17186ccda3
The intel_commit_scheduling() callback is pointlessly different from the start and stop scheduling callback. Furthermore, the constraint should never be NULL, so remove that test. Even though we'll never get called (because we NULL the callbacks) when !is_ht_workaround_enabled() put that test in. Collapse the (pointless) WARN_ON_ONCE() and bail on !cpuc->excl_cntrs -- this is doubly pointless, because its the same condition as is_ht_workaround_enabled() which was already pointless because the whole method won't ever be called. Furthremore, make all the !excl_cntrs test WARN_ON_ONCE(); they're all pointless, because the above, either the function ({get,put}_excl_constraint) are already predicated on it existing or the is_ht_workaround_enabled() thing is the same test. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Ingo Molnar <mingo@kernel.org>
3397 lines
93 KiB
C
3397 lines
93 KiB
C
/*
|
|
* Per core/cpu state
|
|
*
|
|
* Used to coordinate shared registers between HT threads or
|
|
* among events on a single PMU.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/watchdog.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/apic.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
/*
|
|
* Intel PerfMon, used on Core and later.
|
|
*/
|
|
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
|
|
{
|
|
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
|
|
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
|
|
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
|
|
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
|
|
};
|
|
|
|
static struct event_constraint intel_core_event_constraints[] __read_mostly =
|
|
{
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
|
|
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
|
|
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
|
|
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
|
|
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
|
|
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
|
|
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
|
|
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
|
|
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
|
|
{
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
|
|
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
|
|
|
|
struct attribute *nhm_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_nhm),
|
|
NULL,
|
|
};
|
|
|
|
struct attribute *snb_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_snb),
|
|
EVENT_PTR(mem_st_snb),
|
|
NULL,
|
|
};
|
|
|
|
static struct event_constraint intel_hsw_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
|
|
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
|
|
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
|
|
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_bdw_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static u64 intel_pmu_event_map(int hw_event)
|
|
{
|
|
return intel_perfmon_event_map[hw_event];
|
|
}
|
|
|
|
#define SNB_DMND_DATA_RD (1ULL << 0)
|
|
#define SNB_DMND_RFO (1ULL << 1)
|
|
#define SNB_DMND_IFETCH (1ULL << 2)
|
|
#define SNB_DMND_WB (1ULL << 3)
|
|
#define SNB_PF_DATA_RD (1ULL << 4)
|
|
#define SNB_PF_RFO (1ULL << 5)
|
|
#define SNB_PF_IFETCH (1ULL << 6)
|
|
#define SNB_LLC_DATA_RD (1ULL << 7)
|
|
#define SNB_LLC_RFO (1ULL << 8)
|
|
#define SNB_LLC_IFETCH (1ULL << 9)
|
|
#define SNB_BUS_LOCKS (1ULL << 10)
|
|
#define SNB_STRM_ST (1ULL << 11)
|
|
#define SNB_OTHER (1ULL << 15)
|
|
#define SNB_RESP_ANY (1ULL << 16)
|
|
#define SNB_NO_SUPP (1ULL << 17)
|
|
#define SNB_LLC_HITM (1ULL << 18)
|
|
#define SNB_LLC_HITE (1ULL << 19)
|
|
#define SNB_LLC_HITS (1ULL << 20)
|
|
#define SNB_LLC_HITF (1ULL << 21)
|
|
#define SNB_LOCAL (1ULL << 22)
|
|
#define SNB_REMOTE (0xffULL << 23)
|
|
#define SNB_SNP_NONE (1ULL << 31)
|
|
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
|
|
#define SNB_SNP_MISS (1ULL << 33)
|
|
#define SNB_NO_FWD (1ULL << 34)
|
|
#define SNB_SNP_FWD (1ULL << 35)
|
|
#define SNB_HITM (1ULL << 36)
|
|
#define SNB_NON_DRAM (1ULL << 37)
|
|
|
|
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
|
|
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
|
|
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
|
|
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
|
|
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
|
|
SNB_HITM)
|
|
|
|
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
|
|
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
|
|
|
|
#define SNB_L3_ACCESS SNB_RESP_ANY
|
|
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 snb_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 snb_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
|
|
};
|
|
|
|
/*
|
|
* Notes on the events:
|
|
* - data reads do not include code reads (comparable to earlier tables)
|
|
* - data counts include speculative execution (except L1 write, dtlb, bpu)
|
|
* - remote node access includes remote memory, remote cache, remote mmio.
|
|
* - prefetches are not included in the counts because they are not
|
|
* reliably counted.
|
|
*/
|
|
|
|
#define HSW_DEMAND_DATA_RD BIT_ULL(0)
|
|
#define HSW_DEMAND_RFO BIT_ULL(1)
|
|
#define HSW_ANY_RESPONSE BIT_ULL(16)
|
|
#define HSW_SUPPLIER_NONE BIT_ULL(17)
|
|
#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
|
|
#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
|
|
#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
|
|
#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
|
|
#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
|
|
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
|
|
HSW_L3_MISS_REMOTE_HOP2P)
|
|
#define HSW_SNOOP_NONE BIT_ULL(31)
|
|
#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
|
|
#define HSW_SNOOP_MISS BIT_ULL(33)
|
|
#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
|
|
#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
|
|
#define HSW_SNOOP_HITM BIT_ULL(36)
|
|
#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
|
|
#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
|
|
HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
|
|
HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
|
|
HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
|
|
#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
|
|
#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
|
|
#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
|
|
#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
|
|
HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
|
|
#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
|
|
|
|
#define BDW_L3_MISS_LOCAL BIT(26)
|
|
#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
|
|
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
|
|
HSW_L3_MISS_REMOTE_HOP2P)
|
|
|
|
|
|
static __initconst const u64 hsw_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
|
|
[ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 hsw_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
|
|
HSW_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
|
|
HSW_L3_MISS|HSW_ANY_SNOOP,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
|
|
HSW_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
|
|
HSW_L3_MISS|HSW_ANY_SNOOP,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
|
|
HSW_L3_MISS_LOCAL_DRAM|
|
|
HSW_SNOOP_DRAM,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
|
|
HSW_L3_MISS_REMOTE|
|
|
HSW_SNOOP_DRAM,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
|
|
HSW_L3_MISS_LOCAL_DRAM|
|
|
HSW_SNOOP_DRAM,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
|
|
HSW_L3_MISS_REMOTE|
|
|
HSW_SNOOP_DRAM,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 westmere_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
|
|
* See IA32 SDM Vol 3B 30.6.1.3
|
|
*/
|
|
|
|
#define NHM_DMND_DATA_RD (1 << 0)
|
|
#define NHM_DMND_RFO (1 << 1)
|
|
#define NHM_DMND_IFETCH (1 << 2)
|
|
#define NHM_DMND_WB (1 << 3)
|
|
#define NHM_PF_DATA_RD (1 << 4)
|
|
#define NHM_PF_DATA_RFO (1 << 5)
|
|
#define NHM_PF_IFETCH (1 << 6)
|
|
#define NHM_OFFCORE_OTHER (1 << 7)
|
|
#define NHM_UNCORE_HIT (1 << 8)
|
|
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
|
|
#define NHM_OTHER_CORE_HITM (1 << 10)
|
|
/* reserved */
|
|
#define NHM_REMOTE_CACHE_FWD (1 << 12)
|
|
#define NHM_REMOTE_DRAM (1 << 13)
|
|
#define NHM_LOCAL_DRAM (1 << 14)
|
|
#define NHM_NON_DRAM (1 << 15)
|
|
|
|
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_REMOTE (NHM_REMOTE_DRAM)
|
|
|
|
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
|
|
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
|
|
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
|
|
|
|
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
|
|
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
|
|
|
|
static __initconst const u64 nehalem_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 nehalem_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 core2_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 atom_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
#define SLM_DMND_READ SNB_DMND_DATA_RD
|
|
#define SLM_DMND_WRITE SNB_DMND_RFO
|
|
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
|
|
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
|
|
#define SLM_LLC_ACCESS SNB_RESP_ANY
|
|
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 slm_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 slm_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Use from PMIs where the LBRs are already disabled.
