linux/drivers/gpu/drm/i915/i915_gem.c
David Herrmann 16eb5f4379 drm: kill ->gem_init_object() and friends
All drivers embed gem-objects into their own buffer objects. There is no
reason to keep drm_gem_object_alloc(), gem->driver_private and
->gem_init_object() anymore.

New drivers are highly encouraged to do the same. There is no benefit in
allocating gem-objects separately.

Cc: Dave Airlie <airlied@gmail.com>
Cc: Alex Deucher <alexdeucher@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rob Clark <robdclark@gmail.com>
Cc: Inki Dae <inki.dae@samsung.com>
Cc: Ben Skeggs <skeggsb@gmail.com>
Cc: Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-10-09 14:38:02 +10:00

4971 lines
124 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drmP.h>
#include <drm/drm_vma_manager.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
bool force);
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
bool readonly);
static __must_check int
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
unsigned alignment,
bool map_and_fenceable,
bool nonblocking);
static int i915_gem_phys_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file);
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable);
static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
struct shrink_control *sc);
static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
struct shrink_control *sc);
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
static bool cpu_cache_is_coherent(struct drm_device *dev,
enum i915_cache_level level)
{
return HAS_LLC(dev) || level != I915_CACHE_NONE;
}
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
return true;
return obj->pin_display;
}
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
/* As we do not have an associated fence register, we will force
* a tiling change if we ever need to acquire one.
*/
obj->fence_dirty = false;
obj->fence_reg = I915_FENCE_REG_NONE;
}
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
size_t size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
size_t size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
static int
i915_gem_wait_for_error(struct i915_gpu_error *error)
{
int ret;
#define EXIT_COND (!i915_reset_in_progress(error) || \
i915_terminally_wedged(error))
if (EXIT_COND)
return 0;
/*
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
* userspace. If it takes that long something really bad is going on and
* we should simply try to bail out and fail as gracefully as possible.
*/
ret = wait_event_interruptible_timeout(error->reset_queue,
EXIT_COND,
10*HZ);
if (ret == 0) {
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
return -EIO;
} else if (ret < 0) {
return ret;
}
#undef EXIT_COND
return 0;
}
int i915_mutex_lock_interruptible(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
if (ret)
return ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
WARN_ON(i915_verify_lists(dev));
return 0;
}
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
{
return i915_gem_obj_bound_any(obj) && !obj->active;
}
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_init *args = data;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return -ENODEV;
if (args->gtt_start >= args->gtt_end ||
(args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
return -EINVAL;
/* GEM with user mode setting was never supported on ilk and later. */
if (INTEL_INFO(dev)->gen >= 5)
return -ENODEV;
mutex_lock(&dev->struct_mutex);
i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
args->gtt_end);
dev_priv->gtt.mappable_end = args->gtt_end;
mutex_unlock(&dev->struct_mutex);
return 0;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_get_aperture *args = data;
struct drm_i915_gem_object *obj;
size_t pinned;
pinned = 0;
mutex_lock(&dev->struct_mutex);
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
if (obj->pin_count)
pinned += i915_gem_obj_ggtt_size(obj);
mutex_unlock(&dev->struct_mutex);
args->aper_size = dev_priv->gtt.base.total;
args->aper_available_size = args->aper_size - pinned;
return 0;
}
void *i915_gem_object_alloc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
}
void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
kmem_cache_free(dev_priv->slab, obj);
}
static int
i915_gem_create(struct drm_file *file,
struct drm_device *dev,
uint64_t size,
uint32_t *handle_p)
{
struct drm_i915_gem_object *obj;
int ret;
u32 handle;
size = roundup(size, PAGE_SIZE);
if (size == 0)
return -EINVAL;
/* Allocate the new object */
obj = i915_gem_alloc_object(dev, size);
if (obj == NULL)
return -ENOMEM;
ret = drm_gem_handle_create(file, &obj->base, &handle);
/* drop reference from allocate - handle holds it now */
drm_gem_object_unreference_unlocked(&obj->base);
if (ret)
return ret;
*handle_p = handle;
return 0;
}
int
i915_gem_dumb_create(struct drm_file *file,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
/* have to work out size/pitch and return them */
args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
args->size = args->pitch * args->height;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
/**
* Creates a new mm object and returns a handle to it.
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_create *args = data;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
const char *gpu_vaddr, int gpu_offset,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_to_user(cpu_vaddr + cpu_offset,
gpu_vaddr + swizzled_gpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
static inline int
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
const char __user *cpu_vaddr,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
cpu_vaddr + cpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
/* Per-page copy function for the shmem pread fastpath.
* Flushes invalid cachelines before reading the target if
* needs_clflush is set. */
static int
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_to_user_inatomic(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
bool swizzled)
{
if (unlikely(swizzled)) {
unsigned long start = (unsigned long) addr;
unsigned long end = (unsigned long) addr + length;
/* For swizzling simply ensure that we always flush both
* channels. Lame, but simple and it works. Swizzled
* pwrite/pread is far from a hotpath - current userspace
* doesn't use it at all. */
start = round_down(start, 128);
end = round_up(end, 128);
drm_clflush_virt_range((void *)start, end - start);
} else {
drm_clflush_virt_range(addr, length);
}
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (needs_clflush)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_to_user_swizzled(user_data,
vaddr, shmem_page_offset,
page_length);
else
ret = __copy_to_user(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap(page);
return ret ? - EFAULT : 0;
}
static int
i915_gem_shmem_pread(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file)
{
char __user *user_data;
ssize_t remain;
loff_t offset;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int prefaulted = 0;
int needs_clflush = 0;
struct sg_page_iter sg_iter;
user_data = to_user_ptr(args->data_ptr);
remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
/* If we're not in the cpu read domain, set ourself into the gtt
* read domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will dirty the data
* anyway again before the next pread happens. */
needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
ret = i915_gem_object_wait_rendering(obj, true);
if (ret)
return ret;
}
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
offset = args->offset;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
offset >> PAGE_SHIFT) {
struct page *page = sg_page_iter_page(&sg_iter);
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
if (ret == 0)
goto next_page;
mutex_unlock(&dev->struct_mutex);
if (likely(!i915_prefault_disable) && !prefaulted) {
ret = fault_in_multipages_writeable(user_data, remain);
/* Userspace is tricking us, but we've already clobbered
* its pages with the prefault and promised to write the
* data up to the first fault. Hence ignore any errors
* and just continue. */
(void)ret;
prefaulted = 1;
}
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
mutex_lock(&dev->struct_mutex);
next_page:
mark_page_accessed(page);
if (ret)
goto out;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_object_unpin_pages(obj);
return ret;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pread *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_WRITE,
to_user_ptr(args->data_ptr),
args->size))
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check source. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pread(obj, args->offset, args->size);
ret = i915_gem_shmem_pread(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
void __iomem *vaddr_atomic;
void *vaddr;
unsigned long unwritten;
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
/* We can use the cpu mem copy function because this is X86. */
vaddr = (void __force*)vaddr_atomic + page_offset;
unwritten = __copy_from_user_inatomic_nocache(vaddr,
user_data, length);
io_mapping_unmap_atomic(vaddr_atomic);
return unwritten;
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
drm_i915_private_t *dev_priv = dev->dev_private;
ssize_t remain;
loff_t offset, page_base;
char __user *user_data;
int page_offset, page_length, ret;
ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
if (ret)
goto out;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin;
ret = i915_gem_object_put_fence(obj);
if (ret)
goto out_unpin;
user_data = to_user_ptr(args->data_ptr);
remain = args->size;
offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_base = offset & PAGE_MASK;
page_offset = offset_in_page(offset);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (fast_user_write(dev_priv->gtt.mappable, page_base,
page_offset, user_data, page_length)) {
ret = -EFAULT;
goto out_unpin;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out_unpin:
i915_gem_object_unpin(obj);
out:
return ret;
}
/* Per-page copy function for the shmem pwrite fastpath.
* Flushes invalid cachelines before writing to the target if
* needs_clflush_before is set and flushes out any written cachelines after
* writing if needs_clflush is set. */
static int
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush_before)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
user_data,
page_length);
else
ret = __copy_from_user(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
kunmap(page);
return ret ? -EFAULT : 0;
}
static int
i915_gem_shmem_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
ssize_t remain;
loff_t offset;
char __user *user_data;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int hit_slowpath = 0;
int needs_clflush_after = 0;
int needs_clflush_before = 0;
struct sg_page_iter sg_iter;
user_data = to_user_ptr(args->data_ptr);
remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
/* If we're not in the cpu write domain, set ourself into the gtt
* write domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will use the data
* right away and we therefore have to clflush anyway. */
needs_clflush_after = cpu_write_needs_clflush(obj);
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
}
/* Same trick applies to invalidate partially written cachelines read
* before writing. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
needs_clflush_before =
!cpu_cache_is_coherent(dev, obj->cache_level);
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
offset = args->offset;
obj->dirty = 1;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
offset >> PAGE_SHIFT) {
struct page *page = sg_page_iter_page(&sg_iter);
int partial_cacheline_write;
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
/* If we don't overwrite a cacheline completely we need to be
* careful to have up-to-date data by first clflushing. Don't
* overcomplicate things and flush the entire patch. */
partial_cacheline_write = needs_clflush_before &&
((shmem_page_offset | page_length)
& (boot_cpu_data.x86_clflush_size - 1));
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
if (ret == 0)
goto next_page;
hit_slowpath = 1;
mutex_unlock(&dev->struct_mutex);
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
mutex_lock(&dev->struct_mutex);
next_page:
set_page_dirty(page);
mark_page_accessed(page);
if (ret)
goto out;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_object_unpin_pages(obj);
if (hit_slowpath) {
/*
* Fixup: Flush cpu caches in case we didn't flush the dirty
* cachelines in-line while writing and the object moved
* out of the cpu write domain while we've dropped the lock.
