linux/arch/openrisc/kernel/dma.c
Christoph Hellwig 15b28bbcd5 dma-debug: move initialization to common code
Most mainstream architectures are using 65536 entries, so lets stick to
that.  If someone is really desperate to override it that can still be
done through <asm/dma-mapping.h>, but I'd rather see a really good
rationale for that.

dma_debug_init is now called as a core_initcall, which for many
architectures means much earlier, and provides dma-debug functionality
earlier in the boot process.  This should be safe as it only relies
on the memory allocator already being available.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
2018-05-08 13:02:42 +02:00

250 lines
6.4 KiB
C

/*
* OpenRISC Linux
*
* Linux architectural port borrowing liberally from similar works of
* others. All original copyrights apply as per the original source
* declaration.
*
* Modifications for the OpenRISC architecture:
* Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
* Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* DMA mapping callbacks...
* As alloc_coherent is the only DMA callback being used currently, that's
* the only thing implemented properly. The rest need looking into...
*/
#include <linux/dma-mapping.h>
#include <linux/dma-debug.h>
#include <linux/export.h>
#include <asm/cpuinfo.h>
#include <asm/spr_defs.h>
#include <asm/tlbflush.h>
static int
page_set_nocache(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
unsigned long cl;
struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
pte_val(*pte) |= _PAGE_CI;
/*
* Flush the page out of the TLB so that the new page flags get
* picked up next time there's an access
*/
flush_tlb_page(NULL, addr);
/* Flush page out of dcache */
for (cl = __pa(addr); cl < __pa(next); cl += cpuinfo->dcache_block_size)
mtspr(SPR_DCBFR, cl);
return 0;
}
static int
page_clear_nocache(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pte_val(*pte) &= ~_PAGE_CI;
/*
* Flush the page out of the TLB so that the new page flags get
* picked up next time there's an access
*/
flush_tlb_page(NULL, addr);
return 0;
}
/*
* Alloc "coherent" memory, which for OpenRISC means simply uncached.
*
* This function effectively just calls __get_free_pages, sets the
* cache-inhibit bit on those pages, and makes sure that the pages are
* flushed out of the cache before they are used.
*
* If the NON_CONSISTENT attribute is set, then this function just
* returns "normal", cachable memory.
*
* There are additional flags WEAK_ORDERING and WRITE_COMBINE to take
* into consideration here, too. All current known implementations of
* the OR1K support only strongly ordered memory accesses, so that flag
* is being ignored for now; uncached but write-combined memory is a
* missing feature of the OR1K.
*/
static void *
or1k_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
unsigned long attrs)
{
unsigned long va;
void *page;
struct mm_walk walk = {
.pte_entry = page_set_nocache,
.mm = &init_mm
};
page = alloc_pages_exact(size, gfp);
if (!page)
return NULL;
/* This gives us the real physical address of the first page. */
*dma_handle = __pa(page);
va = (unsigned long)page;
if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
/*
* We need to iterate through the pages, clearing the dcache for
* them and setting the cache-inhibit bit.
*/
if (walk_page_range(va, va + size, &walk)) {
free_pages_exact(page, size);
return NULL;
}
}
return (void *)va;
}
static void
or1k_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
unsigned long va = (unsigned long)vaddr;
struct mm_walk walk = {
.pte_entry = page_clear_nocache,
.mm = &init_mm
};
if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
/* walk_page_range shouldn't be able to fail here */
WARN_ON(walk_page_range(va, va + size, &walk));
}
free_pages_exact(vaddr, size);
}
static dma_addr_t
or1k_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
unsigned long cl;
dma_addr_t addr = page_to_phys(page) + offset;
struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
return addr;
switch (dir) {
case DMA_TO_DEVICE:
/* Flush the dcache for the requested range */
for (cl = addr; cl < addr + size;
cl += cpuinfo->dcache_block_size)
mtspr(SPR_DCBFR, cl);
break;
case DMA_FROM_DEVICE:
/* Invalidate the dcache for the requested range */
for (cl = addr; cl < addr + size;
cl += cpuinfo->dcache_block_size)
mtspr(SPR_DCBIR, cl);
break;
default:
/*
* NOTE: If dir == DMA_BIDIRECTIONAL then there's no need to
* flush nor invalidate the cache here as the area will need
* to be manually synced anyway.
*/
break;
}
return addr;
}
static void
or1k_unmap_page(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
/* Nothing special to do here... */
}
static int
or1k_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
s->dma_address = or1k_map_page(dev, sg_page(s), s->offset,
s->length, dir, 0);
}
return nents;
}
static void
or1k_unmap_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
or1k_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, 0);
}
}
static void
or1k_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
{
unsigned long cl;
dma_addr_t addr = dma_handle;
struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
/* Invalidate the dcache for the requested range */
for (cl = addr; cl < addr + size; cl += cpuinfo->dcache_block_size)
mtspr(SPR_DCBIR, cl);
}
static void
or1k_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
{
unsigned long cl;
dma_addr_t addr = dma_handle;
struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
/* Flush the dcache for the requested range */
for (cl = addr; cl < addr + size; cl += cpuinfo->dcache_block_size)
mtspr(SPR_DCBFR, cl);
}
const struct dma_map_ops or1k_dma_map_ops = {
.alloc = or1k_dma_alloc,
.free = or1k_dma_free,
.map_page = or1k_map_page,
.unmap_page = or1k_unmap_page,
.map_sg = or1k_map_sg,
.unmap_sg = or1k_unmap_sg,
.sync_single_for_cpu = or1k_sync_single_for_cpu,
.sync_single_for_device = or1k_sync_single_for_device,
};
EXPORT_SYMBOL(or1k_dma_map_ops);