&comp->tasklet);
|
|
ib_destroy_cq(comp->cq);
|
|
comp->cq = NULL;
|
|
}
|
|
|
|
(void)ib_unregister_event_handler(&device->event_handler);
|
|
(void)ib_dereg_mr(device->mr);
|
|
(void)ib_dealloc_pd(device->pd);
|
|
|
|
device->mr = NULL;
|
|
device->pd = NULL;
|
|
}
|
|
|
|
/**
|
|
* iser_create_fmr_pool - Creates FMR pool and page_vector
|
|
*
|
|
* returns 0 on success, or errno code on failure
|
|
*/
|
|
int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max)
|
|
{
|
|
struct iser_device *device = ib_conn->device;
|
|
struct ib_fmr_pool_param params;
|
|
int ret = -ENOMEM;
|
|
|
|
ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) +
|
|
(sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
|
|
GFP_KERNEL);
|
|
if (!ib_conn->fmr.page_vec)
|
|
return ret;
|
|
|
|
ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1);
|
|
|
|
params.page_shift = SHIFT_4K;
|
|
/* when the first/last SG element are not start/end *
|
|
* page aligned, the map whould be of N+1 pages */
|
|
params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
|
|
/* make the pool size twice the max number of SCSI commands *
|
|
* the ML is expected to queue, watermark for unmap at 50% */
|
|
params.pool_size = cmds_max * 2;
|
|
params.dirty_watermark = cmds_max;
|
|
params.cache = 0;
|
|
params.flush_function = NULL;
|
|
params.access = (IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_WRITE |
|
|
IB_ACCESS_REMOTE_READ);
|
|
|
|
ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, ¶ms);
|
|
if (!IS_ERR(ib_conn->fmr.pool))
|
|
return 0;
|
|
|
|
/* no FMR => no need for page_vec */
|
|
kfree(ib_conn->fmr.page_vec);
|
|
ib_conn->fmr.page_vec = NULL;
|
|
|
|
ret = PTR_ERR(ib_conn->fmr.pool);
|
|
ib_conn->fmr.pool = NULL;
|
|
if (ret != -ENOSYS) {
|
|
iser_err("FMR allocation failed, err %d\n", ret);
|
|
return ret;
|
|
} else {
|
|
iser_warn("FMRs are not supported, using unaligned mode\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* iser_free_fmr_pool - releases the FMR pool and page vec
|
|
*/
|
|
void iser_free_fmr_pool(struct ib_conn *ib_conn)
|
|
{
|
|
iser_info("freeing conn %p fmr pool %p\n",
|
|
ib_conn, ib_conn->fmr.pool);
|
|
|
|
if (ib_conn->fmr.pool != NULL)
|
|
ib_destroy_fmr_pool(ib_conn->fmr.pool);
|
|
|
|
ib_conn->fmr.pool = NULL;
|
|
|
|
kfree(ib_conn->fmr.page_vec);
|
|
ib_conn->fmr.page_vec = NULL;
|
|
}
|
|
|
|
static int
|
|
iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd,
|
|
bool pi_enable, struct fast_reg_descriptor *desc)
|
|
{
|
|
int ret;
|
|
|
|
desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device,
|
|
ISCSI_ISER_SG_TABLESIZE + 1);
|
|
if (IS_ERR(desc->data_frpl)) {
|
|
ret = PTR_ERR(desc->data_frpl);
|
|
iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
|
|
ret);
|
|
return PTR_ERR(desc->data_frpl);
|
|
}
|
|
|
|
desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1);
|
|
if (IS_ERR(desc->data_mr)) {
|
|
ret = PTR_ERR(desc->data_mr);
|
|
iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
|
|
goto fast_reg_mr_failure;
|
|
}
|
|
desc->reg_indicators |= ISER_DATA_KEY_VALID;
|
|
|
|
if (pi_enable) {
|
|
struct ib_mr_init_attr mr_init_attr = {0};
|
|
struct iser_pi_context *pi_ctx = NULL;
|
|
|
|
desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
|
|
if (!desc->pi_ctx) {
|
|
iser_err("Failed to allocate pi context\n");
|
|
ret = -ENOMEM;
|
|
goto pi_ctx_alloc_failure;
|
|
}
|
|
pi_ctx = desc->pi_ctx;
|
|
|
|
pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device,
|
|
ISCSI_ISER_SG_TABLESIZE);
|
|
if (IS_ERR(pi_ctx->prot_frpl)) {
|
|
ret = PTR_ERR(pi_ctx->prot_frpl);
|
|
iser_err("Failed to allocate prot frpl ret=%d\n",
|
|
ret);
|
|
goto prot_frpl_failure;
|
|
}
|
|
|
|
pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd,
|
|
ISCSI_ISER_SG_TABLESIZE + 1);
|
|
if (IS_ERR(pi_ctx->prot_mr)) {
|
|
ret = PTR_ERR(pi_ctx->prot_mr);
|
|
iser_err("Failed to allocate prot frmr ret=%d\n",
|
|
ret);
|
|
goto prot_mr_failure;
|
|
}
|
|
desc->reg_indicators |= ISER_PROT_KEY_VALID;
|
|
|
|
mr_init_attr.max_reg_descriptors = 2;
|
|
mr_init_attr.flags |= IB_MR_SIGNATURE_EN;
|
|
pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr);
|
|
if (IS_ERR(pi_ctx->sig_mr)) {
|
|
ret = PTR_ERR(pi_ctx->sig_mr);
|
|
iser_err("Failed to allocate signature enabled mr err=%d\n",
|
|
ret);
|
|
goto sig_mr_failure;
|
|
}
|
|
desc->reg_indicators |= ISER_SIG_KEY_VALID;
|
|
}
|
|
desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
|
|
|
|
iser_dbg("Create fr_desc %p page_list %p\n",
|
|
desc, desc->data_frpl->page_list);
|
|
|
|
return 0;
|
|
sig_mr_failure:
|
|
ib_dereg_mr(desc->pi_ctx->prot_mr);
|
|
prot_mr_failure:
|
|
ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
|
|
prot_frpl_failure:
|
|
kfree(desc->pi_ctx);
|
|
pi_ctx_alloc_failure:
|
|
ib_dereg_mr(desc->data_mr);
|
|
fast_reg_mr_failure:
|
|
ib_free_fast_reg_page_list(desc->data_frpl);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* iser_create_fastreg_pool - Creates pool of fast_reg descriptors
|
|
* for fast registration work requests.