*/
if (!needs_clflush_after &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
if (i915_gem_clflush_object(obj, obj->pin_display))
i915_gem_chipset_flush(dev);
}
}
if (needs_clflush_after)
i915_gem_chipset_flush(dev);
return ret;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pwrite *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_READ,
to_user_ptr(args->data_ptr),
args->size))
return -EFAULT;
if (likely(!i915_prefault_disable)) {
ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
args->size);
if (ret)
return -EFAULT;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check destination. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
ret = -EFAULT;
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj->phys_obj) {
ret = i915_gem_phys_pwrite(dev, obj, args, file);
goto out;
}
if (obj->tiling_mode == I915_TILING_NONE &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
cpu_write_needs_clflush(obj)) {
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
/* Note that the gtt paths might fail with non-page-backed user
* pointers (e.g. gtt mappings when moving data between
* textures). Fallback to the shmem path in that case. */
}
if (ret == -EFAULT || ret == -ENOSPC)
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_check_wedge(struct i915_gpu_error *error,
bool interruptible)
{
if (i915_reset_in_progress(error)) {
/* Non-interruptible callers can't handle -EAGAIN, hence return
* -EIO unconditionally for these. */
if (!interruptible)
return -EIO;
/* Recovery complete, but the reset failed ... */
if (i915_terminally_wedged(error))
return -EIO;
return -EAGAIN;
}
return 0;
}
/*
* Compare seqno against outstanding lazy request. Emit a request if they are
* equal.
*/
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
int ret;
BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
ret = 0;
if (seqno == ring->outstanding_lazy_seqno)
ret = i915_add_request(ring, NULL);
return ret;
}
/**
* __wait_seqno - wait until execution of seqno has finished
* @ring: the ring expected to report seqno
* @seqno: duh!
* @reset_counter: reset sequence associated with the given seqno
* @interruptible: do an interruptible wait (normally yes)
* @timeout: in - how long to wait (NULL forever); out - how much time remaining
*
* Note: It is of utmost importance that the passed in seqno and reset_counter
* values have been read by the caller in an smp safe manner. Where read-side
* locks are involved, it is sufficient to read the reset_counter before
* unlocking the lock that protects the seqno. For lockless tricks, the
* reset_counter _must_ be read before, and an appropriate smp_rmb must be
* inserted.
*
* Returns 0 if the seqno was found within the alloted time. Else returns the
* errno with remaining time filled in timeout argument.
*/
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
unsigned reset_counter,
bool interruptible, struct timespec *timeout)
{
drm_i915_private_t *dev_priv = ring->dev->dev_private;
struct timespec before, now, wait_time={1,0};
unsigned long timeout_jiffies;
long end;
bool wait_forever = true;
int ret;
WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
return 0;
trace_i915_gem_request_wait_begin(ring, seqno);
if (timeout != NULL) {
wait_time = *timeout;
wait_forever = false;
}
timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
if (WARN_ON(!ring->irq_get(ring)))
return -ENODEV;
/* Record current time in case interrupted by signal, or wedged * */
getrawmonotonic(&before);
#define EXIT_COND \
(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
i915_reset_in_progress(&dev_priv->gpu_error) || \
reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
do {
if (interruptible)
end = wait_event_interruptible_timeout(ring->irq_queue,
EXIT_COND,
timeout_jiffies);
else
end = wait_event_timeout(ring->irq_queue, EXIT_COND,
timeout_jiffies);
/* We need to check whether any gpu reset happened in between
* the caller grabbing the seqno and now ... */
if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
end = -EAGAIN;
/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
* gone. */
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
if (ret)
end = ret;
} while (end == 0 && wait_forever);
getrawmonotonic(&now);
ring->irq_put(ring);
trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND
if (timeout) {
struct timespec sleep_time = timespec_sub(now, before);
*timeout = timespec_sub(*timeout, sleep_time);
if (!timespec_valid(timeout)) /* i.e. negative time remains */
set_normalized_timespec(timeout, 0, 0);
}
switch (end) {
case -EIO:
case -EAGAIN: /* Wedged */
case -ERESTARTSYS: /* Signal */
return (int)end;
case 0: /* Timeout */
return -ETIME;
default: /* Completed */
WARN_ON(end < 0); /* We're not aware of other errors */
return 0;
}
}
/**
* Waits for a sequence number to be signaled, and cleans up the
* request and object lists appropriately for that event.
*/
int
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool interruptible = dev_priv->mm.interruptible;
int ret;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
BUG_ON(seqno == 0);
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
if (ret)
return ret;
ret = i915_gem_check_olr(ring, seqno);
if (ret)
return ret;
return __wait_seqno(ring, seqno,
atomic_read(&dev_priv->gpu_error.reset_counter),
interruptible, NULL);
}
static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *ring)
{
i915_gem_retire_requests_ring(ring);
/* Manually manage the write flush as we may have not yet
* retired the buffer.
*
* Note that the last_write_seqno is always the earlier of
* the two (read/write) seqno, so if we haved successfully waited,
* we know we have passed the last write.
*/
obj->last_write_seqno = 0;
obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
return 0;
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
*/
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
bool readonly)
{
struct intel_ring_buffer *ring = obj->ring;
u32 seqno;
int ret;
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
if (seqno == 0)
return 0;
ret = i915_wait_seqno(ring, seqno);
if (ret)
return ret;
return i915_gem_object_wait_rendering__tail(obj, ring);
}
/* A nonblocking variant of the above wait. This is a highly dangerous routine
* as the object state may change during this call.
*/
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
bool readonly)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring = obj->ring;
unsigned reset_counter;
u32 seqno;
int ret;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
BUG_ON(!dev_priv->mm.interruptible);
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
if (seqno == 0)
return 0;
ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
if (ret)
return ret;
ret = i915_gem_check_olr(ring, seqno);
if (ret)
return ret;
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
mutex_unlock(&dev->struct_mutex);
ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
mutex_lock(&dev->struct_mutex);
if (ret)
return ret;
return i915_gem_object_wait_rendering__tail(obj, ring);
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_i915_gem_object *obj;
uint32_t read_domains = args->read_domains;
uint32_t write_domain = args->write_domain;
int ret;
/* Only handle setting domains to types used by the CPU. */
if (write_domain & I915_GEM_GPU_DOMAINS)
return -EINVAL;
if (read_domains & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
return -EINVAL;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Try to flush the object off the GPU without holding the lock.
* We will repeat the flush holding the lock in the normal manner
* to catch cases where we are gazumped.
*/
ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
if (ret)
goto unref;
if (read_domains & I915_GEM_DOMAIN_GTT) {
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
/* Silently promote "you're not bound, there was nothing to do"
* to success, since the client was just asking us to
* make sure everything was done.
*/
if (ret == -EINVAL)
ret = 0;
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
}
unref:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space has done writes to this buffer
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Pinned buffers may be scanout, so flush the cache */
if (obj->pin_display)
i915_gem_object_flush_cpu_write_domain(obj, true);
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Maps the contents of an object, returning the address it is mapped
* into.
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap *args = data;
struct drm_gem_object *obj;
unsigned long addr;
obj = drm_gem_object_lookup(dev, file, args->handle);
if (obj == NULL)
return -ENOENT;
/* prime objects have no backing filp to GEM mmap
* pages from.
*/
if (!obj->filp) {
drm_gem_object_unreference_unlocked(obj);
return -EINVAL;
}
addr = vm_mmap(obj->filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
drm_gem_object_unreference_unlocked(obj);
if (IS_ERR((void *)addr))
return addr;
args->addr_ptr = (uint64_t) addr;
return 0;
}
/**
* i915_gem_fault - fault a page into the GTT
* vma: VMA in question
* vmf: fault info
*
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
* from userspace. The fault handler takes care of binding the object to
* the GTT (if needed), allocating and programming a fence register (again,
* only if needed based on whether the old reg is still valid or the object
* is tiled) and inserting a new PTE into the faulting process.
*
* Note that the faulting process may involve evicting existing objects
* from the GTT and/or fence registers to make room. So performance may
* suffer if the GTT working set is large or there are few fence registers
* left.
*/
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
pgoff_t page_offset;
unsigned long pfn;
int ret = 0;
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
PAGE_SHIFT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto out;
trace_i915_gem_object_fault(obj, page_offset, true, write);
/* Access to snoopable pages through the GTT is incoherent. */
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ret = -EINVAL;
goto unlock;
}
/* Now bind it into the GTT if needed */
ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
if (ret)
goto unlock;
ret = i915_gem_object_set_to_gtt_domain(obj, write);
if (ret)
goto unpin;
ret = i915_gem_object_get_fence(obj);
if (ret)
goto unpin;
obj->fault_mappable = true;
pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
pfn >>= PAGE_SHIFT;
pfn += page_offset;
/* Finally, remap it using the new GTT offset */
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
unpin:
i915_gem_object_unpin(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
out:
switch (ret) {
case -EIO:
/* If this -EIO is due to a gpu hang, give the reset code a
* chance to clean up the mess. Otherwise return the proper
* SIGBUS. */
if (i915_terminally_wedged(&dev_priv->gpu_error))
return VM_FAULT_SIGBUS;
case -EAGAIN:
/*
* EAGAIN means the gpu is hung and we'll wait for the error
* handler to reset everything when re-faulting in
* i915_mutex_lock_interruptible.
*/
case 0:
case -ERESTARTSYS:
case -EINTR:
case -EBUSY:
/*
* EBUSY is ok: this just means that another thread
* already did the job.
*/
return VM_FAULT_NOPAGE;
case -ENOMEM:
return VM_FAULT_OOM;
case -ENOSPC:
return VM_FAULT_SIGBUS;
default:
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
return VM_FAULT_SIGBUS;
}
}
/**
* i915_gem_release_mmap - remove physical page mappings
* @obj: obj in question
*
* Preserve the reservation of the mmapping with the DRM core code, but
* relinquish ownership of the pages back to the system.
*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by i915_gem_fault().
