forked from Minki/linux
180c06efce
All architectures use an effectively identical definition of online_page(), so just make it common code. x86-64, ia64, powerpc and sh are actually identical; x86-32 is slightly different. x86-32's differences arise because it puts its hotplug pages in the highmem zone. We can handle this in the generic code by inspecting the page to see if its in highmem, and update the totalhigh_pages count appropriately. This leaves init_32.c:free_new_highpage with a single caller, so I folded it into add_one_highpage_init. I also removed an incorrect comment referring to the NUMA case; any NUMA details have already been dealt with by the time online_page() is called. [akpm@linux-foundation.org: fix indenting] Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Acked-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamez.hiroyu@jp.fujitsu.com> Tested-by: KAMEZAWA Hiroyuki <kamez.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
722 lines
19 KiB
C
722 lines
19 KiB
C
/*
|
|
* Initialize MMU support.
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/module.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/a.out.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/io.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/patch.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/system.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/mca.h>
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
extern void ia64_tlb_init (void);
|
|
|
|
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
unsigned long vmalloc_end = VMALLOC_END_INIT;
|
|
EXPORT_SYMBOL(vmalloc_end);
|
|
struct page *vmem_map;
|
|
EXPORT_SYMBOL(vmem_map);
|
|
#endif
|
|
|
|
struct page *zero_page_memmap_ptr; /* map entry for zero page */
|
|
EXPORT_SYMBOL(zero_page_memmap_ptr);
|
|
|
|
void
|
|
__ia64_sync_icache_dcache (pte_t pte)
|
|
{
|
|
unsigned long addr;
|
|
struct page *page;
|
|
|
|
page = pte_page(pte);
|
|
addr = (unsigned long) page_address(page);
|
|
|
|
if (test_bit(PG_arch_1, &page->flags))
|
|
return; /* i-cache is already coherent with d-cache */
|
|
|
|
flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
|
|
set_bit(PG_arch_1, &page->flags); /* mark page as clean */
|
|
}
|
|
|
|
/*
|
|
* Since DMA is i-cache coherent, any (complete) pages that were written via
|
|
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
|
|
* flush them when they get mapped into an executable vm-area.
|
|
*/
|
|
void
|
|
dma_mark_clean(void *addr, size_t size)
|
|
{
|
|
unsigned long pg_addr, end;
|
|
|
|
pg_addr = PAGE_ALIGN((unsigned long) addr);
|
|
end = (unsigned long) addr + size;
|
|
while (pg_addr + PAGE_SIZE <= end) {
|
|
struct page *page = virt_to_page(pg_addr);
|
|
set_bit(PG_arch_1, &page->flags);
|
|
pg_addr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
inline void
|
|
ia64_set_rbs_bot (void)
|
|
{
|
|
unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
|
|
|
|
if (stack_size > MAX_USER_STACK_SIZE)
|
|
stack_size = MAX_USER_STACK_SIZE;
|
|
current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
|
|
}
|
|
|
|
/*
|
|
* This performs some platform-dependent address space initialization.
|
|
* On IA-64, we want to setup the VM area for the register backing
|
|
* store (which grows upwards) and install the gateway page which is
|
|
* used for signal trampolines, etc.
|
|
*/
|
|
void
|
|
ia64_init_addr_space (void)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
ia64_set_rbs_bot();
|
|
|
|
/*
|
|
* If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
|
|
* the problem. When the process attempts to write to the register backing store
|
|
* for the first time, it will get a SEGFAULT in this case.