|
|
*/
|
|
static void __intel_pmu_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
|
|
intel_pmu_disable_bts();
|
|
else
|
|
intel_bts_disable_local();
|
|
|
|
intel_pmu_pebs_disable_all();
|
|
}
|
|
|
|
static void intel_pmu_disable_all(void)
|
|
{
|
|
__intel_pmu_disable_all();
|
|
intel_pmu_lbr_disable_all();
|
|
}
|
|
|
|
static void __intel_pmu_enable_all(int added, bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
intel_pmu_pebs_enable_all();
|
|
intel_pmu_lbr_enable_all(pmi);
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
|
|
x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
|
|
struct perf_event *event =
|
|
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
|
|
|
|
if (WARN_ON_ONCE(!event))
|
|
return;
|
|
|
|
intel_pmu_enable_bts(event->hw.config);
|
|
} else
|
|
intel_bts_enable_local();
|
|
}
|
|
|
|
static void intel_pmu_enable_all(int added)
|
|
{
|
|
__intel_pmu_enable_all(added, false);
|
|
}
|
|
|
|
/*
|
|
* Workaround for:
|
|
* Intel Errata AAK100 (model 26)
|
|
* Intel Errata AAP53 (model 30)
|
|
* Intel Errata BD53 (model 44)
|
|
*
|
|
* The official story:
|
|
* These chips need to be 'reset' when adding counters by programming the
|
|
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
|
|
* in sequence on the same PMC or on different PMCs.
|
|
*
|
|
* In practise it appears some of these events do in fact count, and
|
|
* we need to programm all 4 events.
|
|
*/
|
|
static void intel_pmu_nhm_workaround(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
static const unsigned long nhm_magic[4] = {
|
|
0x4300B5,
|
|
0x4300D2,
|
|
0x4300B1,
|
|
0x4300B1
|
|
};
|
|
struct perf_event *event;
|
|
int i;
|
|
|
|
/*
|
|
* The Errata requires below steps:
|
|
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 2) Configure 4 PERFEVTSELx with the magic events and clear
|
|
* the corresponding PMCx;
|
|
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
|
|
*/
|
|
|
|
/*
|
|
* The real steps we choose are a little different from above.
|
|
* A) To reduce MSR operations, we don't run step 1) as they
|
|
* are already cleared before this function is called;
|
|
* B) Call x86_perf_event_update to save PMCx before configuring
|
|
* PERFEVTSELx with magic number;
|
|
* C) With step 5), we do clear only when the PERFEVTSELx is
|
|
* not used currently.
|
|
* D) Call x86_perf_event_set_period to restore PMCx;
|
|
*/
|
|
|
|
/* We always operate 4 pairs of PERF Counters */
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
if (event)
|
|
x86_perf_event_update(event);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
|
|
wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
|
|
}
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
|
|
if (event) {
|
|
x86_perf_event_set_period(event);
|
|
__x86_pmu_enable_event(&event->hw,
|
|
ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
} else
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_nhm_enable_all(int added)
|
|
{
|
|
if (added)
|
|
intel_pmu_nhm_workaround();
|
|
intel_pmu_enable_all(added);
|
|
}
|
|
|
|
static inline u64 intel_pmu_get_status(void)
|
|
{
|
|
u64 status;
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
|
|
return status;
|
|
}
|
|
|
|
static inline void intel_pmu_ack_status(u64 ack)
|
|
{
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
|
|
}
|
|
|
|
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
|
|
{
|
|
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
|
|
u64 ctrl_val, mask;
|
|
|
|
mask = 0xfULL << (idx * 4);
|
|
|
|
rdmsrl(hwc->config_base, ctrl_val);
|
|
ctrl_val &= ~mask;
|
|
wrmsrl(hwc->config_base, ctrl_val);
|
|
}
|
|
|
|
static inline bool event_is_checkpointed(struct perf_event *event)
|
|
{
|
|
return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
|
|
}
|
|
|
|
static void intel_pmu_disable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
|
|
intel_pmu_disable_bts();
|
|
intel_pmu_drain_bts_buffer();
|
|
return;
|
|
}
|
|
|
|
cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
|
|
cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
|
|
cpuc->intel_cp_status &= ~(1ull << hwc->idx);
|
|
|
|
/*
|
|
* must disable before any actual event
|
|
* because any event may be combined with LBR
|
|
*/
|
|
if (needs_branch_stack(event))
|
|
intel_pmu_lbr_disable(event);
|
|
|
|
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
|
|
intel_pmu_disable_fixed(hwc);
|
|
return;
|
|
}
|
|
|
|
x86_pmu_disable_event(event);
|
|
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_disable(event);
|
|
}
|
|
|
|
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
|
|
{
|
|
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
|
|
u64 ctrl_val, bits, mask;
|
|
|
|
/*
|
|
* Enable IRQ generation (0x8),
|
|
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
|
|
* if requested:
|
|
*/
|
|
bits = 0x8ULL;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
|
|
bits |= 0x2;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
|
|
bits |= 0x1;
|
|
|
|
/*
|
|
* ANY bit is supported in v3 and up
|
|
*/
|
|
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
|
|
bits |= 0x4;
|
|
|
|
bits <<= (idx * 4);
|
|
mask = 0xfULL << (idx * 4);
|
|
|
|
rdmsrl(hwc->config_base, ctrl_val);
|
|
ctrl_val &= ~mask;
|
|
ctrl_val |= bits;
|
|
wrmsrl(hwc->config_base, ctrl_val);
|
|
}
|
|
|
|
static void intel_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
|
|
if (!__this_cpu_read(cpu_hw_events.enabled))
|
|
return;
|
|
|
|
intel_pmu_enable_bts(hwc->config);
|
|
return;
|
|
}
|
|
/*
|
|
* must enabled before any actual event
|
|
* because any event may be combined with LBR
|
|
*/
|
|
if (needs_branch_stack(event))
|
|
intel_pmu_lbr_enable(event);
|
|
|
|
if (event->attr.exclude_host)
|
|
cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
|
|
if (event->attr.exclude_guest)
|
|
cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
|
|
|
|
if (unlikely(event_is_checkpointed(event)))
|
|
cpuc->intel_cp_status |= (1ull << hwc->idx);
|
|
|
|
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
|
|
intel_pmu_enable_fixed(hwc);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_enable(event);
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Save and restart an expired event. Called by NMI contexts,
|
|
* so it has to be careful about preempting normal event ops:
|
|
*/
|
|
int intel_pmu_save_and_restart(struct perf_event *event)
|
|
{
|
|
x86_perf_event_update(event);
|
|
/*
|
|
* For a checkpointed counter always reset back to 0. This
|
|
* avoids a situation where the counter overflows, aborts the
|
|
* transaction and is then set back to shortly before the
|
|
* overflow, and overflows and aborts again.