|
|
* returns 0 on success, or errno code on failure
|
|
*/
|
|
int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max)
|
|
{
|
|
struct iser_device *device = ib_conn->device;
|
|
struct fast_reg_descriptor *desc;
|
|
int i, ret;
|
|
|
|
INIT_LIST_HEAD(&ib_conn->fastreg.pool);
|
|
ib_conn->fastreg.pool_size = 0;
|
|
for (i = 0; i < cmds_max; i++) {
|
|
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
|
|
if (!desc) {
|
|
iser_err("Failed to allocate a new fast_reg descriptor\n");
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ret = iser_create_fastreg_desc(device->ib_device, device->pd,
|
|
ib_conn->pi_support, desc);
|
|
if (ret) {
|
|
iser_err("Failed to create fastreg descriptor err=%d\n",
|
|
ret);
|
|
kfree(desc);
|
|
goto err;
|
|
}
|
|
|
|
list_add_tail(&desc->list, &ib_conn->fastreg.pool);
|
|
ib_conn->fastreg.pool_size++;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
iser_free_fastreg_pool(ib_conn);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* iser_free_fastreg_pool - releases the pool of fast_reg descriptors
|
|
*/
|
|
void iser_free_fastreg_pool(struct ib_conn *ib_conn)
|
|
{
|
|
struct fast_reg_descriptor *desc, *tmp;
|
|
int i = 0;
|
|
|
|
if (list_empty(&ib_conn->fastreg.pool))
|
|
return;
|
|
|
|
iser_info("freeing conn %p fr pool\n", ib_conn);
|
|
|
|
list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) {
|
|
list_del(&desc->list);
|
|
ib_free_fast_reg_page_list(desc->data_frpl);
|
|
ib_dereg_mr(desc->data_mr);
|
|
if (desc->pi_ctx) {
|
|
ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
|
|
ib_dereg_mr(desc->pi_ctx->prot_mr);
|
|
ib_destroy_mr(desc->pi_ctx->sig_mr);
|
|
kfree(desc->pi_ctx);
|
|
}
|
|
kfree(desc);
|
|
++i;
|
|
}
|
|
|
|
if (i < ib_conn->fastreg.pool_size)
|
|
iser_warn("pool still has %d regions registered\n",
|
|
ib_conn->fastreg.pool_size - i);
|
|
}
|
|
|
|
/**
|
|
* iser_create_ib_conn_res - Queue-Pair (QP)
|
|
*
|
|
* returns 0 on success, -1 on failure
|
|
*/
|
|
static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
|
|
{
|
|
struct iser_device *device;
|
|
struct ib_qp_init_attr init_attr;
|
|
int ret = -ENOMEM;
|
|
int index, min_index = 0;
|
|
|
|
BUG_ON(ib_conn->device == NULL);
|
|
|
|
device = ib_conn->device;
|
|
|
|
memset(&init_attr, 0, sizeof init_attr);
|
|
|
|
mutex_lock(&ig.connlist_mutex);
|
|
/* select the CQ with the minimal number of usages */
|
|
for (index = 0; index < device->comps_used; index++) {
|
|
if (device->comps[index].active_qps <
|
|
device->comps[min_index].active_qps)
|
|
min_index = index;
|
|
}
|
|
ib_conn->comp = &device->comps[min_index];
|
|
ib_conn->comp->active_qps++;
|
|
mutex_unlock(&ig.connlist_mutex);
|
|
iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
|
|
|
|
init_attr.event_handler = iser_qp_event_callback;
|
|
init_attr.qp_context = (void *)ib_conn;
|
|
init_attr.send_cq = ib_conn->comp->cq;
|
|
init_attr.recv_cq = ib_conn->comp->cq;
|
|
init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
|
|
init_attr.cap.max_send_sge = 2;
|
|
init_attr.cap.max_recv_sge = 1;
|
|
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
|
|
init_attr.qp_type = IB_QPT_RC;
|
|
if (ib_conn->pi_support) {
|
|
init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
|
|
init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
|
|
} else {
|
|
init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
|
|
}
|
|
|
|
ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
ib_conn->qp = ib_conn->cma_id->qp;
|
|
iser_info("setting conn %p cma_id %p qp %p\n",
|
|
ib_conn, ib_conn->cma_id,
|
|
ib_conn->cma_id->qp);
|
|
return ret;
|
|
|
|
out_err:
|
|
iser_err("unable to alloc mem or create resource, err %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* based on the resolved device node GUID see if there already allocated
|
|
* device for this device. If there's no such, create one.