*/
void
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
{
if (!obj->fault_mappable)
return;
drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
obj->fault_mappable = false;
}
uint32_t
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
{
uint32_t gtt_size;
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return size;
/* Previous chips need a power-of-two fence region when tiling */
if (INTEL_INFO(dev)->gen == 3)
gtt_size = 1024*1024;
else
gtt_size = 512*1024;
while (gtt_size < size)
gtt_size <<= 1;
return gtt_size;
}
/**
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
* @obj: object to check
*
* Return the required GTT alignment for an object, taking into account
* potential fence register mapping.
*/
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
int tiling_mode, bool fenced)
{
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
tiling_mode == I915_TILING_NONE)
return 4096;
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
return i915_gem_get_gtt_size(dev, size, tiling_mode);
}
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int ret;
if (drm_vma_node_has_offset(&obj->base.vma_node))
return 0;
dev_priv->mm.shrinker_no_lock_stealing = true;
ret = drm_gem_create_mmap_offset(&obj->base);
if (ret != -ENOSPC)
goto out;
/* Badly fragmented mmap space? The only way we can recover
* space is by destroying unwanted objects. We can't randomly release
* mmap_offsets as userspace expects them to be persistent for the
* lifetime of the objects. The closest we can is to release the
* offsets on purgeable objects by truncating it and marking it purged,
* which prevents userspace from ever using that object again.
*/
i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
ret = drm_gem_create_mmap_offset(&obj->base);
if (ret != -ENOSPC)
goto out;
i915_gem_shrink_all(dev_priv);
ret = drm_gem_create_mmap_offset(&obj->base);
out:
dev_priv->mm.shrinker_no_lock_stealing = false;
return ret;
}
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
drm_gem_free_mmap_offset(&obj->base);
}
int
i915_gem_mmap_gtt(struct drm_file *file,
struct drm_device *dev,
uint32_t handle,
uint64_t *offset)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->base.size > dev_priv->gtt.mappable_end) {
ret = -E2BIG;
goto out;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to mmap a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
ret = i915_gem_object_create_mmap_offset(obj);
if (ret)
goto out;
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap_gtt *args = data;
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
struct inode *inode;
i915_gem_object_free_mmap_offset(obj);
if (obj->base.filp == NULL)
return;
/* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
inode = file_inode(obj->base.filp);
shmem_truncate_range(inode, 0, (loff_t)-1);
obj->madv = __I915_MADV_PURGED;
}
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
return obj->madv == I915_MADV_DONTNEED;
}
static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
{
struct sg_page_iter sg_iter;
int ret;
BUG_ON(obj->madv == __I915_MADV_PURGED);
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret) {
/* In the event of a disaster, abandon all caches and
* hope for the best.
*/
WARN_ON(ret != -EIO);
i915_gem_clflush_object(obj, true);
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_save_bit_17_swizzle(obj);
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
struct page *page = sg_page_iter_page(&sg_iter);
if (obj->dirty)
set_page_dirty(page);
if (obj->madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
page_cache_release(page);
}
obj->dirty = 0;
sg_free_table(obj->pages);
kfree(obj->pages);
}
int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
const struct drm_i915_gem_object_ops *ops = obj->ops;
if (obj->pages == NULL)
return 0;
if (obj->pages_pin_count)
return -EBUSY;
BUG_ON(i915_gem_obj_bound_any(obj));
/* ->put_pages might need to allocate memory for the bit17 swizzle
* array, hence protect them from being reaped by removing them from gtt
* lists early. */
list_del(&obj->global_list);
ops->put_pages(obj);
obj->pages = NULL;
if (i915_gem_object_is_purgeable(obj))
i915_gem_object_truncate(obj);
return 0;
}
static long
__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
bool purgeable_only)
{
struct list_head still_bound_list;
struct drm_i915_gem_object *obj, *next;
long count = 0;
list_for_each_entry_safe(obj, next,
&dev_priv->mm.unbound_list,
global_list) {
if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
i915_gem_object_put_pages(obj) == 0) {
count += obj->base.size >> PAGE_SHIFT;
if (count >= target)
return count;
}
}
/*
* As we may completely rewrite the bound list whilst unbinding
* (due to retiring requests) we have to strictly process only
* one element of the list at the time, and recheck the list
* on every iteration.
*/
INIT_LIST_HEAD(&still_bound_list);
while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
struct i915_vma *vma, *v;
obj = list_first_entry(&dev_priv->mm.bound_list,
typeof(*obj), global_list);
list_move_tail(&obj->global_list, &still_bound_list);
if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
continue;
/*
* Hold a reference whilst we unbind this object, as we may
* end up waiting for and retiring requests. This might
* release the final reference (held by the active list)
* and result in the object being freed from under us.
* in this object being freed.
*
* Note 1: Shrinking the bound list is special since only active
* (and hence bound objects) can contain such limbo objects, so
* we don't need special tricks for shrinking the unbound list.
* The only other place where we have to be careful with active
* objects suddenly disappearing due to retiring requests is the
* eviction code.
*
* Note 2: Even though the bound list doesn't hold a reference
* to the object we can safely grab one here: The final object
* unreferencing and the bound_list are both protected by the
* dev->struct_mutex and so we won't ever be able to observe an
* object on the bound_list with a reference count equals 0.
*/
drm_gem_object_reference(&obj->base);
list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
if (i915_vma_unbind(vma))
break;
if (i915_gem_object_put_pages(obj) == 0)
count += obj->base.size >> PAGE_SHIFT;
drm_gem_object_unreference(&obj->base);
}
list_splice(&still_bound_list, &dev_priv->mm.bound_list);
return count;
}
static long
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
return __i915_gem_shrink(dev_priv, target, true);
}
static long
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj, *next;
long freed = 0;
i915_gem_evict_everything(dev_priv->dev);
list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
global_list) {
if (obj->pages_pin_count == 0)
freed += obj->base.size >> PAGE_SHIFT;
i915_gem_object_put_pages(obj);
}
return freed;
}
static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int page_count, i;
struct address_space *mapping;
struct sg_table *st;
struct scatterlist *sg;
struct sg_page_iter sg_iter;
struct page *page;
unsigned long last_pfn = 0; /* suppress gcc warning */
gfp_t gfp;
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (st == NULL)
return -ENOMEM;
page_count = obj->base.size / PAGE_SIZE;
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
kfree(st);
return -ENOMEM;
}
/* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*
* Fail silently without starting the shrinker
*/
mapping = file_inode(obj->base.filp)->i_mapping;
gfp = mapping_gfp_mask(mapping);
gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
gfp &= ~(__GFP_IO | __GFP_WAIT);
sg = st->sgl;
st->nents = 0;
for (i = 0; i < page_count; i++) {
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (IS_ERR(page)) {
i915_gem_purge(dev_priv, page_count);
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
}
if (IS_ERR(page)) {
/* We've tried hard to allocate the memory by reaping
* our own buffer, now let the real VM do its job and
* go down in flames if truly OOM.
*/
gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
gfp |= __GFP_IO | __GFP_WAIT;
i915_gem_shrink_all(dev_priv);
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (IS_ERR(page))
goto err_pages;
gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
gfp &= ~(__GFP_IO | __GFP_WAIT);
}
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
sg = sg_next(sg);
continue;
}
#endif
if (!i || page_to_pfn(page) != last_pfn + 1) {
if (i)
sg = sg_next(sg);
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
} else {
sg->length += PAGE_SIZE;
}
last_pfn = page_to_pfn(page);
}
#ifdef CONFIG_SWIOTLB
if (!swiotlb_nr_tbl())
#endif
sg_mark_end(sg);
obj->pages = st;
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_do_bit_17_swizzle(obj);
return 0;
err_pages:
sg_mark_end(sg);
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
page_cache_release(sg_page_iter_page(&sg_iter));
sg_free_table(st);
kfree(st);
return PTR_ERR(page);
}
/* Ensure that the associated pages are gathered from the backing storage
* and pinned into our object. i915_gem_object_get_pages() may be called
* multiple times before they are released by a single call to
* i915_gem_object_put_pages() - once the pages are no longer referenced
* either as a result of memory pressure (reaping pages under the shrinker)
* or as the object is itself released.
*/
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
const struct drm_i915_gem_object_ops *ops = obj->ops;
int ret;
if (obj->pages)
return 0;
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to obtain a purgeable object\n");
return -EINVAL;
}
BUG_ON(obj->pages_pin_count);
ret = ops->get_pages(obj);
if (ret)
return ret;
list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
return 0;
}
void
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *ring)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 seqno = intel_ring_get_seqno(ring);
BUG_ON(ring == NULL);
if (obj->ring != ring && obj->last_write_seqno) {
/* Keep the seqno relative to the current ring */
obj->last_write_seqno = seqno;
}
obj->ring = ring;
/* Add a reference if we're newly entering the active list. */
if (!obj->active) {
drm_gem_object_reference(&obj->base);
obj->active = 1;
}
list_move_tail(&obj->ring_list, &ring->active_list);
obj->last_read_seqno = seqno;
if (obj->fenced_gpu_access) {
obj->last_fenced_seqno = seqno;
/* Bump MRU to take account of the delayed flush */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_fence_reg *reg;
reg = &dev_priv->fence_regs[obj->fence_reg];
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
}
}
}
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
BUG_ON(!obj->active);
list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
list_del_init(&obj->ring_list);
obj->ring = NULL;
obj->last_read_seqno = 0;
obj->last_write_seqno = 0;
obj->base.write_domain = 0;
obj->last_fenced_seqno = 0;
obj->fenced_gpu_access = false;
obj->active = 0;
drm_gem_object_unreference(&obj->base);
WARN_ON(i915_verify_lists(dev));
}
static int
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i, j;
/* Carefully retire all requests without writing to the rings */
for_each_ring(ring, dev_priv, i) {
ret = intel_ring_idle(ring);
if (ret)
return ret;
}
i915_gem_retire_requests(dev);
/* Finally reset hw state */
for_each_ring(ring, dev_priv, i) {
intel_ring_init_seqno(ring, seqno);
for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
ring->sync_seqno[j] = 0;
}
return 0;
}
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (seqno == 0)
return -EINVAL;
/* HWS page needs to be set less than what we
* will inject to ring
*/
ret = i915_gem_init_seqno(dev, seqno - 1);
if (ret)
return ret;
/* Carefully set the last_seqno value so that wrap
* detection still works
*/
dev_priv->next_seqno = seqno;
dev_priv->last_seqno = seqno - 1;
if (dev_priv->last_seqno == 0)
dev_priv->last_seqno--;
return 0;
}
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* reserve 0 for non-seqno */
if (dev_priv->next_seqno == 0) {
int ret = i915_gem_init_seqno(dev, 0);
if (ret)
return ret;
dev_priv->next_seqno = 1;
}
*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
return 0;
}
int __i915_add_request(struct intel_ring_buffer *ring,
struct drm_file *file,
struct drm_i915_gem_object *obj,
u32 *out_seqno)
{
drm_i915_private_t *dev_priv = ring->dev->dev_private;
struct drm_i915_gem_request *request;
u32 request_ring_position, request_start;
int was_empty;
int ret;
request_start = intel_ring_get_tail(ring);
/*
* Emit any outstanding flushes - execbuf can fail to emit the flush
* after having emitted the batchbuffer command. Hence we need to fix
* things up similar to emitting the lazy request. The difference here
* is that the flush _must_ happen before the next request, no matter
* what.