|
|
*/
|
|
if (unlikely(event_is_checkpointed(event))) {
|
|
/* No race with NMIs because the counter should not be armed */
|
|
wrmsrl(event->hw.event_base, 0);
|
|
local64_set(&event->hw.prev_count, 0);
|
|
}
|
|
return x86_perf_event_set_period(event);
|
|
}
|
|
|
|
static void intel_pmu_reset(void)
|
|
{
|
|
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
|
|
unsigned long flags;
|
|
int idx;
|
|
|
|
if (!x86_pmu.num_counters)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
|
|
wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
|
|
}
|
|
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
|
|
wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
|
|
|
|
if (ds)
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
|
|
/* Ack all overflows and disable fixed counters */
|
|
if (x86_pmu.version >= 2) {
|
|
intel_pmu_ack_status(intel_pmu_get_status());
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
}
|
|
|
|
/* Reset LBRs and LBR freezing */
|
|
if (x86_pmu.lbr_nr) {
|
|
update_debugctlmsr(get_debugctlmsr() &
|
|
~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* This handler is triggered by the local APIC, so the APIC IRQ handling
|
|
* rules apply:
|
|
*/
|
|
static int intel_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
int bit, loops;
|
|
u64 status;
|
|
int handled;
|
|
|
|
cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/*
|
|
* No known reason to not always do late ACK,
|
|
* but just in case do it opt-in.
|
|
*/
|
|
if (!x86_pmu.late_ack)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
__intel_pmu_disable_all();
|
|
handled = intel_pmu_drain_bts_buffer();
|
|
handled += intel_bts_interrupt();
|
|
status = intel_pmu_get_status();
|
|
if (!status)
|
|
goto done;
|
|
|
|
loops = 0;
|
|
again:
|
|
intel_pmu_ack_status(status);
|
|
if (++loops > 100) {
|
|
static bool warned = false;
|
|
if (!warned) {
|
|
WARN(1, "perfevents: irq loop stuck!\n");
|
|
perf_event_print_debug();
|
|
warned = true;
|
|
}
|
|
intel_pmu_reset();
|
|
goto done;
|
|
}
|
|
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
intel_pmu_lbr_read();
|
|
|
|
/*
|
|
* CondChgd bit 63 doesn't mean any overflow status. Ignore
|
|
* and clear the bit.
|
|
*/
|
|
if (__test_and_clear_bit(63, (unsigned long *)&status)) {
|
|
if (!status)
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* PEBS overflow sets bit 62 in the global status register
|
|
*/
|
|
if (__test_and_clear_bit(62, (unsigned long *)&status)) {
|
|
handled++;
|
|
x86_pmu.drain_pebs(regs);
|
|
}
|
|
|
|
/*
|
|
* Intel PT
|
|
*/
|
|
if (__test_and_clear_bit(55, (unsigned long *)&status)) {
|
|
handled++;
|
|
intel_pt_interrupt();
|
|
}
|
|
|
|
/*
|
|
* Checkpointed counters can lead to 'spurious' PMIs because the
|
|
* rollback caused by the PMI will have cleared the overflow status
|
|
* bit. Therefore always force probe these counters.
|
|
*/
|
|
status |= cpuc->intel_cp_status;
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
|
|
struct perf_event *event = cpuc->events[bit];
|
|
|
|
handled++;
|
|
|
|
if (!test_bit(bit, cpuc->active_mask))
|
|
continue;
|
|
|
|
if (!intel_pmu_save_and_restart(event))
|
|
continue;
|
|
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
if (has_branch_stack(event))
|
|
data.br_stack = &cpuc->lbr_stack;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
/*
|
|
* Repeat if there is more work to be done:
|
|
*/
|
|
status = intel_pmu_get_status();
|
|
if (status)
|
|
goto again;
|
|
|
|
done:
|
|
__intel_pmu_enable_all(0, true);
|
|
/*
|
|
* Only unmask the NMI after the overflow counters
|
|
* have been reset. This avoids spurious NMIs on
|
|
* Haswell CPUs.
|
|
*/
|
|
if (x86_pmu.late_ack)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
return handled;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_bts_constraints(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned int hw_event, bts_event;
|
|
|
|
if (event->attr.freq)
|
|
return NULL;
|
|
|
|
hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
|
|
bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
|
|
|
|
if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
|
|
return &bts_constraint;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int intel_alt_er(int idx)
|
|
{
|
|
if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
|
|
return idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0)
|
|
return EXTRA_REG_RSP_1;
|
|
|
|
if (idx == EXTRA_REG_RSP_1)
|
|
return EXTRA_REG_RSP_0;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static void intel_fixup_er(struct perf_event *event, int idx)
|
|
{
|
|
event->hw.extra_reg.idx = idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
|
|
} else if (idx == EXTRA_REG_RSP_1) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* manage allocation of shared extra msr for certain events
|
|
*
|
|
* sharing can be:
|
|
* per-cpu: to be shared between the various events on a single PMU
|
|
* per-core: per-cpu + shared by HT threads
|
|
*/
|
|
static struct event_constraint *
|
|
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct event_constraint *c = &emptyconstraint;
|
|
struct er_account *era;
|
|
unsigned long flags;
|
|
int idx = reg->idx;
|
|
|
|
/*
|
|
* reg->alloc can be set due to existing state, so for fake cpuc we
|
|
* need to ignore this, otherwise we might fail to allocate proper fake
|
|
* state for this extra reg constraint. Also see the comment below.
|
|
*/
|
|
if (reg->alloc && !cpuc->is_fake)
|
|
return NULL; /* call x86_get_event_constraint() */
|
|
|
|
again:
|
|
era = &cpuc->shared_regs->regs[idx];
|
|
/*
|
|
* we use spin_lock_irqsave() to avoid lockdep issues when
|
|
* passing a fake cpuc
|
|
*/
|
|
raw_spin_lock_irqsave(&era->lock, flags);
|
|
|
|
if (!atomic_read(&era->ref) || era->config == reg->config) {
|
|
|
|
/*
|
|
* If its a fake cpuc -- as per validate_{group,event}() we
|
|
* shouldn't touch event state and we can avoid doing so
|
|
* since both will only call get_event_constraints() once
|
|
* on each event, this avoids the need for reg->alloc.
|
|
*
|
|
* Not doing the ER fixup will only result in era->reg being
|
|
* wrong, but since we won't actually try and program hardware
|
|
* this isn't a problem either.
|
|
*/
|
|
if (!cpuc->is_fake) {
|
|
if (idx != reg->idx)
|
|
intel_fixup_er(event, idx);
|
|
|
|
/*
|
|
* x86_schedule_events() can call get_event_constraints()
|
|
* multiple times on events in the case of incremental
|
|
* scheduling(). reg->alloc ensures we only do the ER
|
|
* allocation once.
|
|
*/
|
|
reg->alloc = 1;
|
|
}
|
|
|
|
/* lock in msr value */
|
|
era->config = reg->config;
|
|
era->reg = reg->reg;
|
|
|
|
/* one more user */
|
|
atomic_inc(&era->ref);
|
|
|
|
/*
|
|
* need to call x86_get_event_constraint()
|
|
* to check if associated event has constraints
|
|
*/
|
|
c = NULL;
|
|
} else {
|
|
idx = intel_alt_er(idx);
|
|
if (idx != reg->idx) {
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
goto again;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
|
|
return c;
|
|
}
|
|
|
|
static void
|
|
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct er_account *era;
|
|
|
|
/*
|
|
* Only put constraint if extra reg was actually allocated. Also takes
|
|
* care of event which do not use an extra shared reg.
|
|
*
|
|
* Also, if this is a fake cpuc we shouldn't touch any event state
|
|
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
|
|
* either since it'll be thrown out.