|
|
*/
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
|
|
vma->vm_end = vma->vm_start + PAGE_SIZE;
|
|
vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
|
|
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
|
|
if (!(current->personality & MMAP_PAGE_ZERO)) {
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_end = PAGE_SIZE;
|
|
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
|
|
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
free_initmem (void)
|
|
{
|
|
unsigned long addr, eaddr;
|
|
|
|
addr = (unsigned long) ia64_imva(__init_begin);
|
|
eaddr = (unsigned long) ia64_imva(__init_end);
|
|
while (addr < eaddr) {
|
|
ClearPageReserved(virt_to_page(addr));
|
|
init_page_count(virt_to_page(addr));
|
|
free_page(addr);
|
|
++totalram_pages;
|
|
addr += PAGE_SIZE;
|
|
}
|
|
printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
|
|
(__init_end - __init_begin) >> 10);
|
|
}
|
|
|
|
void __init
|
|
free_initrd_mem (unsigned long start, unsigned long end)
|
|
{
|
|
struct page *page;
|
|
/*
|
|
* EFI uses 4KB pages while the kernel can use 4KB or bigger.
|
|
* Thus EFI and the kernel may have different page sizes. It is
|
|
* therefore possible to have the initrd share the same page as
|
|
* the end of the kernel (given current setup).
|
|
*
|
|
* To avoid freeing/using the wrong page (kernel sized) we:
|
|
* - align up the beginning of initrd
|
|
* - align down the end of initrd
|
|
*
|
|
* | |
|
|
* |=============| a000
|
|
* | |
|
|
* | |
|
|
* | | 9000
|
|
* |/////////////|
|
|
* |/////////////|
|
|
* |=============| 8000
|
|
* |///INITRD////|
|
|
* |/////////////|
|
|
* |/////////////| 7000
|
|
* | |
|
|
* |KKKKKKKKKKKKK|
|
|
* |=============| 6000
|
|
* |KKKKKKKKKKKKK|
|
|
* |KKKKKKKKKKKKK|
|
|
* K=kernel using 8KB pages
|
|
*
|
|
* In this example, we must free page 8000 ONLY. So we must align up
|
|
* initrd_start and keep initrd_end as is.
|
|
*/
|
|
start = PAGE_ALIGN(start);
|
|
end = end & PAGE_MASK;
|
|
|
|
if (start < end)
|
|
printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
|
|
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
if (!virt_addr_valid(start))
|
|
continue;
|
|
page = virt_to_page(start);
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
free_page(start);
|
|
++totalram_pages;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This installs a clean page in the kernel's page table.
|
|
*/
|
|
static struct page * __init
|
|
put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (!PageReserved(page))
|
|
printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
|
|
page_address(page));
|
|
|
|
pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
|
|
|
|
{
|
|
pud = pud_alloc(&init_mm, pgd, address);
|
|
if (!pud)
|
|
goto out;
|
|
pmd = pmd_alloc(&init_mm, pud, address);
|
|
if (!pmd)
|
|
goto out;
|
|
pte = pte_alloc_kernel(pmd, address);
|
|
if (!pte)
|
|
goto out;
|
|
if (!pte_none(*pte))
|
|
goto out;
|
|
set_pte(pte, mk_pte(page, pgprot));
|
|
}
|
|
out:
|
|
/* no need for flush_tlb */
|
|
return page;
|
|
}
|
|
|
|
static void __init
|
|
setup_gate (void)
|
|
{
|
|
struct page *page;
|
|
|
|
/*
|
|
* Map the gate page twice: once read-only to export the ELF
|
|
* headers etc. and once execute-only page to enable
|
|
* privilege-promotion via "epc":
|
|
*/
|
|
page = virt_to_page(ia64_imva(__start_gate_section));
|
|
put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
|
|
#ifdef HAVE_BUGGY_SEGREL
|
|
page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
|
|
put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
|
|
#else
|
|
put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
|
|
/* Fill in the holes (if any) with read-only zero pages: */
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = GATE_ADDR + PAGE_SIZE;
|
|
addr < GATE_ADDR + PERCPU_PAGE_SIZE;
|
|
addr += PAGE_SIZE)
|
|
{
|
|
put_kernel_page(ZERO_PAGE(0), addr,
|
|
PAGE_READONLY);
|
|
put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
|
|
PAGE_READONLY);
|
|
}
|
|
}
|
|
#endif
|
|
ia64_patch_gate();
|
|
}
|
|
|
|
void __devinit
|
|
ia64_mmu_init (void *my_cpu_data)
|
|
{
|
|
unsigned long pta, impl_va_bits;
|
|
extern void __devinit tlb_init (void);
|
|
|
|
#ifdef CONFIG_DISABLE_VHPT
|
|
# define VHPT_ENABLE_BIT 0
|
|
#else
|
|
# define VHPT_ENABLE_BIT 1
|
|
#endif
|
|
|
|
/*
|
|
* Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
|
|
* address space. The IA-64 architecture guarantees that at least 50 bits of
|
|
* virtual address space are implemented but if we pick a large enough page size
|
|
* (e.g., 64KB), the mapped address space is big enough that it will overlap with
|
|
* VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
|
|
* IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
|
|
* problem in practice. Alternatively, we could truncate the top of the mapped
|
|
* address space to not permit mappings that would overlap with the VMLPT.