*/
ret = intel_ring_flush_all_caches(ring);
if (ret)
return ret;
request = ring->preallocated_lazy_request;
if (WARN_ON(request == NULL))
return -ENOMEM;
/* Record the position of the start of the request so that
* should we detect the updated seqno part-way through the
* GPU processing the request, we never over-estimate the
* position of the head.
*/
request_ring_position = intel_ring_get_tail(ring);
ret = ring->add_request(ring);
if (ret)
return ret;
request->seqno = intel_ring_get_seqno(ring);
request->ring = ring;
request->head = request_start;
request->tail = request_ring_position;
/* Whilst this request exists, batch_obj will be on the
* active_list, and so will hold the active reference. Only when this
* request is retired will the the batch_obj be moved onto the
* inactive_list and lose its active reference. Hence we do not need
* to explicitly hold another reference here.
*/
request->batch_obj = obj;
/* Hold a reference to the current context so that we can inspect
* it later in case a hangcheck error event fires.
*/
request->ctx = ring->last_context;
if (request->ctx)
i915_gem_context_reference(request->ctx);
request->emitted_jiffies = jiffies;
was_empty = list_empty(&ring->request_list);
list_add_tail(&request->list, &ring->request_list);
request->file_priv = NULL;
if (file) {
struct drm_i915_file_private *file_priv = file->driver_priv;
spin_lock(&file_priv->mm.lock);
request->file_priv = file_priv;
list_add_tail(&request->client_list,
&file_priv->mm.request_list);
spin_unlock(&file_priv->mm.lock);
}
trace_i915_gem_request_add(ring, request->seqno);
ring->outstanding_lazy_seqno = 0;
ring->preallocated_lazy_request = NULL;
if (!dev_priv->ums.mm_suspended) {
i915_queue_hangcheck(ring->dev);
if (was_empty) {
queue_delayed_work(dev_priv->wq,
&dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
intel_mark_busy(dev_priv->dev);
}
}
if (out_seqno)
*out_seqno = request->seqno;
return 0;
}
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
struct drm_i915_file_private *file_priv = request->file_priv;
if (!file_priv)
return;
spin_lock(&file_priv->mm.lock);
if (request->file_priv) {
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
}
static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
struct i915_address_space *vm)
{
if (acthd >= i915_gem_obj_offset(obj, vm) &&
acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
return true;
return false;
}
static bool i915_head_inside_request(const u32 acthd_unmasked,
const u32 request_start,
const u32 request_end)
{
const u32 acthd = acthd_unmasked & HEAD_ADDR;
if (request_start < request_end) {
if (acthd >= request_start && acthd < request_end)
return true;
} else if (request_start > request_end) {
if (acthd >= request_start || acthd < request_end)
return true;
}
return false;
}
static struct i915_address_space *
request_to_vm(struct drm_i915_gem_request *request)
{
struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
struct i915_address_space *vm;
vm = &dev_priv->gtt.base;
return vm;
}
static bool i915_request_guilty(struct drm_i915_gem_request *request,
const u32 acthd, bool *inside)
{
/* There is a possibility that unmasked head address
* pointing inside the ring, matches the batch_obj address range.
* However this is extremely unlikely.
*/
if (request->batch_obj) {
if (i915_head_inside_object(acthd, request->batch_obj,
request_to_vm(request))) {
*inside = true;
return true;
}
}
if (i915_head_inside_request(acthd, request->head, request->tail)) {
*inside = false;
return true;
}
return false;
}
static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
{
const unsigned long elapsed = get_seconds() - hs->guilty_ts;
if (hs->banned)
return true;
if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
DRM_ERROR("context hanging too fast, declaring banned!\n");
return true;
}
return false;
}
static void i915_set_reset_status(struct intel_ring_buffer *ring,
struct drm_i915_gem_request *request,
u32 acthd)
{
struct i915_ctx_hang_stats *hs = NULL;
bool inside, guilty;
unsigned long offset = 0;
/* Innocent until proven guilty */
guilty = false;
if (request->batch_obj)
offset = i915_gem_obj_offset(request->batch_obj,
request_to_vm(request));
if (ring->hangcheck.action != HANGCHECK_WAIT &&
i915_request_guilty(request, acthd, &inside)) {
DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
ring->name,
inside ? "inside" : "flushing",
offset,
request->ctx ? request->ctx->id : 0,
acthd);
guilty = true;
}
/* If contexts are disabled or this is the default context, use
* file_priv->reset_state
*/
if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
hs = &request->ctx->hang_stats;
else if (request->file_priv)
hs = &request->file_priv->hang_stats;
if (hs) {
if (guilty) {
hs->banned = i915_context_is_banned(hs);
hs->batch_active++;
hs->guilty_ts = get_seconds();
} else {
hs->batch_pending++;
}
}
}
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
list_del(&request->list);
i915_gem_request_remove_from_client(request);
if (request->ctx)
i915_gem_context_unreference(request->ctx);
kfree(request);
}
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
struct intel_ring_buffer *ring)
{
u32 completed_seqno;
u32 acthd;
acthd = intel_ring_get_active_head(ring);
completed_seqno = ring->get_seqno(ring, false);
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
if (request->seqno > completed_seqno)
i915_set_reset_status(ring, request, acthd);
i915_gem_free_request(request);
}
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
i915_gem_object_move_to_inactive(obj);
}
}
void i915_gem_restore_fences(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
/*
* Commit delayed tiling changes if we have an object still
* attached to the fence, otherwise just clear the fence.
*/
if (reg->obj) {
i915_gem_object_update_fence(reg->obj, reg,
reg->obj->tiling_mode);
} else {
i915_gem_write_fence(dev, i, NULL);
}
}
}
void i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_reset_ring_lists(dev_priv, ring);
i915_gem_restore_fences(dev);
}
/**
* This function clears the request list as sequence numbers are passed.
*/
void
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
{
uint32_t seqno;
if (list_empty(&ring->request_list))
return;
WARN_ON(i915_verify_lists(ring->dev));
seqno = ring->get_seqno(ring, true);
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
if (!i915_seqno_passed(seqno, request->seqno))
break;
trace_i915_gem_request_retire(ring, request->seqno);
/* We know the GPU must have read the request to have
* sent us the seqno + interrupt, so use the position
* of tail of the request to update the last known position
* of the GPU head.
*/
ring->last_retired_head = request->tail;
i915_gem_free_request(request);
}
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate.
*/
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
if (!i915_seqno_passed(seqno, obj->last_read_seqno))
break;
i915_gem_object_move_to_inactive(obj);
}
if (unlikely(ring->trace_irq_seqno &&
i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
ring->irq_put(ring);
ring->trace_irq_seqno = 0;
}
WARN_ON(i915_verify_lists(ring->dev));
}
void
i915_gem_retire_requests(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_retire_requests_ring(ring);
}
static void
i915_gem_retire_work_handler(struct work_struct *work)
{
drm_i915_private_t *dev_priv;
struct drm_device *dev;
struct intel_ring_buffer *ring;
bool idle;
int i;
dev_priv = container_of(work, drm_i915_private_t,
mm.retire_work.work);
dev = dev_priv->dev;
/* Come back later if the device is busy... */
if (!mutex_trylock(&dev->struct_mutex)) {
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
return;
}
i915_gem_retire_requests(dev);
/* Send a periodic flush down the ring so we don't hold onto GEM
* objects indefinitely.
*/
idle = true;
for_each_ring(ring, dev_priv, i) {
if (ring->gpu_caches_dirty)
i915_add_request(ring, NULL);
idle &= list_empty(&ring->request_list);
}
if (!dev_priv->ums.mm_suspended && !idle)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
if (idle)
intel_mark_idle(dev);
mutex_unlock(&dev->struct_mutex);
}
/**
* Ensures that an object will eventually get non-busy by flushing any required
* write domains, emitting any outstanding lazy request and retiring and
* completed requests.
*/
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
int ret;
if (obj->active) {
ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
if (ret)
return ret;
i915_gem_retire_requests_ring(obj->ring);
}
return 0;
}
/**
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
* @DRM_IOCTL_ARGS: standard ioctl arguments
*
* Returns 0 if successful, else an error is returned with the remaining time in
* the timeout parameter.