|
|
*/
|
|
if (!reg->alloc || cpuc->is_fake)
|
|
return;
|
|
|
|
era = &cpuc->shared_regs->regs[reg->idx];
|
|
|
|
/* one fewer user */
|
|
atomic_dec(&era->ref);
|
|
|
|
/* allocate again next time */
|
|
reg->alloc = 0;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c = NULL, *d;
|
|
struct hw_perf_event_extra *xreg, *breg;
|
|
|
|
xreg = &event->hw.extra_reg;
|
|
if (xreg->idx != EXTRA_REG_NONE) {
|
|
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
|
|
if (c == &emptyconstraint)
|
|
return c;
|
|
}
|
|
breg = &event->hw.branch_reg;
|
|
if (breg->idx != EXTRA_REG_NONE) {
|
|
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
|
|
if (d == &emptyconstraint) {
|
|
__intel_shared_reg_put_constraints(cpuc, xreg);
|
|
c = d;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct event_constraint *
|
|
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
if (x86_pmu.event_constraints) {
|
|
for_each_event_constraint(c, x86_pmu.event_constraints) {
|
|
if ((event->hw.config & c->cmask) == c->code) {
|
|
event->hw.flags |= c->flags;
|
|
return c;
|
|
}
|
|
}
|
|
}
|
|
|
|
return &unconstrained;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_bts_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_shared_regs_constraints(cpuc, event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_pebs_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
return x86_get_event_constraints(cpuc, idx, event);
|
|
}
|
|
|
|
static void
|
|
intel_start_scheduling(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct intel_excl_states *xl;
|
|
int tid = cpuc->excl_thread_id;
|
|
|
|
/*
|
|
* nothing needed if in group validation mode
|
|
*/
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return;
|
|
|
|
/*
|
|
* no exclusion needed
|
|
*/
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
xl = &excl_cntrs->states[tid];
|
|
|
|
xl->sched_started = true;
|
|
/*
|
|
* lock shared state until we are done scheduling
|
|
* in stop_event_scheduling()
|
|
* makes scheduling appear as a transaction
|
|
*/
|
|
raw_spin_lock(&excl_cntrs->lock);
|
|
|
|
/*
|
|
* Save a copy of our state to work on.
|
|
*/
|
|
memcpy(xl->init_state, xl->state, sizeof(xl->init_state));
|
|
}
|
|
|
|
static void
|
|
intel_stop_scheduling(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct intel_excl_states *xl;
|
|
int tid = cpuc->excl_thread_id;
|
|
|
|
/*
|
|
* nothing needed if in group validation mode
|
|
*/
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return;
|
|
/*
|
|
* no exclusion needed
|
|
*/
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
xl = &excl_cntrs->states[tid];
|
|
|
|
/*
|
|
* Commit the working state.
|
|
*/
|
|
memcpy(xl->state, xl->init_state, sizeof(xl->state));
|
|
|
|
xl->sched_started = false;
|
|
/*
|
|
* release shared state lock (acquired in intel_start_scheduling())
|
|
*/
|
|
raw_spin_unlock(&excl_cntrs->lock);
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
|
|
int idx, struct event_constraint *c)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct intel_excl_states *xlo;
|
|
int tid = cpuc->excl_thread_id;
|
|
int is_excl, i;
|
|
|
|
/*
|
|
* validating a group does not require
|
|
* enforcing cross-thread exclusion
|
|
*/
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return c;
|
|
|
|
/*
|
|
* no exclusion needed
|
|
*/
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return c;
|
|
|
|
/*
|
|
* because we modify the constraint, we need
|
|
* to make a copy. Static constraints come
|
|
* from static const tables.
|
|
*
|
|
* only needed when constraint has not yet
|
|
* been cloned (marked dynamic)
|
|
*/
|
|
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
|
|
struct event_constraint *cx;
|
|
|
|
/* sanity check */
|
|
if (idx < 0)
|
|
return &emptyconstraint;
|
|
|
|
/*
|
|
* grab pre-allocated constraint entry
|
|
*/
|
|
cx = &cpuc->constraint_list[idx];
|
|
|
|
/*
|
|
* initialize dynamic constraint
|
|
* with static constraint
|
|
*/
|
|
*cx = *c;
|
|
|
|
/*
|
|
* mark constraint as dynamic, so we
|
|
* can free it later on
|
|
*/
|
|
cx->flags |= PERF_X86_EVENT_DYNAMIC;
|
|
c = cx;
|
|
}
|
|
|
|
/*
|
|
* From here on, the constraint is dynamic.
|
|
* Either it was just allocated above, or it
|
|
* was allocated during a earlier invocation
|
|
* of this function
|
|
*/
|
|
|
|
/*
|
|
* state of sibling HT
|
|
*/
|
|
xlo = &excl_cntrs->states[tid ^ 1];
|
|
|
|
/*
|
|
* event requires exclusive counter access
|
|
* across HT threads
|
|
*/
|
|
is_excl = c->flags & PERF_X86_EVENT_EXCL;
|
|
if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
|
|
event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
|
|
if (!cpuc->n_excl++)
|
|
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
|
|
}
|
|
|
|
/*
|
|
* Modify static constraint with current dynamic
|
|
* state of thread
|
|
*
|
|
* EXCLUSIVE: sibling counter measuring exclusive event
|
|
* SHARED : sibling counter measuring non-exclusive event
|
|
* UNUSED : sibling counter unused
|
|
*/
|
|
for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
|
|
/*
|
|
* exclusive event in sibling counter
|
|
* our corresponding counter cannot be used
|
|
* regardless of our event
|
|
*/
|
|
if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
|
|
__clear_bit(i, c->idxmsk);
|
|
/*
|
|
* if measuring an exclusive event, sibling
|
|
* measuring non-exclusive, then counter cannot
|
|
* be used
|
|
*/
|
|
if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
|
|
__clear_bit(i, c->idxmsk);
|
|
}
|
|
|
|
/*
|
|
* recompute actual bit weight for scheduling algorithm
|
|
*/
|
|
c->weight = hweight64(c->idxmsk64);
|
|
|
|
/*
|
|
* if we return an empty mask, then switch
|
|
* back to static empty constraint to avoid
|
|
* the cost of freeing later on
|
|
*/
|
|
if (c->weight == 0)
|
|
c = &emptyconstraint;
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c1 = cpuc->event_constraint[idx];
|
|
struct event_constraint *c2;
|
|
|
|
/*
|
|
* first time only
|
|
* - static constraint: no change across incremental scheduling calls
|
|
* - dynamic constraint: handled by intel_get_excl_constraints()
|
|
*/
|
|
c2 = __intel_get_event_constraints(cpuc, idx, event);
|
|
if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
|
|
bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
|
|
c1->weight = c2->weight;
|
|
c2 = c1;
|
|
}
|
|
|
|
if (cpuc->excl_cntrs)
|
|
return intel_get_excl_constraints(cpuc, event, idx, c2);
|
|
|
|
return c2;
|
|
}
|
|
|
|
static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
int tid = cpuc->excl_thread_id;
|
|
struct intel_excl_states *xl;
|
|
unsigned long flags = 0; /* keep compiler happy */
|
|
|
|
/*
|
|
* nothing needed if in group validation mode
|
|
*/
|
|
if (cpuc->is_fake)
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
xl = &excl_cntrs->states[tid];
|
|
if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
|
|
hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
|
|
if (!--cpuc->n_excl)
|
|
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
|
|
}
|
|
|
|
/*
|
|
* put_constraint may be called from x86_schedule_events()
|
|
* which already has the lock held so here make locking
|
|
* conditional
|
|
*/
|
|
if (!xl->sched_started)
|
|
raw_spin_lock_irqsave(&excl_cntrs->lock, flags);
|
|
|
|
/*
|
|
* if event was actually assigned, then mark the
|
|
* counter state as unused now
|
|
*/
|
|
if (hwc->idx >= 0)
|
|
xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
|
|
|
|
if (!xl->sched_started)
|
|
raw_spin_unlock_irqrestore(&excl_cntrs->lock, flags);
|
|
}
|
|
|
|
static void
|
|
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
|
|
reg = &event->hw.extra_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
|
|
reg = &event->hw.branch_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
}
|
|
|
|
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
intel_put_shared_regs_event_constraints(cpuc, event);
|
|
|
|
/*
|
|
* is PMU has exclusive counter restrictions, then
|
|
* all events are subject to and must call the
|
|
* put_excl_constraints() routine
|
|
*/
|
|
if (cpuc->excl_cntrs)
|
|
intel_put_excl_constraints(cpuc, event);
|
|
}
|
|
|
|
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct event_constraint *c = cpuc->event_constraint[idx];
|
|
struct intel_excl_states *xl;
|
|
int tid = cpuc->excl_thread_id;
|
|
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
|
|
return;
|
|
|
|
xl = &excl_cntrs->states[tid];
|
|
|
|
lockdep_assert_held(&excl_cntrs->lock);
|
|
|
|
if (cntr >= 0) {
|
|
if (c->flags & PERF_X86_EVENT_EXCL)
|
|
xl->init_state[cntr] = INTEL_EXCL_EXCLUSIVE;
|
|
else
|
|