|
|
* --davidm 00/12/06
|
|
*/
|
|
# define pte_bits 3
|
|
# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
|
|
/*
|
|
* The virtual page table has to cover the entire implemented address space within
|
|
* a region even though not all of this space may be mappable. The reason for
|
|
* this is that the Access bit and Dirty bit fault handlers perform
|
|
* non-speculative accesses to the virtual page table, so the address range of the
|
|
* virtual page table itself needs to be covered by virtual page table.
|
|
*/
|
|
# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
|
|
# define POW2(n) (1ULL << (n))
|
|
|
|
impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
|
|
|
|
if (impl_va_bits < 51 || impl_va_bits > 61)
|
|
panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
|
|
/*
|
|
* mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
|
|
* which must fit into "vmlpt_bits - pte_bits" slots. Second half of
|
|
* the test makes sure that our mapped space doesn't overlap the
|
|
* unimplemented hole in the middle of the region.
|
|
*/
|
|
if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
|
|
(mapped_space_bits > impl_va_bits - 1))
|
|
panic("Cannot build a big enough virtual-linear page table"
|
|
" to cover mapped address space.\n"
|
|
" Try using a smaller page size.\n");
|
|
|
|
|
|
/* place the VMLPT at the end of each page-table mapped region: */
|
|
pta = POW2(61) - POW2(vmlpt_bits);
|
|
|
|
/*
|
|
* Set the (virtually mapped linear) page table address. Bit
|
|
* 8 selects between the short and long format, bits 2-7 the
|
|
* size of the table, and bit 0 whether the VHPT walker is
|
|
* enabled.
|
|
*/
|
|
ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
|
|
|
|
ia64_tlb_init();
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
|
|
ia64_srlz_d();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
int vmemmap_find_next_valid_pfn(int node, int i)
|
|
{
|
|
unsigned long end_address, hole_next_pfn;
|
|
unsigned long stop_address;
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
|
|
end_address = PAGE_ALIGN(end_address);
|
|
|
|
stop_address = (unsigned long) &vmem_map[
|
|
pgdat->node_start_pfn + pgdat->node_spanned_pages];
|
|
|
|
do {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = pgd_offset_k(end_address);
|
|
if (pgd_none(*pgd)) {
|
|
end_address += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pud = pud_offset(pgd, end_address);
|
|
if (pud_none(*pud)) {
|
|
end_address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, end_address);
|
|
if (pmd_none(*pmd)) {
|
|
end_address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, end_address);
|
|
retry_pte:
|
|
if (pte_none(*pte)) {
|
|
end_address += PAGE_SIZE;
|
|
pte++;
|
|
if ((end_address < stop_address) &&
|
|
(end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
|
|
goto retry_pte;
|
|
continue;
|
|
}
|
|
/* Found next valid vmem_map page */
|
|
break;
|
|
} while (end_address < stop_address);
|
|
|
|
end_address = min(end_address, stop_address);
|
|
end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
|
|
hole_next_pfn = end_address / sizeof(struct page);
|
|
return hole_next_pfn - pgdat->node_start_pfn;
|
|
}
|
|
|
|
int __init
|
|
create_mem_map_page_table (u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long address, start_page, end_page;
|
|
struct page *map_start, *map_end;
|
|
int node;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
start_page = (unsigned long) map_start & PAGE_MASK;
|
|
end_page = PAGE_ALIGN((unsigned long) map_end);
|
|
node = paddr_to_nid(__pa(start));
|
|
|
|
for (address = start_page; address < end_page; address += PAGE_SIZE) {
|
|
pgd = pgd_offset_k(address);
|
|
if (pgd_none(*pgd))
|
|
pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pud = pud_offset(pgd, address);
|
|
|
|
if (pud_none(*pud))
|
|
pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
if (pmd_none(*pmd))
|
|
pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
if (pte_none(*pte))
|
|
set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