|
|
*/
|
|
static
|
|
struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
|
|
{
|
|
struct iser_device *device;
|
|
|
|
mutex_lock(&ig.device_list_mutex);
|
|
|
|
list_for_each_entry(device, &ig.device_list, ig_list)
|
|
/* find if there's a match using the node GUID */
|
|
if (device->ib_device->node_guid == cma_id->device->node_guid)
|
|
goto inc_refcnt;
|
|
|
|
device = kzalloc(sizeof *device, GFP_KERNEL);
|
|
if (device == NULL)
|
|
goto out;
|
|
|
|
/* assign this device to the device */
|
|
device->ib_device = cma_id->device;
|
|
/* init the device and link it into ig device list */
|
|
if (iser_create_device_ib_res(device)) {
|
|
kfree(device);
|
|
device = NULL;
|
|
goto out;
|
|
}
|
|
list_add(&device->ig_list, &ig.device_list);
|
|
|
|
inc_refcnt:
|
|
device->refcount++;
|
|
out:
|
|
mutex_unlock(&ig.device_list_mutex);
|
|
return device;
|
|
}
|
|
|
|
/* if there's no demand for this device, release it */
|
|
static void iser_device_try_release(struct iser_device *device)
|
|
{
|
|
mutex_lock(&ig.device_list_mutex);
|
|
device->refcount--;
|
|
iser_info("device %p refcount %d\n", device, device->refcount);
|
|
if (!device->refcount) {
|
|
iser_free_device_ib_res(device);
|
|
list_del(&device->ig_list);
|
|
kfree(device);
|
|
}
|
|
mutex_unlock(&ig.device_list_mutex);
|
|
}
|
|
|
|
/**
|
|
* Called with state mutex held
|
|
**/
|
|
static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
|
|
enum iser_conn_state comp,
|
|
enum iser_conn_state exch)
|
|
{
|
|
int ret;
|
|
|
|
ret = (iser_conn->state == comp);
|
|
if (ret)
|
|
iser_conn->state = exch;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void iser_release_work(struct work_struct *work)
|
|
{
|
|
struct iser_conn *iser_conn;
|
|
|
|
iser_conn = container_of(work, struct iser_conn, release_work);
|
|
|
|
/* Wait for conn_stop to complete */
|
|
wait_for_completion(&iser_conn->stop_completion);
|
|
/* Wait for IB resouces cleanup to complete */
|
|
wait_for_completion(&iser_conn->ib_completion);
|
|
|
|
mutex_lock(&iser_conn->state_mutex);
|
|
iser_conn->state = ISER_CONN_DOWN;
|
|
mutex_unlock(&iser_conn->state_mutex);
|
|
|
|
iser_conn_release(iser_conn);
|
|
}
|
|
|
|
/**
|
|
* iser_free_ib_conn_res - release IB related resources
|
|
* @iser_conn: iser connection struct
|
|
* @destroy_device: indicator if we need to try to release
|
|
* the iser device (only iscsi shutdown and DEVICE_REMOVAL
|
|
* will use this.
|
|
*
|
|
* This routine is called with the iser state mutex held
|
|
* so the cm_id removal is out of here. It is Safe to
|
|
* be invoked multiple times.
|
|
*/
|
|
static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
|
|
bool destroy_device)
|
|
{
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
struct iser_device *device = ib_conn->device;
|
|
|
|
iser_info("freeing conn %p cma_id %p qp %p\n",
|
|
iser_conn, ib_conn->cma_id, ib_conn->qp);
|
|
|
|
iser_free_rx_descriptors(iser_conn);
|
|
|
|
if (ib_conn->qp != NULL) {
|
|
ib_conn->comp->active_qps--;
|
|
rdma_destroy_qp(ib_conn->cma_id);
|
|
ib_conn->qp = NULL;
|
|
}
|
|
|
|
if (destroy_device && device != NULL) {
|
|
iser_device_try_release(device);
|
|
ib_conn->device = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Frees all conn objects and deallocs conn descriptor
|
|
*/
|
|
void iser_conn_release(struct iser_conn *iser_conn)
|
|
{
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
|
|
mutex_lock(&ig.connlist_mutex);
|
|
list_del(&iser_conn->conn_list);
|
|
mutex_unlock(&ig.connlist_mutex);
|
|
|
|
mutex_lock(&iser_conn->state_mutex);
|
|
if (iser_conn->state != ISER_CONN_DOWN)
|
|
iser_warn("iser conn %p state %d, expected state down.\n",
|
|
iser_conn, iser_conn->state);
|
|
/*
|
|
* In case we never got to bind stage, we still need to
|
|
* release IB resources (which is safe to call more than once).