* -ETIME: object is still busy after timeout
* -ERESTARTSYS: signal interrupted the wait
* -ENONENT: object doesn't exist
* Also possible, but rare:
* -EAGAIN: GPU wedged
* -ENOMEM: damn
* -ENODEV: Internal IRQ fail
* -E?: The add request failed
*
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
* non-zero timeout parameter the wait ioctl will wait for the given number of
* nanoseconds on an object becoming unbusy. Since the wait itself does so
* without holding struct_mutex the object may become re-busied before this
* function completes. A similar but shorter * race condition exists in the busy
* ioctl
*/
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_wait *args = data;
struct drm_i915_gem_object *obj;
struct intel_ring_buffer *ring = NULL;
struct timespec timeout_stack, *timeout = NULL;
unsigned reset_counter;
u32 seqno = 0;
int ret = 0;
if (args->timeout_ns >= 0) {
timeout_stack = ns_to_timespec(args->timeout_ns);
timeout = &timeout_stack;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
if (&obj->base == NULL) {
mutex_unlock(&dev->struct_mutex);
return -ENOENT;
}
/* Need to make sure the object gets inactive eventually. */
ret = i915_gem_object_flush_active(obj);
if (ret)
goto out;
if (obj->active) {
seqno = obj->last_read_seqno;
ring = obj->ring;
}
if (seqno == 0)
goto out;
/* Do this after OLR check to make sure we make forward progress polling
* on this IOCTL with a 0 timeout (like busy ioctl)
*/
if (!args->timeout_ns) {
ret = -ETIME;
goto out;
}
drm_gem_object_unreference(&obj->base);
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
mutex_unlock(&dev->struct_mutex);
ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
if (timeout)
args->timeout_ns = timespec_to_ns(timeout);
return ret;
out:
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* i915_gem_object_sync - sync an object to a ring.
*
* @obj: object which may be in use on another ring.
* @to: ring we wish to use the object on. May be NULL.
*
* This code is meant to abstract object synchronization with the GPU.
* Calling with NULL implies synchronizing the object with the CPU
* rather than a particular GPU ring.
*
* Returns 0 if successful, else propagates up the lower layer error.
*/
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *to)
{
struct intel_ring_buffer *from = obj->ring;
u32 seqno;
int ret, idx;
if (from == NULL || to == from)
return 0;
if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
return i915_gem_object_wait_rendering(obj, false);
idx = intel_ring_sync_index(from, to);
seqno = obj->last_read_seqno;
if (seqno <= from->sync_seqno[idx])
return 0;
ret = i915_gem_check_olr(obj->ring, seqno);
if (ret)
return ret;
ret = to->sync_to(to, from, seqno);
if (!ret)
/* We use last_read_seqno because sync_to()
* might have just caused seqno wrap under
* the radar.
*/
from->sync_seqno[idx] = obj->last_read_seqno;
return ret;
}
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
u32 old_write_domain, old_read_domains;
/* Force a pagefault for domain tracking on next user access */
i915_gem_release_mmap(obj);
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
return;
/* Wait for any direct GTT access to complete */
mb();
old_read_domains = obj->base.read_domains;
old_write_domain = obj->base.write_domain;
obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
}
int i915_vma_unbind(struct i915_vma *vma)
{
struct drm_i915_gem_object *obj = vma->obj;
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
int ret;
/* For now we only ever use 1 vma per object */
WARN_ON(!list_is_singular(&obj->vma_list));
if (list_empty(&vma->vma_link))
return 0;
if (!drm_mm_node_allocated(&vma->node)) {
i915_gem_vma_destroy(vma);
return 0;
}
if (obj->pin_count)
return -EBUSY;
BUG_ON(obj->pages == NULL);
ret = i915_gem_object_finish_gpu(obj);
if (ret)
return ret;
/* Continue on if we fail due to EIO, the GPU is hung so we
* should be safe and we need to cleanup or else we might
* cause memory corruption through use-after-free.
*/
i915_gem_object_finish_gtt(obj);
/* release the fence reg _after_ flushing */
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
trace_i915_vma_unbind(vma);
if (obj->has_global_gtt_mapping)
i915_gem_gtt_unbind_object(obj);
if (obj->has_aliasing_ppgtt_mapping) {
i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
obj->has_aliasing_ppgtt_mapping = 0;
}
i915_gem_gtt_finish_object(obj);
i915_gem_object_unpin_pages(obj);
list_del(&vma->mm_list);
/* Avoid an unnecessary call to unbind on rebind. */
if (i915_is_ggtt(vma->vm))
obj->map_and_fenceable = true;
drm_mm_remove_node(&vma->node);
i915_gem_vma_destroy(vma);
/* Since the unbound list is global, only move to that list if
* no more VMAs exist. */
if (list_empty(&obj->vma_list))
list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
return 0;
}
/**
* Unbinds an object from the global GTT aperture.
*/
int
i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct i915_address_space *ggtt = &dev_priv->gtt.base;
if (!i915_gem_obj_ggtt_bound(obj))
return 0;
if (obj->pin_count)
return -EBUSY;
BUG_ON(obj->pages == NULL);
return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
}
int i915_gpu_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i;
/* Flush everything onto the inactive list. */
for_each_ring(ring, dev_priv, i) {
ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
if (ret)
return ret;
ret = intel_ring_idle(ring);
if (ret)
return ret;
}
return 0;
}
static void i965_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int fence_reg;
int fence_pitch_shift;
if (INTEL_INFO(dev)->gen >= 6) {
fence_reg = FENCE_REG_SANDYBRIDGE_0;
fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
} else {
fence_reg = FENCE_REG_965_0;
fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
}
fence_reg += reg * 8;
/* To w/a incoherency with non-atomic 64-bit register updates,
* we split the 64-bit update into two 32-bit writes. In order
* for a partial fence not to be evaluated between writes, we
* precede the update with write to turn off the fence register,
* and only enable the fence as the last step.
*
* For extra levels of paranoia, we make sure each step lands
* before applying the next step.
*/
I915_WRITE(fence_reg, 0);
POSTING_READ(fence_reg);
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint64_t val;
val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
0xfffff000) << 32;
val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
I915_WRITE(fence_reg + 4, val >> 32);
POSTING_READ(fence_reg + 4);
I915_WRITE(fence_reg + 0, val);
POSTING_READ(fence_reg);
} else {
I915_WRITE(fence_reg + 4, 0);
POSTING_READ(fence_reg + 4);
}
}
static void i915_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
int pitch_val;
int tile_width;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
if (reg < 8)
reg = FENCE_REG_830_0 + reg * 4;
else
reg = FENCE_REG_945_8 + (reg - 8) * 4;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void i830_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t val;
if (obj) {
u32 size = i915_gem_obj_ggtt_size(obj);
uint32_t pitch_val;
WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
(size & -size) != size ||
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
"object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
i915_gem_obj_ggtt_offset(obj), size);
pitch_val = obj->stride / 128;
pitch_val = ffs(pitch_val) - 1;
val = i915_gem_obj_ggtt_offset(obj);
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I830_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
POSTING_READ(FENCE_REG_830_0 + reg * 4);
}
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Ensure that all CPU reads are completed before installing a fence
* and all writes before removing the fence.
*/
if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
mb();
WARN(obj && (!obj->stride || !obj->tiling_mode),
"bogus fence setup with stride: 0x%x, tiling mode: %i\n",
obj->stride, obj->tiling_mode);
switch (INTEL_INFO(dev)->gen) {
case 7:
case 6:
case 5:
case 4: i965_write_fence_reg(dev, reg, obj); break;
case 3: i915_write_fence_reg(dev, reg, obj); break;
case 2: i830_write_fence_reg(dev, reg, obj); break;
default: BUG();
}
/* And similarly be paranoid that no direct access to this region
* is reordered to before the fence is installed.
*/
if (i915_gem_object_needs_mb(obj))
mb();
}
static inline int fence_number(struct drm_i915_private *dev_priv,
struct drm_i915_fence_reg *fence)
{
return fence - dev_priv->fence_regs;
}
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int reg = fence_number(dev_priv, fence);
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
if (enable) {
obj->fence_reg = reg;
fence->obj = obj;
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
} else {
obj->fence_reg = I915_FENCE_REG_NONE;
fence->obj = NULL;
list_del_init(&fence->lru_list);
}
obj->fence_dirty = false;
}
static int
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
{
if (obj->last_fenced_seqno) {
int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
if (ret)
return ret;
obj->last_fenced_seqno = 0;
}
obj->fenced_gpu_access = false;
return 0;
}
int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct drm_i915_fence_reg *fence;
int ret;
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
if (obj->fence_reg == I915_FENCE_REG_NONE)
return 0;
fence = &dev_priv->fence_regs[obj->fence_reg];
i915_gem_object_fence_lost(obj);
i915_gem_object_update_fence(obj, fence, false);
return 0;
}
static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg, *avail;
int i;
/* First try to find a free reg */
avail = NULL;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return reg;
if (!reg->pin_count)
avail = reg;
}
if (avail == NULL)
return NULL;
/* None available, try to steal one or wait for a user to finish */
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
if (reg->pin_count)
continue;
return reg;
}
return NULL;
}
/**
* i915_gem_object_get_fence - set up fencing for an object
* @obj: object to map through a fence reg
*
* When mapping objects through the GTT, userspace wants to be able to write
* to them without having to worry about swizzling if the object is tiled.
* This function walks the fence regs looking for a free one for @obj,
* stealing one if it can't find any.
*
* It then sets up the reg based on the object's properties: address, pitch
* and tiling format.
*
* For an untiled surface, this removes any existing fence.
*/
int
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool enable = obj->tiling_mode != I915_TILING_NONE;
struct drm_i915_fence_reg *reg;
int ret;
/* Have we updated the tiling parameters upon the object and so
* will need to serialise the write to the associated fence register?
*/
if (obj->fence_dirty) {
ret = i915_gem_object_wait_fence(obj);
if (ret)
return ret;
}
/* Just update our place in the LRU if our fence is getting reused. */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
if (!obj->fence_dirty) {
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
return 0;
}
} else if (enable) {
reg = i915_find_fence_reg(dev);
if (reg == NULL)
return -EDEADLK;
if (reg->obj) {
struct drm_i915_gem_object *old = reg->obj;
ret = i915_gem_object_wait_fence(old);
if (ret)
return ret;
i915_gem_object_fence_lost(old);
}
} else
return 0;
i915_gem_object_update_fence(obj, reg, enable);
return 0;
}
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
struct drm_mm_node *gtt_space,
unsigned long cache_level)
{
struct drm_mm_node *other;
/* On non-LLC machines we have to be careful when putting differing
* types of snoopable memory together to avoid the prefetcher
* crossing memory domains and dying.