|
|
PAGE_KERNEL));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct memmap_init_callback_data {
|
|
struct page *start;
|
|
struct page *end;
|
|
int nid;
|
|
unsigned long zone;
|
|
};
|
|
|
|
static int __meminit
|
|
virtual_memmap_init (u64 start, u64 end, void *arg)
|
|
{
|
|
struct memmap_init_callback_data *args;
|
|
struct page *map_start, *map_end;
|
|
|
|
args = (struct memmap_init_callback_data *) arg;
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
if (map_start < args->start)
|
|
map_start = args->start;
|
|
if (map_end > args->end)
|
|
map_end = args->end;
|
|
|
|
/*
|
|
* We have to initialize "out of bounds" struct page elements that fit completely
|
|
* on the same pages that were allocated for the "in bounds" elements because they
|
|
* may be referenced later (and found to be "reserved").
|
|
*/
|
|
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
|
|
map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
|
|
/ sizeof(struct page));
|
|
|
|
if (map_start < map_end)
|
|
memmap_init_zone((unsigned long)(map_end - map_start),
|
|
args->nid, args->zone, page_to_pfn(map_start),
|
|
MEMMAP_EARLY);
|
|
return 0;
|
|
}
|
|
|
|
void __meminit
|
|
memmap_init (unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn)
|
|
{
|
|
if (!vmem_map)
|
|
memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
|
|
else {
|
|
struct page *start;
|
|
struct memmap_init_callback_data args;
|
|
|
|
start = pfn_to_page(start_pfn);
|
|
args.start = start;
|
|
args.end = start + size;
|
|
args.nid = nid;
|
|
args.zone = zone;
|
|
|
|
efi_memmap_walk(virtual_memmap_init, &args);
|
|
}
|
|
}
|
|
|
|
int
|
|
ia64_pfn_valid (unsigned long pfn)
|
|
{
|
|
char byte;
|
|
struct page *pg = pfn_to_page(pfn);
|
|
|
|
return (__get_user(byte, (char __user *) pg) == 0)
|
|
&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
|
|
|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
|
|
}
|
|
EXPORT_SYMBOL(ia64_pfn_valid);
|
|
|
|
int __init
|
|
find_largest_hole (u64 start, u64 end, void *arg)
|
|
{
|
|
u64 *max_gap = arg;
|
|
|
|
static u64 last_end = PAGE_OFFSET;
|
|
|
|
/* NOTE: this algorithm assumes efi memmap table is ordered */
|
|
|
|
if (*max_gap < (start - last_end))
|
|
*max_gap = start - last_end;
|
|
last_end = end;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_VIRTUAL_MEM_MAP */
|
|
|
|
int __init
|
|
register_active_ranges(u64 start, u64 len, int nid)
|
|
{
|
|
u64 end = start + len;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
if (start > crashk_res.start && start < crashk_res.end)
|
|
start = crashk_res.end;
|
|
if (end > crashk_res.start && end < crashk_res.end)
|
|
end = crashk_res.start;
|
|
#endif
|
|
|
|
if (start < end)
|
|
add_active_range(nid, __pa(start) >> PAGE_SHIFT,
|
|
__pa(end) >> PAGE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static int __init
|
|
count_reserved_pages (u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long num_reserved = 0;
|
|
unsigned long *count = arg;
|
|
|
|
for (; start < end; start += PAGE_SIZE)
|
|
if (PageReserved(virt_to_page(start)))
|
|
++num_reserved;
|
|
*count += num_reserved;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
|
|
{
|
|
unsigned long pfn_start, pfn_end;
|
|
#ifdef CONFIG_FLATMEM
|
|
pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
|
|
pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
|
|
#else
|
|
pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
|
|
pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
|
|
#endif
|
|
min_low_pfn = min(min_low_pfn, pfn_start);
|
|
max_low_pfn = max(max_low_pfn, pfn_end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Boot command-line option "nolwsys" can be used to disable the use of any light-weight
|
|
* system call handler. When this option is in effect, all fsyscalls will end up bubbling
|
|
* down into the kernel and calling the normal (heavy-weight) syscall handler. This is
|
|
* useful for performance testing, but conceivably could also come in handy for debugging
|
|
* purposes.