|
|
*/
|
|
iser_free_ib_conn_res(iser_conn, true);
|
|
mutex_unlock(&iser_conn->state_mutex);
|
|
|
|
if (ib_conn->cma_id != NULL) {
|
|
rdma_destroy_id(ib_conn->cma_id);
|
|
ib_conn->cma_id = NULL;
|
|
}
|
|
|
|
kfree(iser_conn);
|
|
}
|
|
|
|
/**
|
|
* triggers start of the disconnect procedures and wait for them to be done
|
|
* Called with state mutex held
|
|
*/
|
|
int iser_conn_terminate(struct iser_conn *iser_conn)
|
|
{
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
struct ib_send_wr *bad_wr;
|
|
int err = 0;
|
|
|
|
/* terminate the iser conn only if the conn state is UP */
|
|
if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
|
|
ISER_CONN_TERMINATING))
|
|
return 0;
|
|
|
|
iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
|
|
|
|
/* suspend queuing of new iscsi commands */
|
|
if (iser_conn->iscsi_conn)
|
|
iscsi_suspend_queue(iser_conn->iscsi_conn);
|
|
|
|
/*
|
|
* In case we didn't already clean up the cma_id (peer initiated
|
|
* a disconnection), we need to Cause the CMA to change the QP
|
|
* state to ERROR.
|
|
*/
|
|
if (ib_conn->cma_id) {
|
|
err = rdma_disconnect(ib_conn->cma_id);
|
|
if (err)
|
|
iser_err("Failed to disconnect, conn: 0x%p err %d\n",
|
|
iser_conn, err);
|
|
|
|
/* post an indication that all flush errors were consumed */
|
|
err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
|
|
if (err)
|
|
iser_err("conn %p failed to post beacon", ib_conn);
|
|
|
|
wait_for_completion(&ib_conn->flush_comp);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Called with state mutex held
|
|
**/
|
|
static void iser_connect_error(struct rdma_cm_id *cma_id)
|
|
{
|
|
struct iser_conn *iser_conn;
|
|
|
|
iser_conn = (struct iser_conn *)cma_id->context;
|
|
iser_conn->state = ISER_CONN_DOWN;
|
|
}
|
|
|
|
/**
|
|
* Called with state mutex held
|
|
**/
|
|
static void iser_addr_handler(struct rdma_cm_id *cma_id)
|
|
{
|
|
struct iser_device *device;
|
|
struct iser_conn *iser_conn;
|
|
struct ib_conn *ib_conn;
|
|
int ret;
|
|
|
|
iser_conn = (struct iser_conn *)cma_id->context;
|
|
if (iser_conn->state != ISER_CONN_PENDING)
|
|
/* bailout */
|
|
return;
|
|
|
|
ib_conn = &iser_conn->ib_conn;
|
|
device = iser_device_find_by_ib_device(cma_id);
|
|
if (!device) {
|
|
iser_err("device lookup/creation failed\n");
|
|
iser_connect_error(cma_id);
|
|
return;
|
|
}
|
|
|
|
ib_conn->device = device;
|
|
|
|
/* connection T10-PI support */
|
|
if (iser_pi_enable) {
|
|
if (!(device->dev_attr.device_cap_flags &
|
|
IB_DEVICE_SIGNATURE_HANDOVER)) {
|
|
iser_warn("T10-PI requested but not supported on %s, "
|
|
"continue without T10-PI\n",
|
|
ib_conn->device->ib_device->name);
|
|
ib_conn->pi_support = false;
|
|
} else {
|
|
ib_conn->pi_support = true;
|
|
}
|
|
}
|
|
|
|
ret = rdma_resolve_route(cma_id, 1000);
|
|
if (ret) {
|
|
iser_err("resolve route failed: %d\n", ret);
|
|
iser_connect_error(cma_id);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called with state mutex held
|
|
**/
|
|
static void iser_route_handler(struct rdma_cm_id *cma_id)
|
|
{
|
|
struct rdma_conn_param conn_param;
|
|
int ret;
|
|
struct iser_cm_hdr req_hdr;
|
|
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
struct iser_device *device = ib_conn->device;
|
|
|
|
if (iser_conn->state != ISER_CONN_PENDING)
|
|
/* bailout */
|
|
return;
|
|
|
|
ret = iser_create_ib_conn_res(ib_conn);
|
|
if (ret)
|
|
goto failure;
|
|
|
|
memset(&conn_param, 0, sizeof conn_param);
|
|
conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
|
|
conn_param.initiator_depth = 1;
|
|