xl->init_state[cntr] = INTEL_EXCL_SHARED;
|
|
}
|
|
}
|
|
|
|
static void intel_pebs_aliases_core2(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use INST_RETIRED.ANY_P
|
|
* (0x00c0), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* INST_RETIRED.ANY_P counts the number of cycles that retires
|
|
* CNTMASK instructions. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of instructions that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less instructions, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static void intel_pebs_aliases_snb(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use UOPS_RETIRED.ALL
|
|
* (0x01c2), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* UOPS_RETIRED.ALL counts the number of cycles that retires
|
|
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of micro-ops that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less micro-ops, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static int intel_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = x86_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (event->attr.precise_ip && x86_pmu.pebs_aliases)
|
|
x86_pmu.pebs_aliases(event);
|
|
|
|
if (needs_branch_stack(event)) {
|
|
ret = intel_pmu_setup_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* BTS is set up earlier in this path, so don't account twice
|
|
*/
|
|
if (!intel_pmu_has_bts(event)) {
|
|
/* disallow lbr if conflicting events are present */
|
|
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
|
|
return -EBUSY;
|
|
|
|
event->destroy = hw_perf_lbr_event_destroy;
|
|
}
|
|
}
|
|
|
|
if (event->attr.type != PERF_TYPE_RAW)
|
|
return 0;
|
|
|
|
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
|
|
return 0;
|
|
|
|
if (x86_pmu.version < 3)
|
|
return -EINVAL;
|
|
|
|
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
|
|
{
|
|
if (x86_pmu.guest_get_msrs)
|
|
return x86_pmu.guest_get_msrs(nr);
|
|
*nr = 0;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
|
|
|
|
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
|
|
arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
|
|
arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
|
|
arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
|
|
/*
|
|
* If PMU counter has PEBS enabled it is not enough to disable counter
|
|
* on a guest entry since PEBS memory write can overshoot guest entry
|
|
* and corrupt guest memory. Disabling PEBS solves the problem.
|
|
*/
|
|
arr[1].msr = MSR_IA32_PEBS_ENABLE;
|
|
arr[1].host = cpuc->pebs_enabled;
|
|
arr[1].guest = 0;
|
|
|
|
*nr = 2;
|
|
return arr;
|
|
}
|
|
|
|
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct perf_event *event = cpuc->events[idx];
|
|
|
|
arr[idx].msr = x86_pmu_config_addr(idx);
|
|
arr[idx].host = arr[idx].guest = 0;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
arr[idx].host = arr[idx].guest =
|
|
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
|
|
if (event->attr.exclude_host)
|
|
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
else if (event->attr.exclude_guest)
|
|
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
}
|
|
|
|
*nr = x86_pmu.num_counters;
|
|
return arr;
|
|
}
|
|
|
|
static void core_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
if (!event->attr.exclude_host)
|
|
x86_pmu_enable_event(event);
|
|
}
|
|
|
|
static void core_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask) ||
|
|
cpuc->events[idx]->attr.exclude_host)
|
|
continue;
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
}
|
|
|
|
static int hsw_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = intel_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
|
|
return 0;
|
|
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
|
|
|
|
/*
|
|
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
|
|
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
|
|
* this combination.
|
|
*/
|
|
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
|
|
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
|
|
event->attr.precise_ip > 0))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (event_is_checkpointed(event)) {
|
|
/*
|
|
* Sampling of checkpointed events can cause situations where
|
|
* the CPU constantly aborts because of a overflow, which is
|
|
* then checkpointed back and ignored. Forbid checkpointing
|
|
* for sampling.
|
|
*
|
|
* But still allow a long sampling period, so that perf stat
|
|
* from KVM works.
|
|
*/
|
|
if (event->attr.sample_period > 0 &&
|
|
event->attr.sample_period < 0x7fffffff)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct event_constraint counter2_constraint =
|
|
EVENT_CONSTRAINT(0, 0x4, 0);
|
|
|
|
static struct event_constraint *
|
|
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_get_event_constraints(cpuc, idx, event);
|
|
|
|
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
|
|
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
|
|
if (c->idxmsk64 & (1U << 2))
|
|
return &counter2_constraint;
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Broadwell:
|
|
*
|
|
* The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
|
|
* (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
|
|
* the two to enforce a minimum period of 128 (the smallest value that has bits
|
|
* 0-5 cleared and >= 100).
|
|
*
|
|
* Because of how the code in x86_perf_event_set_period() works, the truncation
|
|
* of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
|
|
* to make up for the 'lost' events due to carrying the 'error' in period_left.
|
|
*
|
|
* Therefore the effective (average) period matches the requested period,
|
|
* despite coarser hardware granularity.
|
|
*/
|
|
static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
|
|
{
|
|
if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
|
|
X86_CONFIG(.event=0xc0, .umask=0x01)) {
|
|
if (left < 128)
|
|
left = 128;
|
|
left &= ~0x3fu;
|
|
}
|
|
return left;
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7" );
|
|
PMU_FORMAT_ATTR(umask, "config:8-15" );
|
|
PMU_FORMAT_ATTR(edge, "config:18" );
|
|
PMU_FORMAT_ATTR(pc, "config:19" );
|
|
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
|
|
PMU_FORMAT_ATTR(inv, "config:23" );
|
|
PMU_FORMAT_ATTR(cmask, "config:24-31" );
|
|
PMU_FORMAT_ATTR(in_tx, "config:32");
|
|
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
|
|
|
|
static struct attribute *intel_arch_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
NULL,
|
|
};
|
|
|
|
ssize_t intel_event_sysfs_show(char *page, u64 config)
|
|
{
|
|
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
|
|
|
|
return x86_event_sysfs_show(page, config, event);
|
|
}
|
|
|
|
struct intel_shared_regs *allocate_shared_regs(int cpu)
|
|
{
|
|
struct intel_shared_regs *regs;
|
|
int i;
|
|
|
|
regs = kzalloc_node(sizeof(struct intel_shared_regs),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (regs) {
|
|
/*
|
|
* initialize the locks to keep lockdep happy
|
|
*/
|
|
for (i = 0; i < EXTRA_REG_MAX; i++)
|
|
raw_spin_lock_init(®s->regs[i].lock);
|
|
|
|
regs->core_id = -1;
|
|
}
|
|
return regs;
|
|
}
|
|
|
|
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
|
|
{
|
|
struct intel_excl_cntrs *c;
|
|
int i;
|
|
|
|
c = kzalloc_node(sizeof(struct intel_excl_cntrs),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (c) {
|
|
raw_spin_lock_init(&c->lock);
|
|
for (i = 0; i < X86_PMC_IDX_MAX; i++) {
|
|
c->states[0].state[i] = INTEL_EXCL_UNUSED;
|
|
c->states[0].init_state[i] = INTEL_EXCL_UNUSED;
|
|
|
|
c->states[1].state[i] = INTEL_EXCL_UNUSED;
|
|
c->states[1].init_state[i] = INTEL_EXCL_UNUSED;
|
|
}
|
|
c->core_id = -1;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static int intel_pmu_cpu_prepare(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
|
|
cpuc->shared_regs = allocate_shared_regs(cpu);
|
|
if (!cpuc->shared_regs)
|
|
return NOTIFY_BAD;
|
|
}
|
|
|
|
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
|
|
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
|
|
|
|
cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
|
|
if (!cpuc->constraint_list)
|
|
return NOTIFY_BAD;
|
|
|
|
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
|
|
if (!cpuc->excl_cntrs) {
|
|
kfree(cpuc->constraint_list);
|
|
kfree(cpuc->shared_regs);
|
|
return NOTIFY_BAD;
|
|
}
|
|
cpuc->excl_thread_id = 0;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static void intel_pmu_cpu_starting(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int core_id = topology_core_id(cpu);
|
|
int i;
|
|
|
|
init_debug_store_on_cpu(cpu);
|
|
/*
|
|
* Deal with CPUs that don't clear their LBRs on power-up.