*/
if (HAS_LLC(dev))
return true;
if (!drm_mm_node_allocated(gtt_space))
return true;
if (list_empty(&gtt_space->node_list))
return true;
other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
if (other->allocated && !other->hole_follows && other->color != cache_level)
return false;
other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
return false;
return true;
}
static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
int err = 0;
list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
if (obj->gtt_space == NULL) {
printk(KERN_ERR "object found on GTT list with no space reserved\n");
err++;
continue;
}
if (obj->cache_level != obj->gtt_space->color) {
printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
i915_gem_obj_ggtt_offset(obj),
i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
obj->cache_level,
obj->gtt_space->color);
err++;
continue;
}
if (!i915_gem_valid_gtt_space(dev,
obj->gtt_space,
obj->cache_level)) {
printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
i915_gem_obj_ggtt_offset(obj),
i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
obj->cache_level);
err++;
continue;
}
}
WARN_ON(err);
#endif
}
/**
* Finds free space in the GTT aperture and binds the object there.
*/
static int
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
unsigned alignment,
bool map_and_fenceable,
bool nonblocking)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 size, fence_size, fence_alignment, unfenced_alignment;
size_t gtt_max =
map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
struct i915_vma *vma;
int ret;
fence_size = i915_gem_get_gtt_size(dev,
obj->base.size,
obj->tiling_mode);
fence_alignment = i915_gem_get_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode, true);
unfenced_alignment =
i915_gem_get_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode, false);
if (alignment == 0)
alignment = map_and_fenceable ? fence_alignment :
unfenced_alignment;
if (map_and_fenceable && alignment & (fence_alignment - 1)) {
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
return -EINVAL;
}
size = map_and_fenceable ? fence_size : obj->base.size;
/* If the object is bigger than the entire aperture, reject it early
* before evicting everything in a vain attempt to find space.
*/
if (obj->base.size > gtt_max) {
DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
obj->base.size,
map_and_fenceable ? "mappable" : "total",
gtt_max);
return -E2BIG;
}
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
BUG_ON(!i915_is_ggtt(vm));
vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unpin;
}
/* For now we only ever use 1 vma per object */
WARN_ON(!list_is_singular(&obj->vma_list));
search_free:
ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
size, alignment,
obj->cache_level, 0, gtt_max,
DRM_MM_SEARCH_DEFAULT);
if (ret) {
ret = i915_gem_evict_something(dev, vm, size, alignment,
obj->cache_level,
map_and_fenceable,
nonblocking);
if (ret == 0)
goto search_free;
goto err_free_vma;
}
if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
obj->cache_level))) {
ret = -EINVAL;
goto err_remove_node;
}
ret = i915_gem_gtt_prepare_object(obj);
if (ret)
goto err_remove_node;
list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
list_add_tail(&vma->mm_list, &vm->inactive_list);
if (i915_is_ggtt(vm)) {
bool mappable, fenceable;
fenceable = (vma->node.size == fence_size &&
(vma->node.start & (fence_alignment - 1)) == 0);
mappable = (vma->node.start + obj->base.size <=
dev_priv->gtt.mappable_end);
obj->map_and_fenceable = mappable && fenceable;
}
WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
trace_i915_vma_bind(vma, map_and_fenceable);
i915_gem_verify_gtt(dev);
return 0;
err_remove_node:
drm_mm_remove_node(&vma->node);
err_free_vma:
i915_gem_vma_destroy(vma);
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}
bool
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
bool force)
{
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj->pages == NULL)
return false;
/*
* Stolen memory is always coherent with the GPU as it is explicitly
* marked as wc by the system, or the system is cache-coherent.
*/
if (obj->stolen)
return false;
/* If the GPU is snooping the contents of the CPU cache,
* we do not need to manually clear the CPU cache lines. However,
* the caches are only snooped when the render cache is
* flushed/invalidated. As we always have to emit invalidations
* and flushes when moving into and out of the RENDER domain, correct
* snooping behaviour occurs naturally as the result of our domain
* tracking.
*/
if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
return false;
trace_i915_gem_object_clflush(obj);
drm_clflush_sg(obj->pages);
return true;
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it immediately go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*/
wmb();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
bool force)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
return;
if (i915_gem_clflush_object(obj, force))
i915_gem_chipset_flush(obj->base.dev);
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/**
* Moves a single object to the GTT read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
uint32_t old_write_domain, old_read_domains;
int ret;
/* Not valid to be called on unbound objects. */
if (!i915_gem_obj_bound_any(obj))
return -EINVAL;
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
return 0;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
i915_gem_object_flush_cpu_write_domain(obj, false);
/* Serialise direct access to this object with the barriers for
* coherent writes from the GPU, by effectively invalidating the
* GTT domain upon first access.
*/
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
mb();
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
obj->dirty = 1;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
/* And bump the LRU for this access */
if (i915_gem_object_is_inactive(obj)) {
struct i915_vma *vma = i915_gem_obj_to_vma(obj,
&dev_priv->gtt.base);
if (vma)
list_move_tail(&vma->mm_list,
&dev_priv->gtt.base.inactive_list);
}
return 0;
}
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct i915_vma *vma;
int ret;
if (obj->cache_level == cache_level)
return 0;
if (obj->pin_count) {
DRM_DEBUG("can not change the cache level of pinned objects\n");
return -EBUSY;
}
list_for_each_entry(vma, &obj->vma_list, vma_link) {
if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
ret = i915_vma_unbind(vma);
if (ret)
return ret;
break;
}
}
if (i915_gem_obj_bound_any(obj)) {
ret = i915_gem_object_finish_gpu(obj);
if (ret)
return ret;
i915_gem_object_finish_gtt(obj);
/* Before SandyBridge, you could not use tiling or fence
* registers with snooped memory, so relinquish any fences
* currently pointing to our region in the aperture.
*/
if (INTEL_INFO(dev)->gen < 6) {
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
}
if (obj->has_global_gtt_mapping)
i915_gem_gtt_bind_object(obj, cache_level);
if (obj->has_aliasing_ppgtt_mapping)
i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
obj, cache_level);
}
list_for_each_entry(vma, &obj->vma_list, vma_link)
vma->node.color = cache_level;
obj->cache_level = cache_level;
if (cpu_write_needs_clflush(obj)) {
u32 old_read_domains, old_write_domain;
/* If we're coming from LLC cached, then we haven't
* actually been tracking whether the data is in the
* CPU cache or not, since we only allow one bit set
* in obj->write_domain and have been skipping the clflushes.
* Just set it to the CPU cache for now.
*/
WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
old_read_domains = obj->base.read_domains;
old_write_domain = obj->base.write_domain;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
}
i915_gem_verify_gtt(dev);
return 0;
}
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
switch (obj->cache_level) {
case I915_CACHE_LLC:
case I915_CACHE_L3_LLC:
args->caching = I915_CACHING_CACHED;
break;
case I915_CACHE_WT:
args->caching = I915_CACHING_DISPLAY;
break;
default:
args->caching = I915_CACHING_NONE;
break;
}
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
enum i915_cache_level level;
int ret;
switch (args->caching) {
case I915_CACHING_NONE:
level = I915_CACHE_NONE;
break;
case I915_CACHING_CACHED:
level = I915_CACHE_LLC;
break;
case I915_CACHING_DISPLAY:
level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
ret = i915_gem_object_set_cache_level(obj, level);
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
/* There are 3 sources that pin objects:
* 1. The display engine (scanouts, sprites, cursors);
* 2. Reservations for execbuffer;
* 3. The user.
*
* We can ignore reservations as we hold the struct_mutex and
* are only called outside of the reservation path. The user
* can only increment pin_count once, and so if after
* subtracting the potential reference by the user, any pin_count
* remains, it must be due to another use by the display engine.
*/
return obj->pin_count - !!obj->user_pin_count;
}
/*
* Prepare buffer for display plane (scanout, cursors, etc).
* Can be called from an uninterruptible phase (modesetting) and allows
* any flushes to be pipelined (for pageflips).
*/
int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
u32 alignment,
struct intel_ring_buffer *pipelined)
{
u32 old_read_domains, old_write_domain;
int ret;
if (pipelined != obj->ring) {
ret = i915_gem_object_sync(obj, pipelined);
if (ret)
return ret;
}
/* Mark the pin_display early so that we account for the
* display coherency whilst setting up the cache domains.
*/
obj->pin_display = true;
/* The display engine is not coherent with the LLC cache on gen6. As
* a result, we make sure that the pinning that is about to occur is
* done with uncached PTEs. This is lowest common denominator for all
* chipsets.
*
* However for gen6+, we could do better by using the GFDT bit instead
* of uncaching, which would allow us to flush all the LLC-cached data
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
*/
ret = i915_gem_object_set_cache_level(obj,
HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
if (ret)
goto err_unpin_display;
/* As the user may map the buffer once pinned in the display plane
* (e.g. libkms for the bootup splash), we have to ensure that we
* always use map_and_fenceable for all scanout buffers.