conn_param.retry_count = 7;
|
|
conn_param.rnr_retry_count = 6;
|
|
|
|
memset(&req_hdr, 0, sizeof(req_hdr));
|
|
req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
|
|
ISER_SEND_W_INV_NOT_SUPPORTED);
|
|
conn_param.private_data = (void *)&req_hdr;
|
|
conn_param.private_data_len = sizeof(struct iser_cm_hdr);
|
|
|
|
ret = rdma_connect(cma_id, &conn_param);
|
|
if (ret) {
|
|
iser_err("failure connecting: %d\n", ret);
|
|
goto failure;
|
|
}
|
|
|
|
return;
|
|
failure:
|
|
iser_connect_error(cma_id);
|
|
}
|
|
|
|
static void iser_connected_handler(struct rdma_cm_id *cma_id)
|
|
{
|
|
struct iser_conn *iser_conn;
|
|
struct ib_qp_attr attr;
|
|
struct ib_qp_init_attr init_attr;
|
|
|
|
iser_conn = (struct iser_conn *)cma_id->context;
|
|
if (iser_conn->state != ISER_CONN_PENDING)
|
|
/* bailout */
|
|
return;
|
|
|
|
(void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
|
|
iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
|
|
|
|
iser_conn->state = ISER_CONN_UP;
|
|
complete(&iser_conn->up_completion);
|
|
}
|
|
|
|
static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
|
|
{
|
|
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
|
|
|
|
if (iser_conn_terminate(iser_conn)) {
|
|
if (iser_conn->iscsi_conn)
|
|
iscsi_conn_failure(iser_conn->iscsi_conn,
|
|
ISCSI_ERR_CONN_FAILED);
|
|
else
|
|
iser_err("iscsi_iser connection isn't bound\n");
|
|
}
|
|
}
|
|
|
|
static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
|
|
bool destroy_device)
|
|
{
|
|
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
|
|
|
|
/*
|
|
* We are not guaranteed that we visited disconnected_handler
|
|
* by now, call it here to be safe that we handle CM drep
|
|
* and flush errors.
|
|
*/
|
|
iser_disconnected_handler(cma_id);
|
|
iser_free_ib_conn_res(iser_conn, destroy_device);
|
|
complete(&iser_conn->ib_completion);
|
|
};
|
|
|
|
static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
|
|
{
|
|
struct iser_conn *iser_conn;
|
|
int ret = 0;
|
|
|
|
iser_conn = (struct iser_conn *)cma_id->context;
|
|
iser_info("event %d status %d conn %p id %p\n",
|
|
event->event, event->status, cma_id->context, cma_id);
|
|
|
|
mutex_lock(&iser_conn->state_mutex);
|
|
switch (event->event) {
|
|
case RDMA_CM_EVENT_ADDR_RESOLVED:
|
|
iser_addr_handler(cma_id);
|
|
break;
|
|
case RDMA_CM_EVENT_ROUTE_RESOLVED:
|
|
iser_route_handler(cma_id);
|
|
break;
|
|
case RDMA_CM_EVENT_ESTABLISHED:
|
|
iser_connected_handler(cma_id);
|
|
break;
|
|
case RDMA_CM_EVENT_ADDR_ERROR:
|
|
case RDMA_CM_EVENT_ROUTE_ERROR:
|
|
case RDMA_CM_EVENT_CONNECT_ERROR:
|
|
case RDMA_CM_EVENT_UNREACHABLE:
|
|
case RDMA_CM_EVENT_REJECTED:
|
|
iser_connect_error(cma_id);
|
|
break;
|
|
case RDMA_CM_EVENT_DISCONNECTED:
|
|
case RDMA_CM_EVENT_ADDR_CHANGE:
|
|
iser_disconnected_handler(cma_id);
|
|
break;
|
|
case RDMA_CM_EVENT_DEVICE_REMOVAL:
|
|
/*
|
|
* we *must* destroy the device as we cannot rely
|
|
* on iscsid to be around to initiate error handling.
|
|
* also implicitly destroy the cma_id.
|
|
*/
|
|
iser_cleanup_handler(cma_id, true);
|
|
iser_conn->ib_conn.cma_id = NULL;
|
|
ret = 1;
|
|
break;
|
|
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
|
|
iser_cleanup_handler(cma_id, false);
|
|
break;
|
|
default:
|
|
iser_err("Unexpected RDMA CM event (%d)\n", event->event);
|
|
break;
|
|
}
|
|
mutex_unlock(&iser_conn->state_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void iser_conn_init(struct iser_conn *iser_conn)
|
|
{
|
|
iser_conn->state = ISER_CONN_INIT;
|
|
iser_conn->ib_conn.post_recv_buf_count = 0;
|
|