|
|
*/
|
|
intel_pmu_lbr_reset();
|
|
|
|
cpuc->lbr_sel = NULL;
|
|
|
|
if (!cpuc->shared_regs)
|
|
return;
|
|
|
|
if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
|
|
void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
|
|
|
|
for_each_cpu(i, topology_thread_cpumask(cpu)) {
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = per_cpu(cpu_hw_events, i).shared_regs;
|
|
if (pc && pc->core_id == core_id) {
|
|
*onln = cpuc->shared_regs;
|
|
cpuc->shared_regs = pc;
|
|
break;
|
|
}
|
|
}
|
|
cpuc->shared_regs->core_id = core_id;
|
|
cpuc->shared_regs->refcnt++;
|
|
}
|
|
|
|
if (x86_pmu.lbr_sel_map)
|
|
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
|
|
|
|
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
|
|
for_each_cpu(i, topology_thread_cpumask(cpu)) {
|
|
struct intel_excl_cntrs *c;
|
|
|
|
c = per_cpu(cpu_hw_events, i).excl_cntrs;
|
|
if (c && c->core_id == core_id) {
|
|
cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
|
|
cpuc->excl_cntrs = c;
|
|
cpuc->excl_thread_id = 1;
|
|
break;
|
|
}
|
|
}
|
|
cpuc->excl_cntrs->core_id = core_id;
|
|
cpuc->excl_cntrs->refcnt++;
|
|
}
|
|
}
|
|
|
|
static void free_excl_cntrs(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
struct intel_excl_cntrs *c;
|
|
|
|
c = cpuc->excl_cntrs;
|
|
if (c) {
|
|
if (c->core_id == -1 || --c->refcnt == 0)
|
|
kfree(c);
|
|
cpuc->excl_cntrs = NULL;
|
|
kfree(cpuc->constraint_list);
|
|
cpuc->constraint_list = NULL;
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_cpu_dying(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = cpuc->shared_regs;
|
|
if (pc) {
|
|
if (pc->core_id == -1 || --pc->refcnt == 0)
|
|
kfree(pc);
|
|
cpuc->shared_regs = NULL;
|
|
}
|
|
|
|
free_excl_cntrs(cpu);
|
|
|
|
fini_debug_store_on_cpu(cpu);
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
|
|
|
|
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
|
|
|
|
static struct attribute *intel_arch3_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_any.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
&format_attr_in_tx.attr,
|
|
&format_attr_in_tx_cp.attr,
|
|
|
|
&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
|
|
&format_attr_ldlat.attr, /* PEBS load latency */
|
|
NULL,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu core_pmu = {
|
|
.name = "core",
|
|
.handle_irq = x86_pmu_handle_irq,
|
|
.disable_all = x86_pmu_disable_all,
|
|
.enable_all = core_pmu_enable_all,
|
|
.enable = core_pmu_enable_event,
|
|
.disable = x86_pmu_disable_event,
|
|
.hw_config = x86_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32-bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL<<31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.event_constraints = intel_core_event_constraints,
|
|
.guest_get_msrs = core_guest_get_msrs,
|
|
.format_attrs = intel_arch_formats_attr,
|
|
.events_sysfs_show = intel_event_sysfs_show,
|
|
|
|
/*
|
|
* Virtual (or funny metal) CPU can define x86_pmu.extra_regs
|
|
* together with PMU version 1 and thus be using core_pmu with
|
|
* shared_regs. We need following callbacks here to allocate
|
|
* it properly.
|
|
*/
|
|
.cpu_prepare = intel_pmu_cpu_prepare,
|
|
.cpu_starting = intel_pmu_cpu_starting,
|
|
.cpu_dying = intel_pmu_cpu_dying,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu intel_pmu = {
|
|
.name = "Intel",
|
|
.handle_irq = intel_pmu_handle_irq,
|
|
.disable_all = intel_pmu_disable_all,
|
|
.enable_all = intel_pmu_enable_all,
|
|
.enable = intel_pmu_enable_event,
|
|
.disable = intel_pmu_disable_event,
|
|
.hw_config = intel_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32 bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL << 31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.pebs_aliases = intel_pebs_aliases_core2,
|
|
|
|
.format_attrs = intel_arch3_formats_attr,
|
|
.events_sysfs_show = intel_event_sysfs_show,
|
|
|
|
.cpu_prepare = intel_pmu_cpu_prepare,
|
|
.cpu_starting = intel_pmu_cpu_starting,
|
|
.cpu_dying = intel_pmu_cpu_dying,
|
|
.guest_get_msrs = intel_guest_get_msrs,
|
|
.sched_task = intel_pmu_lbr_sched_task,
|
|
};
|
|
|
|
static __init void intel_clovertown_quirk(void)
|
|
{
|
|
/*
|
|
* PEBS is unreliable due to:
|
|
*
|
|
* AJ67 - PEBS may experience CPL leaks
|
|
* AJ68 - PEBS PMI may be delayed by one event
|
|
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
|
|
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
|
|
*
|
|
* AJ67 could be worked around by restricting the OS/USR flags.
|
|
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
|
|
*
|
|
* AJ106 could possibly be worked around by not allowing LBR
|
|
* usage from PEBS, including the fixup.
|
|
* AJ68 could possibly be worked around by always programming
|
|
* a pebs_event_reset[0] value and coping with the lost events.
|
|
*
|
|
* But taken together it might just make sense to not enable PEBS on
|
|
* these chips.
|
|
*/
|
|
pr_warn("PEBS disabled due to CPU errata\n");
|
|
x86_pmu.pebs = 0;
|
|
x86_pmu.pebs_constraints = NULL;
|
|
}
|
|
|
|
static int intel_snb_pebs_broken(int cpu)
|
|
{
|
|
u32 rev = UINT_MAX; /* default to broken for unknown models */
|
|
|
|
switch (cpu_data(cpu).x86_model) {
|
|
case 42: /* SNB */
|
|
rev = 0x28;
|
|
break;
|
|
|
|
case 45: /* SNB-EP */
|
|
switch (cpu_data(cpu).x86_mask) {
|
|
case 6: rev = 0x618; break;
|
|
case 7: rev = 0x70c; break;
|
|
}
|
|
}
|
|
|
|
return (cpu_data(cpu).microcode < rev);
|
|
}
|
|
|
|
static void intel_snb_check_microcode(void)
|
|
{
|
|
int pebs_broken = 0;
|
|
int cpu;
|
|
|
|
get_online_cpus();
|
|
for_each_online_cpu(cpu) {
|
|
if ((pebs_broken = intel_snb_pebs_broken(cpu)))
|
|
break;
|
|
}
|
|
put_online_cpus();
|
|
|
|
if (pebs_broken == x86_pmu.pebs_broken)
|
|
return;
|
|
|
|
/*
|
|
* Serialized by the microcode lock..