|
|
*/
|
|
|
|
static int nolwsys __initdata;
|
|
|
|
static int __init
|
|
nolwsys_setup (char *s)
|
|
{
|
|
nolwsys = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nolwsys", nolwsys_setup);
|
|
|
|
void __init
|
|
mem_init (void)
|
|
{
|
|
long reserved_pages, codesize, datasize, initsize;
|
|
pg_data_t *pgdat;
|
|
int i;
|
|
static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
|
|
|
|
BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_PCI
|
|
/*
|
|
* This needs to be called _after_ the command line has been parsed but _before_
|
|
* any drivers that may need the PCI DMA interface are initialized or bootmem has
|
|
* been freed.
|
|
*/
|
|
platform_dma_init();
|
|
#endif
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
if (!mem_map)
|
|
BUG();
|
|
max_mapnr = max_low_pfn;
|
|
#endif
|
|
|
|
high_memory = __va(max_low_pfn * PAGE_SIZE);
|
|
|
|
kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
|
|
kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
|
|
kclist_add(&kcore_kernel, _stext, _end - _stext);
|
|
|
|
for_each_online_pgdat(pgdat)
|
|
if (pgdat->bdata->node_bootmem_map)
|
|
totalram_pages += free_all_bootmem_node(pgdat);
|
|
|
|
reserved_pages = 0;
|
|
efi_memmap_walk(count_reserved_pages, &reserved_pages);
|
|
|
|
codesize = (unsigned long) _etext - (unsigned long) _stext;
|
|
datasize = (unsigned long) _edata - (unsigned long) _etext;
|
|
initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
|
|
"%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
|
|
num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
|
|
reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
|
|
|
|
|
|
/*
|
|
* For fsyscall entrpoints with no light-weight handler, use the ordinary
|
|
* (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
|
|
* code can tell them apart.
|
|
*/
|
|
for (i = 0; i < NR_syscalls; ++i) {
|
|
extern unsigned long fsyscall_table[NR_syscalls];
|
|
extern unsigned long sys_call_table[NR_syscalls];
|
|
|
|
if (!fsyscall_table[i] || nolwsys)
|
|
fsyscall_table[i] = sys_call_table[i] | 1;
|
|
}
|
|
setup_gate();
|
|
|
|
#ifdef CONFIG_IA32_SUPPORT
|
|
ia32_mem_init();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int arch_add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
pg_data_t *pgdat;
|
|
struct zone *zone;
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
pgdat = NODE_DATA(nid);
|
|
|
|
zone = pgdat->node_zones + ZONE_NORMAL;
|
|
ret = __add_pages(zone, start_pfn, nr_pages);
|
|
|
|
if (ret)
|
|
printk("%s: Problem encountered in __add_pages() as ret=%d\n",
|
|
__func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
int remove_memory(u64 start, u64 size)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned long timeout = 120 * HZ;
|
|
int ret;
|
|
start_pfn = start >> PAGE_SHIFT;
|
|
end_pfn = start_pfn + (size >> PAGE_SHIFT);
|
|
ret = offline_pages(start_pfn, end_pfn, timeout);
|
|
if (ret)
|
|
goto out;
|
|
/* we can free mem_map at this point */
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(remove_memory);
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
#endif
|