init_completion(&iser_conn->ib_conn.flush_comp);
|
|
init_completion(&iser_conn->stop_completion);
|
|
init_completion(&iser_conn->ib_completion);
|
|
init_completion(&iser_conn->up_completion);
|
|
INIT_LIST_HEAD(&iser_conn->conn_list);
|
|
spin_lock_init(&iser_conn->ib_conn.lock);
|
|
mutex_init(&iser_conn->state_mutex);
|
|
}
|
|
|
|
/**
|
|
* starts the process of connecting to the target
|
|
* sleeps until the connection is established or rejected
|
|
*/
|
|
int iser_connect(struct iser_conn *iser_conn,
|
|
struct sockaddr *src_addr,
|
|
struct sockaddr *dst_addr,
|
|
int non_blocking)
|
|
{
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
int err = 0;
|
|
|
|
mutex_lock(&iser_conn->state_mutex);
|
|
|
|
sprintf(iser_conn->name, "%pISp", dst_addr);
|
|
|
|
iser_info("connecting to: %s\n", iser_conn->name);
|
|
|
|
/* the device is known only --after-- address resolution */
|
|
ib_conn->device = NULL;
|
|
|
|
iser_conn->state = ISER_CONN_PENDING;
|
|
|
|
ib_conn->beacon.wr_id = ISER_BEACON_WRID;
|
|
ib_conn->beacon.opcode = IB_WR_SEND;
|
|
|
|
ib_conn->cma_id = rdma_create_id(iser_cma_handler,
|
|
(void *)iser_conn,
|
|
RDMA_PS_TCP, IB_QPT_RC);
|
|
if (IS_ERR(ib_conn->cma_id)) {
|
|
err = PTR_ERR(ib_conn->cma_id);
|
|
iser_err("rdma_create_id failed: %d\n", err);
|
|
goto id_failure;
|
|
}
|
|
|
|
err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
|
|
if (err) {
|
|
iser_err("rdma_resolve_addr failed: %d\n", err);
|
|
goto addr_failure;
|
|
}
|
|
|
|
if (!non_blocking) {
|
|
wait_for_completion_interruptible(&iser_conn->up_completion);
|
|
|
|
if (iser_conn->state != ISER_CONN_UP) {
|
|
err = -EIO;
|
|
goto connect_failure;
|
|
}
|
|
}
|
|
mutex_unlock(&iser_conn->state_mutex);
|
|
|
|
mutex_lock(&ig.connlist_mutex);
|
|
list_add(&iser_conn->conn_list, &ig.connlist);
|
|
mutex_unlock(&ig.connlist_mutex);
|
|
return 0;
|
|
|
|
id_failure:
|
|
ib_conn->cma_id = NULL;
|
|
addr_failure:
|
|
iser_conn->state = ISER_CONN_DOWN;
|
|
connect_failure:
|
|
mutex_unlock(&iser_conn->state_mutex);
|
|
iser_conn_release(iser_conn);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* iser_reg_page_vec - Register physical memory
|
|
*
|
|
* returns: 0 on success, errno code on failure
|
|
*/
|
|
int iser_reg_page_vec(struct ib_conn *ib_conn,
|
|
struct iser_page_vec *page_vec,
|
|
struct iser_mem_reg *mem_reg)
|
|
{
|
|
struct ib_pool_fmr *mem;
|
|
u64 io_addr;
|
|
u64 *page_list;
|
|
int status;
|
|
|
|
page_list = page_vec->pages;
|
|
io_addr = page_list[0];
|
|
|
|
mem = ib_fmr_pool_map_phys(ib_conn->fmr.pool,
|
|
page_list,
|
|
page_vec->length,
|
|
io_addr);
|
|
|
|
if (IS_ERR(mem)) {
|
|
status = (int)PTR_ERR(mem);
|
|
iser_err("ib_fmr_pool_map_phys failed: %d\n", status);
|
|
return status;
|
|
}
|
|
|
|
mem_reg->lkey = mem->fmr->lkey;
|
|
mem_reg->rkey = mem->fmr->rkey;
|
|
mem_reg->len = page_vec->length * SIZE_4K;
|
|
mem_reg->va = io_addr;
|
|
mem_reg->is_mr = 1;
|
|
mem_reg->mem_h = (void *)mem;
|
|
|
|
mem_reg->va += page_vec->offset;
|
|
mem_reg->len = page_vec->data_size;
|
|
|
|
iser_dbg("PHYSICAL Mem.register, [PHYS p_array: 0x%p, sz: %d, "
|
|
"entry[0]: (0x%08lx,%ld)] -> "
|
|
"[lkey: 0x%08X mem_h: 0x%p va: 0x%08lX sz: %ld]\n",
|
|
page_vec, page_vec->length,
|
|
(unsigned long)page_vec->pages[0],
|
|
(unsigned long)page_vec->data_size,
|
|
(unsigned int)mem_reg->lkey, mem_reg->mem_h,
|
|
(unsigned long)mem_reg->va, (unsigned long)mem_reg->len);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Unregister (previosuly registered using FMR) memory.
|
|
* If memory is non-FMR does nothing.