|
|
*/
|
|
if (x86_pmu.pebs_broken) {
|
|
pr_info("PEBS enabled due to microcode update\n");
|
|
x86_pmu.pebs_broken = 0;
|
|
} else {
|
|
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
|
|
x86_pmu.pebs_broken = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Under certain circumstances, access certain MSR may cause #GP.
|
|
* The function tests if the input MSR can be safely accessed.
|
|
*/
|
|
static bool check_msr(unsigned long msr, u64 mask)
|
|
{
|
|
u64 val_old, val_new, val_tmp;
|
|
|
|
/*
|
|
* Read the current value, change it and read it back to see if it
|
|
* matches, this is needed to detect certain hardware emulators
|
|
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
|
|
*/
|
|
if (rdmsrl_safe(msr, &val_old))
|
|
return false;
|
|
|
|
/*
|
|
* Only change the bits which can be updated by wrmsrl.
|
|
*/
|
|
val_tmp = val_old ^ mask;
|
|
if (wrmsrl_safe(msr, val_tmp) ||
|
|
rdmsrl_safe(msr, &val_new))
|
|
return false;
|
|
|
|
if (val_new != val_tmp)
|
|
return false;
|
|
|
|
/* Here it's sure that the MSR can be safely accessed.
|
|
* Restore the old value and return.
|
|
*/
|
|
wrmsrl(msr, val_old);
|
|
|
|
return true;
|
|
}
|
|
|
|
static __init void intel_sandybridge_quirk(void)
|
|
{
|
|
x86_pmu.check_microcode = intel_snb_check_microcode;
|
|
intel_snb_check_microcode();
|
|
}
|
|
|
|
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
|
|
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
|
|
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
|
|
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
|
|
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
|
|
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
|
|
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
|
|
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
|
|
};
|
|
|
|
static __init void intel_arch_events_quirk(void)
|
|
{
|
|
int bit;
|
|
|
|
/* disable event that reported as not presend by cpuid */
|
|
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
|
|
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
|
|
pr_warn("CPUID marked event: \'%s\' unavailable\n",
|
|
intel_arch_events_map[bit].name);
|
|
}
|
|
}
|
|
|
|
static __init void intel_nehalem_quirk(void)
|
|
{
|
|
union cpuid10_ebx ebx;
|
|
|
|
ebx.full = x86_pmu.events_maskl;
|
|
if (ebx.split.no_branch_misses_retired) {
|
|
/*
|
|
* Erratum AAJ80 detected, we work it around by using
|
|
* the BR_MISP_EXEC.ANY event. This will over-count
|
|
* branch-misses, but it's still much better than the
|
|
* architectural event which is often completely bogus:
|
|
*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
|
|
ebx.split.no_branch_misses_retired = 0;
|
|
x86_pmu.events_maskl = ebx.full;
|
|
pr_info("CPU erratum AAJ80 worked around\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* enable software workaround for errata:
|
|
* SNB: BJ122
|
|
* IVB: BV98
|
|
* HSW: HSD29
|
|
*
|
|
* Only needed when HT is enabled. However detecting
|
|
* if HT is enabled is difficult (model specific). So instead,
|
|
* we enable the workaround in the early boot, and verify if
|
|
* it is needed in a later initcall phase once we have valid
|
|
* topology information to check if HT is actually enabled
|
|
*/
|
|
static __init void intel_ht_bug(void)
|
|
{
|
|
x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
|
|
|
|
x86_pmu.commit_scheduling = intel_commit_scheduling;
|
|
x86_pmu.start_scheduling = intel_start_scheduling;
|
|
x86_pmu.stop_scheduling = intel_stop_scheduling;
|
|
}
|
|
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
|
|
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
|
|
|
|
/* Haswell special events */
|
|
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
|
|
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
|
|
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
|
|
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
|
|
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
|
|
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
|
|
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
|
|
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
|
|
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
|
|
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
|
|
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
|
|
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
|
|
|
|
static struct attribute *hsw_events_attrs[] = {
|
|
EVENT_PTR(tx_start),
|
|
EVENT_PTR(tx_commit),
|
|
EVENT_PTR(tx_abort),
|
|
EVENT_PTR(tx_capacity),
|
|
EVENT_PTR(tx_conflict),
|
|
EVENT_PTR(el_start),
|
|
EVENT_PTR(el_commit),
|
|
EVENT_PTR(el_abort),
|
|
EVENT_PTR(el_capacity),
|
|
EVENT_PTR(el_conflict),
|
|
EVENT_PTR(cycles_t),
|
|
EVENT_PTR(cycles_ct),
|
|
EVENT_PTR(mem_ld_hsw),
|
|
EVENT_PTR(mem_st_hsw),
|
|
NULL
|
|
};
|
|
|
|
__init int intel_pmu_init(void)
|
|
{
|
|
union cpuid10_edx edx;
|
|
union cpuid10_eax eax;
|
|
union cpuid10_ebx ebx;
|
|
struct event_constraint *c;
|
|
unsigned int unused;
|
|
struct extra_reg *er;
|
|
int version, i;
|
|
|
|
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
|
|
switch (boot_cpu_data.x86) {
|
|
case 0x6:
|
|
return p6_pmu_init();
|
|
case 0xb:
|
|
return knc_pmu_init();
|
|
case 0xf:
|
|
return p4_pmu_init();
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Check whether the Architectural PerfMon supports
|
|
* Branch Misses Retired hw_event or not.