*/
ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
if (ret)
goto err_unpin_display;
i915_gem_object_flush_cpu_write_domain(obj, true);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
obj->base.write_domain = 0;
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
err_unpin_display:
obj->pin_display = is_pin_display(obj);
return ret;
}
void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
i915_gem_object_unpin(obj);
obj->pin_display = is_pin_display(obj);
}
int
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
{
int ret;
if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
return 0;
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
/* Ensure that we invalidate the GPU's caches and TLBs. */
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
return 0;
}
/**
* Moves a single object to the CPU read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return 0;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* Flush the CPU cache if it's still invalid. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj, false);
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* Note that if we were to use the current jiffies each time around the loop,
* we wouldn't escape the function with any frames outstanding if the time to
* render a frame was over 20ms.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_file_private *file_priv = file->driver_priv;
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
struct drm_i915_gem_request *request;
struct intel_ring_buffer *ring = NULL;
unsigned reset_counter;
u32 seqno = 0;
int ret;
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
if (ret)
return ret;
ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
if (ret)
return ret;
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
ring = request->ring;
seqno = request->seqno;
}
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
spin_unlock(&file_priv->mm.lock);
if (seqno == 0)
return 0;
ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
if (ret == 0)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
return ret;
}
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
uint32_t alignment,
bool map_and_fenceable,
bool nonblocking)
{
struct i915_vma *vma;
int ret;
if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
return -EBUSY;
WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
vma = i915_gem_obj_to_vma(obj, vm);
if (vma) {
if ((alignment &&
vma->node.start & (alignment - 1)) ||
(map_and_fenceable && !obj->map_and_fenceable)) {
WARN(obj->pin_count,
"bo is already pinned with incorrect alignment:"
" offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
" obj->map_and_fenceable=%d\n",
i915_gem_obj_offset(obj, vm), alignment,
map_and_fenceable,
obj->map_and_fenceable);
ret = i915_vma_unbind(vma);
if (ret)
return ret;
}
}
if (!i915_gem_obj_bound(obj, vm)) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
map_and_fenceable,
nonblocking);
if (ret)
return ret;
if (!dev_priv->mm.aliasing_ppgtt)
i915_gem_gtt_bind_object(obj, obj->cache_level);
}
if (!obj->has_global_gtt_mapping && map_and_fenceable)
i915_gem_gtt_bind_object(obj, obj->cache_level);
obj->pin_count++;
obj->pin_mappable |= map_and_fenceable;
return 0;
}
void
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
{
BUG_ON(obj->pin_count == 0);
BUG_ON(!i915_gem_obj_bound_any(obj));
if (--obj->pin_count == 0)
obj->pin_mappable = false;
}
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to pin a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
if (obj->pin_filp != NULL && obj->pin_filp != file) {
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
if (obj->user_pin_count == 0) {
ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
if (ret)
goto out;
}
obj->user_pin_count++;
obj->pin_filp = file;
args->offset = i915_gem_obj_ggtt_offset(obj);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_filp != file) {
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj->user_pin_count--;
if (obj->user_pin_count == 0) {
obj->pin_filp = NULL;
i915_gem_object_unpin(obj);
}
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_busy *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Count all active objects as busy, even if they are currently not used
* by the gpu. Users of this interface expect objects to eventually
* become non-busy without any further actions, therefore emit any
* necessary flushes here.
*/
ret = i915_gem_object_flush_active(obj);
args->busy = obj->active;
if (obj->ring) {
BUILD_BUG_ON(I915_NUM_RINGS > 16);
args->busy |= intel_ring_flag(obj->ring) << 16;
}
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_madvise *args = data;
struct drm_i915_gem_object *obj;
int ret;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_count) {
ret = -EINVAL;
goto out;
}
if (obj->madv != __I915_MADV_PURGED)
obj->madv = args->madv;
/* if the object is no longer attached, discard its backing storage */
if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
i915_gem_object_truncate(obj);
args->retained = obj->madv != __I915_MADV_PURGED;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops)
{
INIT_LIST_HEAD(&obj->global_list);
INIT_LIST_HEAD(&obj->ring_list);
INIT_LIST_HEAD(&obj->obj_exec_link);
INIT_LIST_HEAD(&obj->vma_list);
obj->ops = ops;
obj->fence_reg = I915_FENCE_REG_NONE;
obj->madv = I915_MADV_WILLNEED;
/* Avoid an unnecessary call to unbind on the first bind. */
obj->map_and_fenceable = true;
i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
.get_pages = i915_gem_object_get_pages_gtt,
.put_pages = i915_gem_object_put_pages_gtt,
};
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
size_t size)
{
struct drm_i915_gem_object *obj;
struct address_space *mapping;
gfp_t mask;
obj = i915_gem_object_alloc(dev);
if (obj == NULL)
return NULL;
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
i915_gem_object_free(obj);
return NULL;
}
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
/* 965gm cannot relocate objects above 4GiB. */
mask &= ~__GFP_HIGHMEM;
mask |= __GFP_DMA32;
}
mapping = file_inode(obj->base.filp)->i_mapping;
mapping_set_gfp_mask(mapping, mask);
i915_gem_object_init(obj, &i915_gem_object_ops);
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
if (HAS_LLC(dev)) {
/* On some devices, we can have the GPU use the LLC (the CPU
* cache) for about a 10% performance improvement
* compared to uncached. Graphics requests other than
* display scanout are coherent with the CPU in
* accessing this cache. This means in this mode we
* don't need to clflush on the CPU side, and on the
* GPU side we only need to flush internal caches to
* get data visible to the CPU.
*
* However, we maintain the display planes as UC, and so
* need to rebind when first used as such.
*/
obj->cache_level = I915_CACHE_LLC;
} else
obj->cache_level = I915_CACHE_NONE;
trace_i915_gem_object_create(obj);
return obj;
}
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct i915_vma *vma, *next;
trace_i915_gem_object_destroy(obj);
if (obj->phys_obj)
i915_gem_detach_phys_object(dev, obj);
obj->pin_count = 0;
/* NB: 0 or 1 elements */
WARN_ON(!list_empty(&obj->vma_list) &&
!list_is_singular(&obj->vma_list));
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
int ret = i915_vma_unbind(vma);
if (WARN_ON(ret == -ERESTARTSYS)) {
bool was_interruptible;
was_interruptible = dev_priv->mm.interruptible;
dev_priv->mm.interruptible = false;
WARN_ON(i915_vma_unbind(vma));
dev_priv->mm.interruptible = was_interruptible;
}
}
/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
* before progressing. */
if (obj->stolen)
i915_gem_object_unpin_pages(obj);
if (WARN_ON(obj->pages_pin_count))
obj->pages_pin_count = 0;
i915_gem_object_put_pages(obj);
i915_gem_object_free_mmap_offset(obj);
i915_gem_object_release_stolen(obj);
BUG_ON(obj->pages);
if (obj->base.import_attach)
drm_prime_gem_destroy(&obj->base, NULL);
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev_priv, obj->base.size);
kfree(obj->bit_17);
i915_gem_object_free(obj);
}
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm)
{
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, vma_link)
if (vma->vm == vm)
return vma;
return NULL;
}
static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
struct i915_address_space *vm)
{
struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
if (vma == NULL)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&vma->vma_link);
INIT_LIST_HEAD(&vma->mm_list);
INIT_LIST_HEAD(&vma->exec_list);
vma->vm = vm;
vma->obj = obj;
/* Keep GGTT vmas first to make debug easier */
if (i915_is_ggtt(vm))
list_add(&vma->vma_link, &obj->vma_list);
else
list_add_tail(&vma->vma_link, &obj->vma_list);
return vma;
}
struct i915_vma *
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm)
{
struct i915_vma *vma;
vma = i915_gem_obj_to_vma(obj, vm);
if (!vma)
vma = __i915_gem_vma_create(obj, vm);
return vma;
}
void i915_gem_vma_destroy(struct i915_vma *vma)
{
WARN_ON(vma->node.allocated);
/* Keep the vma as a placeholder in the execbuffer reservation lists */
if (!list_empty(&vma->exec_list))
return;
list_del(&vma->vma_link);
kfree(vma);
}
int
i915_gem_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (dev_priv->ums.mm_suspended) {
mutex_unlock(&dev->struct_mutex);
return 0;
}
ret = i915_gpu_idle(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
i915_gem_retire_requests(dev);
/* Under UMS, be paranoid and evict. */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
i915_gem_evict_everything(dev);
del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
i915_kernel_lost_context(dev);
i915_gem_cleanup_ringbuffer(dev);
/* Cancel the retire work handler, which should be idle now. */
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
return 0;
}
int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
{
struct drm_device *dev = ring->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
int i, ret;
if (!HAS_L3_DPF(dev) || !remap_info)
return 0;
ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
if (ret)
return ret;
/*
* Note: We do not worry about the concurrent register cacheline hang
* here because no other code should access these registers other than
* at initialization time.
*/
for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, reg_base + i);
intel_ring_emit(ring, remap_info[i/4]);
}
intel_ring_advance(ring);
return ret;
}
void i915_gem_init_swizzling(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 5 ||
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
return;
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_TILE_SURFACE_SWIZZLING);
if (IS_GEN5(dev))
return;
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
if (IS_GEN6(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
else if (IS_GEN7(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
else
BUG();
}
static bool
intel_enable_blt(struct drm_device *dev)
{
if (!HAS_BLT(dev))
return false;
/* The blitter was dysfunctional on early prototypes */
if (IS_GEN6(dev) && dev->pdev->revision < 8) {
DRM_INFO("BLT not supported on this pre-production hardware;"
" graphics performance will be degraded.\n");
return false;
}
return true;
}
static int i915_gem_init_rings(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = intel_init_render_ring_buffer(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = intel_init_bsd_ring_buffer(dev);
if (ret)
goto cleanup_render_ring;
}
if (intel_enable_blt(dev)) {
ret = intel_init_blt_ring_buffer(dev);
if (ret)
goto cleanup_bsd_ring;
}
if (HAS_VEBOX(dev)) {
ret = intel_init_vebox_ring_buffer(dev);
if (ret)
goto cleanup_blt_ring;
}
ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
if (ret)
goto cleanup_vebox_ring;
return 0;
cleanup_vebox_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
cleanup_blt_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
return ret;
}
int
i915_gem_init_hw(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret, i;
if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
return -EIO;
if (dev_priv->ellc_size)
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
if (IS_HSW_GT3(dev))
I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
else
I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
if (HAS_PCH_NOP(dev)) {
u32 temp = I915_READ(GEN7_MSG_CTL);
temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
I915_WRITE(GEN7_MSG_CTL, temp);
}
i915_gem_init_swizzling(dev);
ret = i915_gem_init_rings(dev);
if (ret)
return ret;
for (i = 0; i < NUM_L3_SLICES(dev); i++)
i915_gem_l3_remap(&dev_priv->ring[RCS], i);
/*
* XXX: There was some w/a described somewhere suggesting loading
* contexts before PPGTT.