|
|
*/
|
|
void iser_unreg_mem_fmr(struct iscsi_iser_task *iser_task,
|
|
enum iser_data_dir cmd_dir)
|
|
{
|
|
struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
|
|
int ret;
|
|
|
|
if (!reg->is_mr)
|
|
return;
|
|
|
|
iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n",reg->mem_h);
|
|
|
|
ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h);
|
|
if (ret)
|
|
iser_err("ib_fmr_pool_unmap failed %d\n", ret);
|
|
|
|
reg->mem_h = NULL;
|
|
}
|
|
|
|
void iser_unreg_mem_fastreg(struct iscsi_iser_task *iser_task,
|
|
enum iser_data_dir cmd_dir)
|
|
{
|
|
struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
|
|
struct iser_conn *iser_conn = iser_task->iser_conn;
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
struct fast_reg_descriptor *desc = reg->mem_h;
|
|
|
|
if (!reg->is_mr)
|
|
return;
|
|
|
|
reg->mem_h = NULL;
|
|
reg->is_mr = 0;
|
|
spin_lock_bh(&ib_conn->lock);
|
|
list_add_tail(&desc->list, &ib_conn->fastreg.pool);
|
|
spin_unlock_bh(&ib_conn->lock);
|
|
}
|
|
|
|
int iser_post_recvl(struct iser_conn *iser_conn)
|
|
{
|
|
struct ib_recv_wr rx_wr, *rx_wr_failed;
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
struct ib_sge sge;
|
|
int ib_ret;
|
|
|
|
sge.addr = iser_conn->login_resp_dma;
|
|
sge.length = ISER_RX_LOGIN_SIZE;
|
|
sge.lkey = ib_conn->device->mr->lkey;
|
|
|
|
rx_wr.wr_id = (unsigned long)iser_conn->login_resp_buf;
|
|
rx_wr.sg_list = &sge;
|
|
rx_wr.num_sge = 1;
|
|
rx_wr.next = NULL;
|
|
|
|
ib_conn->post_recv_buf_count++;
|
|
ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
|
|
if (ib_ret) {
|
|
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
|
|
ib_conn->post_recv_buf_count--;
|
|
}
|
|
return ib_ret;
|
|
}
|
|
|
|
int iser_post_recvm(struct iser_conn *iser_conn, int count)
|
|
{
|
|
struct ib_recv_wr *rx_wr, *rx_wr_failed;
|
|
int i, ib_ret;
|
|
struct ib_conn *ib_conn = &iser_conn->ib_conn;
|
|
unsigned int my_rx_head = iser_conn->rx_desc_head;
|
|
struct iser_rx_desc *rx_desc;
|
|
|
|
for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
|
|
rx_desc = &iser_conn->rx_descs[my_rx_head];
|
|
rx_wr->wr_id = (unsigned long)rx_desc;
|
|
rx_wr->sg_list = &rx_desc->rx_sg;
|
|
rx_wr->num_sge = 1;
|
|
rx_wr->next = rx_wr + 1;
|
|
my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
|
|
}
|
|
|
|
rx_wr--;
|
|
rx_wr->next = NULL; /* mark end of work requests list */
|
|
|
|
ib_conn->post_recv_buf_count += count;
|
|
ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
|
|
if (ib_ret) {
|
|
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
|
|
ib_conn->post_recv_buf_count -= count;
|
|
} else
|
|
iser_conn->rx_desc_head = my_rx_head;
|
|
return ib_ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* iser_start_send - Initiate a Send DTO operation
|
|
*
|
|
* returns 0 on success, -1 on failure
|
|
*/
|
|
int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
|
|
bool signal)
|
|
{
|
|
int ib_ret;
|
|
struct ib_send_wr send_wr, *send_wr_failed;
|
|
|
|
ib_dma_sync_single_for_device(ib_conn->device->ib_device,
|
|
tx_desc->dma_addr, ISER_HEADERS_LEN,
|
|
DMA_TO_DEVICE);
|
|
|
|
send_wr.next = NULL;
|
|
send_wr.wr_id = (unsigned long)tx_desc;
|
|
send_wr.sg_list = tx_desc->tx_sg;
|
|
send_wr.num_sge = tx_desc->num_sge;
|
|
send_wr.opcode = IB_WR_SEND;
|
|
send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0;
|
|
|
|
ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
|
|
if (ib_ret)
|
|
iser_err("ib_post_send failed, ret:%d\n", ib_ret);
|
|
|
|
return ib_ret;
|
|
}
|
|
|
|
/**
|
|
* is_iser_tx_desc - Indicate if the completion wr_id
|
|
* is a TX descriptor or not.
|
|
* @iser_conn: iser connection
|
|
* @wr_id: completion WR identifier
|
|
*
|
|
* Since we cannot rely on wc opcode in FLUSH errors
|
|
* we must work around it by checking if the wr_id address
|
|
* falls in the iser connection rx_descs buffer. If so
|
|
* it is an RX descriptor, otherwize it is a TX.
|
|
*/
|
|
static inline bool
|
|
is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
|
|
{
|
|
void *start = iser_conn->rx_descs;
|
|
int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
|
|
|
|
if (wr_id >= start && wr_id < start + len)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* iser_handle_comp_error() - Handle error completion
|
|
* @ib_conn: connection RDMA resources
|
|
* @wc: work completion
|
|
*
|
|
* Notes: We may handle a FLUSH error completion and in this case
|
|
* we only cleanup in case TX type was DATAOUT. For non-FLUSH
|
|
* error completion we should also notify iscsi layer that
|
|
* connection is failed (in case we passed bind stage).