|
|
*/
|
|
cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
|
|
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
|
|
return -ENODEV;
|
|
|
|
version = eax.split.version_id;
|
|
if (version < 2)
|
|
x86_pmu = core_pmu;
|
|
else
|
|
x86_pmu = intel_pmu;
|
|
|
|
x86_pmu.version = version;
|
|
x86_pmu.num_counters = eax.split.num_counters;
|
|
x86_pmu.cntval_bits = eax.split.bit_width;
|
|
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
|
|
|
|
x86_pmu.events_maskl = ebx.full;
|
|
x86_pmu.events_mask_len = eax.split.mask_length;
|
|
|
|
x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
|
|
|
|
/*
|
|
* Quirk: v2 perfmon does not report fixed-purpose events, so
|
|
* assume at least 3 events:
|
|
*/
|
|
if (version > 1)
|
|
x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PDCM)) {
|
|
u64 capabilities;
|
|
|
|
rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
|
|
x86_pmu.intel_cap.capabilities = capabilities;
|
|
}
|
|
|
|
intel_ds_init();
|
|
|
|
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
|
|
|
|
/*
|
|
* Install the hw-cache-events table:
|
|
*/
|
|
switch (boot_cpu_data.x86_model) {
|
|
case 14: /* 65nm Core "Yonah" */
|
|
pr_cont("Core events, ");
|
|
break;
|
|
|
|
case 15: /* 65nm Core2 "Merom" */
|
|
x86_add_quirk(intel_clovertown_quirk);
|
|
case 22: /* 65nm Core2 "Merom-L" */
|
|
case 23: /* 45nm Core2 "Penryn" */
|
|
case 29: /* 45nm Core2 "Dunnington (MP) */
|
|
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_core();
|
|
|
|
x86_pmu.event_constraints = intel_core2_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
|
|
pr_cont("Core2 events, ");
|
|
break;
|
|
|
|
case 30: /* 45nm Nehalem */
|
|
case 26: /* 45nm Nehalem-EP */
|
|
case 46: /* 45nm Nehalem-EX */
|
|
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_nehalem_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.extra_regs = intel_nehalem_extra_regs;
|
|
|
|
x86_pmu.cpu_events = nhm_events_attrs;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
x86_add_quirk(intel_nehalem_quirk);
|
|
|
|
pr_cont("Nehalem events, ");
|
|
break;
|
|
|
|
case 28: /* 45nm Atom "Pineview" */
|
|
case 38: /* 45nm Atom "Lincroft" */
|
|
case 39: /* 32nm Atom "Penwell" */
|
|
case 53: /* 32nm Atom "Cloverview" */
|
|
case 54: /* 32nm Atom "Cedarview" */
|
|
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_atom();
|
|
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
|
|
pr_cont("Atom events, ");
|
|
break;
|
|
|
|
case 55: /* 22nm Atom "Silvermont" */
|
|
case 76: /* 14nm Atom "Airmont" */
|
|
case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
|
|
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_atom();
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_slm_extra_regs;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
pr_cont("Silvermont events, ");
|
|
break;
|
|
|
|
case 37: /* 32nm Westmere */
|
|
case 44: /* 32nm Westmere-EP */
|
|
case 47: /* 32nm Westmere-EX */
|
|
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_westmere_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_westmere_extra_regs;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
|
|
x86_pmu.cpu_events = nhm_events_attrs;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
pr_cont("Westmere events, ");
|
|
break;
|
|
|
|
case 42: /* 32nm SandyBridge */
|
|
case 45: /* 32nm SandyBridge-E/EN/EP */
|
|
x86_add_quirk(intel_sandybridge_quirk);
|
|
x86_add_quirk(intel_ht_bug);
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_snb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
if (boot_cpu_data.x86_model == 45)
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
else
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
|
|
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.cpu_events = snb_events_attrs;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
pr_cont("SandyBridge events, ");
|
|
break;
|
|
|
|
case 58: /* 22nm IvyBridge */
|
|
case 62: /* 22nm IvyBridge-EP/EX */
|
|
x86_add_quirk(intel_ht_bug);
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
/* dTLB-load-misses on IVB is different than SNB */
|
|
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
|
|
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_ivb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
if (boot_cpu_data.x86_model == 62)
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
else
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.cpu_events = snb_events_attrs;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
pr_cont("IvyBridge events, ");
|
|
break;
|
|
|
|
|
|
case 60: /* 22nm Haswell Core */
|
|
case 63: /* 22nm Haswell Server */
|
|
case 69: /* 22nm Haswell ULT */
|
|
case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
|
|
x86_add_quirk(intel_ht_bug);
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_hsw();
|
|
|
|
x86_pmu.event_constraints = intel_hsw_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = hsw_get_event_constraints;
|
|
x86_pmu.cpu_events = hsw_events_attrs;
|
|
x86_pmu.lbr_double_abort = true;
|
|
pr_cont("Haswell events, ");
|
|
break;
|
|
|
|
case 61: /* 14nm Broadwell Core-M */
|
|
case 86: /* 14nm Broadwell Xeon D */
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
|
|
/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
|
|
hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
|
|
BDW_L3_MISS|HSW_SNOOP_DRAM;
|
|
hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
|
|
HSW_SNOOP_DRAM;
|
|
hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
|
|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
|
|
hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
|
|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
|
|
|
|
intel_pmu_lbr_init_hsw();
|
|
|
|
x86_pmu.event_constraints = intel_bdw_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = hsw_get_event_constraints;
|
|
x86_pmu.cpu_events = hsw_events_attrs;
|
|
x86_pmu.limit_period = bdw_limit_period;
|
|
pr_cont("Broadwell events, ");
|
|
break;
|
|
|
|
default:
|
|
switch (x86_pmu.version) {
|
|
case 1:
|
|
x86_pmu.event_constraints = intel_v1_event_constraints;
|
|
pr_cont("generic architected perfmon v1, ");
|
|
break;
|
|
default:
|
|
/*
|
|
* default constraints for v2 and up
|
|
*/
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
pr_cont("generic architected perfmon, ");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
|
|
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
|
|
x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
|
|
x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
|
|
}
|
|
x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
|
|
|
|
if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
|
|
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
|
|
x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
|
|
x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
|
|
}
|
|
|
|
x86_pmu.intel_ctrl |=
|
|
((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
|
|
|
|
if (x86_pmu.event_constraints) {
|
|
/*
|
|
* event on fixed counter2 (REF_CYCLES) only works on this
|
|
* counter, so do not extend mask to generic counters
|
|
*/
|
|
for_each_event_constraint(c, x86_pmu.event_constraints) {
|
|
if (c->cmask != FIXED_EVENT_FLAGS
|
|
|| c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
|
|
continue;
|
|
}
|
|
|
|
c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
|
|
c->weight += x86_pmu.num_counters;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Access LBR MSR may cause #GP under certain circumstances.
|
|
* E.g. KVM doesn't support LBR MSR
|
|
* Check all LBT MSR here.
|
|
* Disable LBR access if any LBR MSRs can not be accessed.
|
|
*/
|
|
if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
|
|
x86_pmu.lbr_nr = 0;
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
|
|
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
|
|
x86_pmu.lbr_nr = 0;
|
|
}
|
|
|
|
/*
|
|
* Access extra MSR may cause #GP under certain circumstances.
|
|
* E.g. KVM doesn't support offcore event
|
|
* Check all extra_regs here.
|
|
*/
|
|
if (x86_pmu.extra_regs) {
|
|
for (er = x86_pmu.extra_regs; er->msr; er++) {
|
|
er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
|
|
/* Disable LBR select mapping */
|
|
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
|
|
x86_pmu.lbr_sel_map = NULL;
|
|
}
|
|
}
|
|
|
|
/* Support full width counters using alternative MSR range */
|
|
if (x86_pmu.intel_cap.full_width_write) {
|
|
x86_pmu.max_period = x86_pmu.cntval_mask;
|
|
x86_pmu.perfctr = MSR_IA32_PMC0;
|
|
pr_cont("full-width counters, ");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* HT bug: phase 2 init
|
|
* Called once we have valid topology information to check
|
|
* whether or not HT is enabled
|
|
* If HT is off, then we disable the workaround
|
|
*/
|
|
static __init int fixup_ht_bug(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int w, c;
|
|
/*
|
|
* problem not present on this CPU model, nothing to do
|
|
*/
|
|
if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
|
|
return 0;
|
|
|
|
w = cpumask_weight(topology_thread_cpumask(cpu));
|
|
if (w > 1) {
|
|
pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
|
|
return 0;
|
|
}
|
|
|
|
watchdog_nmi_disable_all();
|
|
|
|
x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
|
|
|
|
x86_pmu.commit_scheduling = NULL;
|
|
x86_pmu.start_scheduling = NULL;
|
|
x86_pmu.stop_scheduling = NULL;
|
|
|
|
watchdog_nmi_enable_all();
|
|
|
|
get_online_cpus();
|
|
|
|
for_each_online_cpu(c) {
|
|
free_excl_cntrs(c);
|
|
}
|
|
|
|
put_online_cpus();
|
|
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
|
|
return 0;
|
|
}
|
|
subsys_initcall(fixup_ht_bug)
|