*/
i915_gem_context_init(dev);
if (dev_priv->mm.aliasing_ppgtt) {
ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
if (ret) {
i915_gem_cleanup_aliasing_ppgtt(dev);
DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
}
}
return 0;
}
int i915_gem_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
mutex_lock(&dev->struct_mutex);
if (IS_VALLEYVIEW(dev)) {
/* VLVA0 (potential hack), BIOS isn't actually waking us */
I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
DRM_DEBUG_DRIVER("allow wake ack timed out\n");
}
i915_gem_init_global_gtt(dev);
ret = i915_gem_init_hw(dev);
mutex_unlock(&dev->struct_mutex);
if (ret) {
i915_gem_cleanup_aliasing_ppgtt(dev);
return ret;
}
/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->dri1.allow_batchbuffer = 1;
return 0;
}
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
intel_cleanup_ring_buffer(ring);
}
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
if (i915_reset_in_progress(&dev_priv->gpu_error)) {
DRM_ERROR("Reenabling wedged hardware, good luck\n");
atomic_set(&dev_priv->gpu_error.reset_counter, 0);
}
mutex_lock(&dev->struct_mutex);
dev_priv->ums.mm_suspended = 0;
ret = i915_gem_init_hw(dev);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
mutex_unlock(&dev->struct_mutex);
ret = drm_irq_install(dev);
if (ret)
goto cleanup_ringbuffer;
return 0;
cleanup_ringbuffer:
mutex_lock(&dev->struct_mutex);
i915_gem_cleanup_ringbuffer(dev);
dev_priv->ums.mm_suspended = 1;
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
drm_irq_uninstall(dev);
mutex_lock(&dev->struct_mutex);
ret = i915_gem_idle(dev);
/* Hack! Don't let anybody do execbuf while we don't control the chip.
* We need to replace this with a semaphore, or something.
* And not confound ums.mm_suspended!
*/
if (ret != 0)
dev_priv->ums.mm_suspended = 1;
mutex_unlock(&dev->struct_mutex);
return ret;
}
void
i915_gem_lastclose(struct drm_device *dev)
{
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return;
mutex_lock(&dev->struct_mutex);
ret = i915_gem_idle(dev);
if (ret)
DRM_ERROR("failed to idle hardware: %d\n", ret);
mutex_unlock(&dev->struct_mutex);
}
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
}
static void i915_init_vm(struct drm_i915_private *dev_priv,
struct i915_address_space *vm)
{
vm->dev = dev_priv->dev;
INIT_LIST_HEAD(&vm->active_list);
INIT_LIST_HEAD(&vm->inactive_list);
INIT_LIST_HEAD(&vm->global_link);
list_add(&vm->global_link, &dev_priv->vm_list);
}
void
i915_gem_load(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
dev_priv->slab =
kmem_cache_create("i915_gem_object",
sizeof(struct drm_i915_gem_object), 0,
SLAB_HWCACHE_ALIGN,
NULL);
INIT_LIST_HEAD(&dev_priv->vm_list);
i915_init_vm(dev_priv, &dev_priv->gtt.base);
INIT_LIST_HEAD(&dev_priv->context_list);
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
for (i = 0; i < I915_NUM_RINGS; i++)
init_ring_lists(&dev_priv->ring[i]);
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
i915_gem_retire_work_handler);
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
if (IS_GEN3(dev)) {
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
}
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
/* Old X drivers will take 0-2 for front, back, depth buffers */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->fence_reg_start = 3;
if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
dev_priv->num_fence_regs = 32;
else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
/* Initialize fence registers to zero */
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
i915_gem_restore_fences(dev);
i915_gem_detect_bit_6_swizzle(dev);
init_waitqueue_head(&dev_priv->pending_flip_queue);
dev_priv->mm.interruptible = true;
dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&dev_priv->mm.inactive_shrinker);
}
/*
* Create a physically contiguous memory object for this object
* e.g. for cursor + overlay regs
*/
static int i915_gem_init_phys_object(struct drm_device *dev,
int id, int size, int align)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
int ret;
if (dev_priv->mm.phys_objs[id - 1] || !size)
return 0;
phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
if (!phys_obj)
return -ENOMEM;
phys_obj->id = id;
phys_obj->handle = drm_pci_alloc(dev, size, align);
if (!phys_obj->handle) {
ret = -ENOMEM;
goto kfree_obj;
}
#ifdef CONFIG_X86
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
dev_priv->mm.phys_objs[id - 1] = phys_obj;
return 0;
kfree_obj:
kfree(phys_obj);
return ret;
}
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
if (!dev_priv->mm.phys_objs[id - 1])
return;
phys_obj = dev_priv->mm.phys_objs[id - 1];
if (phys_obj->cur_obj) {
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
}
#ifdef CONFIG_X86
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
drm_pci_free(dev, phys_obj->handle);
kfree(phys_obj);
dev_priv->mm.phys_objs[id - 1] = NULL;
}
void i915_gem_free_all_phys_object(struct drm_device *dev)
{
int i;
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
i915_gem_free_phys_object(dev, i);
}
void i915_gem_detach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj)
{
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
char *vaddr;
int i;
int page_count;
if (!obj->phys_obj)
return;
vaddr = obj->phys_obj->handle->vaddr;
page_count = obj->base.size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page = shmem_read_mapping_page(mapping, i);
if (!IS_ERR(page)) {
char *dst = kmap_atomic(page);
memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
kunmap_atomic(dst);
drm_clflush_pages(&page, 1);
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
}
}
i915_gem_chipset_flush(dev);
obj->phys_obj->cur_obj = NULL;
obj->phys_obj = NULL;
}
int
i915_gem_attach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj,
int id,
int align)
{
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret = 0;
int page_count;
int i;
if (id > I915_MAX_PHYS_OBJECT)
return -EINVAL;
if (obj->phys_obj) {
if (obj->phys_obj->id == id)
return 0;
i915_gem_detach_phys_object(dev, obj);
}
/* create a new object */
if (!dev_priv->mm.phys_objs[id - 1]) {
ret = i915_gem_init_phys_object(dev, id,
obj->base.size, align);
if (ret) {
DRM_ERROR("failed to init phys object %d size: %zu\n",
id, obj->base.size);
return ret;
}
}
/* bind to the object */
obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
obj->phys_obj->cur_obj = obj;
page_count = obj->base.size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page;
char *dst, *src;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
return PTR_ERR(page);
src = kmap_atomic(page);
dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
memcpy(dst, src, PAGE_SIZE);
kunmap_atomic(src);
mark_page_accessed(page);
page_cache_release(page);
}
return 0;
}
static int
i915_gem_phys_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
char __user *user_data = to_user_ptr(args->data_ptr);
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
unsigned long unwritten;
/* The physical object once assigned is fixed for the lifetime
* of the obj, so we can safely drop the lock and continue
* to access vaddr.
*/
mutex_unlock(&dev->struct_mutex);
unwritten = copy_from_user(vaddr, user_data, args->size);
mutex_lock(&dev->struct_mutex);
if (unwritten)
return -EFAULT;
}
i915_gem_chipset_flush(dev);
return 0;
}
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
spin_lock(&file_priv->mm.lock);
while (!list_empty(&file_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&file_priv->mm.request_list,
struct drm_i915_gem_request,
client_list);
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
}
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
if (!mutex_is_locked(mutex))
return false;
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
return mutex->owner == task;
#else
/* Since UP may be pre-empted, we cannot assume that we own the lock */
return false;
#endif
}
static unsigned long
i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker,
struct drm_i915_private,
mm.inactive_shrinker);
struct drm_device *dev = dev_priv->dev;
struct drm_i915_gem_object *obj;
bool unlock = true;
unsigned long count;
if (!mutex_trylock(&dev->struct_mutex)) {
if (!mutex_is_locked_by(&dev->struct_mutex, current))
return 0;
if (dev_priv->mm.shrinker_no_lock_stealing)
return 0;
unlock = false;
}
count = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
if (obj->pages_pin_count == 0)
count += obj->base.size >> PAGE_SHIFT;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->active)
continue;
if (obj->pin_count == 0 && obj->pages_pin_count == 0)
count += obj->base.size >> PAGE_SHIFT;
}
if (unlock)
mutex_unlock(&dev->struct_mutex);
return count;
}
/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
struct i915_vma *vma;
if (vm == &dev_priv->mm.aliasing_ppgtt->base)
vm = &dev_priv->gtt.base;
BUG_ON(list_empty(&o->vma_list));
list_for_each_entry(vma, &o->vma_list, vma_link) {
if (vma->vm == vm)
return vma->node.start;
}
return -1;
}
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
struct i915_address_space *vm)
{
struct i915_vma *vma;
list_for_each_entry(vma, &o->vma_list, vma_link)
if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
return true;
return false;
}
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
struct i915_vma *vma;
list_for_each_entry(vma, &o->vma_list, vma_link)
if (drm_mm_node_allocated(&vma->node))
return true;
return false;
}
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
struct i915_vma *vma;
if (vm == &dev_priv->mm.aliasing_ppgtt->base)
vm = &dev_priv->gtt.base;
BUG_ON(list_empty(&o->vma_list));
list_for_each_entry(vma, &o->vma_list, vma_link)
if (vma->vm == vm)
return vma->node.size;
return 0;
}
static unsigned long
i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker,
struct drm_i915_private,
mm.inactive_shrinker);
struct drm_device *dev = dev_priv->dev;
int nr_to_scan = sc->nr_to_scan;
unsigned long freed;
bool unlock = true;
if (!mutex_trylock(&dev->struct_mutex)) {
if (!mutex_is_locked_by(&dev->struct_mutex, current))
return SHRINK_STOP;
if (dev_priv->mm.shrinker_no_lock_stealing)
return SHRINK_STOP;
unlock = false;
}
freed = i915_gem_purge(dev_priv, nr_to_scan);
if (freed < nr_to_scan)
freed += __i915_gem_shrink(dev_priv, nr_to_scan,
false);
if (freed < nr_to_scan)
freed += i915_gem_shrink_all(dev_priv);
if (unlock)
mutex_unlock(&dev->struct_mutex);
return freed;
}