|
|
*/
|
|
static void
|
|
iser_handle_comp_error(struct ib_conn *ib_conn,
|
|
struct ib_wc *wc)
|
|
{
|
|
struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
|
|
ib_conn);
|
|
|
|
if (wc->status != IB_WC_WR_FLUSH_ERR)
|
|
if (iser_conn->iscsi_conn)
|
|
iscsi_conn_failure(iser_conn->iscsi_conn,
|
|
ISCSI_ERR_CONN_FAILED);
|
|
|
|
if (is_iser_tx_desc(iser_conn, (void *)wc->wr_id)) {
|
|
struct iser_tx_desc *desc = (struct iser_tx_desc *)wc->wr_id;
|
|
|
|
if (desc->type == ISCSI_TX_DATAOUT)
|
|
kmem_cache_free(ig.desc_cache, desc);
|
|
} else {
|
|
ib_conn->post_recv_buf_count--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* iser_handle_wc - handle a single work completion
|
|
* @wc: work completion
|
|
*
|
|
* Soft-IRQ context, work completion can be either
|
|
* SEND or RECV, and can turn out successful or
|
|
* with error (or flush error).
|
|
*/
|
|
static void iser_handle_wc(struct ib_wc *wc)
|
|
{
|
|
struct ib_conn *ib_conn;
|
|
struct iser_tx_desc *tx_desc;
|
|
struct iser_rx_desc *rx_desc;
|
|
|
|
ib_conn = wc->qp->qp_context;
|
|
if (wc->status == IB_WC_SUCCESS) {
|
|
if (wc->opcode == IB_WC_RECV) {
|
|
rx_desc = (struct iser_rx_desc *)wc->wr_id;
|
|
iser_rcv_completion(rx_desc, wc->byte_len,
|
|
ib_conn);
|
|
} else
|
|
if (wc->opcode == IB_WC_SEND) {
|
|
tx_desc = (struct iser_tx_desc *)wc->wr_id;
|
|
iser_snd_completion(tx_desc, ib_conn);
|
|
} else {
|
|
iser_err("Unknown wc opcode %d\n", wc->opcode);
|
|
}
|
|
} else {
|
|
if (wc->status != IB_WC_WR_FLUSH_ERR)
|
|
iser_err("wr id %llx status %d vend_err %x\n",
|
|
wc->wr_id, wc->status, wc->vendor_err);
|
|
else
|
|
iser_dbg("flush error: wr id %llx\n", wc->wr_id);
|
|
|
|
if (wc->wr_id != ISER_FASTREG_LI_WRID &&
|
|
wc->wr_id != ISER_BEACON_WRID)
|
|
iser_handle_comp_error(ib_conn, wc);
|
|
|
|
/* complete in case all flush errors were consumed */
|
|
if (wc->wr_id == ISER_BEACON_WRID)
|
|
complete(&ib_conn->flush_comp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* iser_cq_tasklet_fn - iSER completion polling loop
|
|
* @data: iSER completion context
|
|
*
|
|
* Soft-IRQ context, polling connection CQ until
|
|
* either CQ was empty or we exausted polling budget
|
|
*/
|
|
static void iser_cq_tasklet_fn(unsigned long data)
|
|
{
|
|
struct iser_comp *comp = (struct iser_comp *)data;
|
|
struct ib_cq *cq = comp->cq;
|
|
struct ib_wc *const wcs = comp->wcs;
|
|
int i, n, completed = 0;
|
|
|
|
while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
|
|
for (i = 0; i < n; i++)
|
|
iser_handle_wc(&wcs[i]);
|
|
|
|
completed += n;
|
|
if (completed >= iser_cq_poll_limit)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* It is assumed here that arming CQ only once its empty
|
|
* would not cause interrupts to be missed.
|
|
*/
|
|
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
|
|
|
|
iser_dbg("got %d completions\n", completed);
|
|
}
|
|
|
|
static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
|
|
{
|
|
struct iser_comp *comp = cq_context;
|
|
|
|
tasklet_schedule(&comp->tasklet);
|
|
}
|
|
|
|
u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
|
|
enum iser_data_dir cmd_dir, sector_t *sector)
|
|
{
|
|
struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
|
|
struct fast_reg_descriptor *desc = reg->mem_h;
|
|
unsigned long sector_size = iser_task->sc->device->sector_size;
|
|
struct ib_mr_status mr_status;
|
|
int ret;
|
|
|
|
if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) {
|
|
desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
|
|
ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
|
|
IB_MR_CHECK_SIG_STATUS, &mr_status);
|
|
if (ret) {
|
|
pr_err("ib_check_mr_status failed, ret %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
|
|
sector_t sector_off = mr_status.sig_err.sig_err_offset;
|
|
|
|
do_div(sector_off, sector_size + 8);
|
|
*sector = scsi_get_lba(iser_task->sc) + sector_off;
|
|
|
|
pr_err("PI error found type %d at sector %llx "
|
|
"expected %x vs actual %x\n",
|
|
mr_status.sig_err.err_type,
|
|
(unsigned long long)*sector,
|
|
mr_status.sig_err.expected,
|
|
mr_status.sig_err.actual);
|
|
|
|
switch (mr_status.sig_err.err_type) {
|
|
case IB_SIG_BAD_GUARD:
|
|
return 0x1;
|
|
case IB_SIG_BAD_REFTAG:
|
|
return 0x3;
|
|
case IB_SIG_BAD_APPTAG:
|
|
return 0x2;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
/* Not alot we can do here, return ambiguous guard error */
|
|
return 0x1;
|
|
}
|