linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h
Edward O'Callaghan e88a614c40 drm/amdkfd: Pass 'struct queue_propertices' by reference
Allow init_queue() to take 'struct queue_properties' by reference.

Signed-off-by: Edward O'Callaghan <funfunctor@folklore1984.net>
Reviewed-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2016-09-19 20:58:35 +03:00

734 lines
21 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef KFD_PRIV_H_INCLUDED
#define KFD_PRIV_H_INCLUDED
#include <linux/hashtable.h>
#include <linux/mmu_notifier.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/kfd_ioctl.h>
#include <kgd_kfd_interface.h>
#define KFD_SYSFS_FILE_MODE 0444
#define KFD_MMAP_DOORBELL_MASK 0x8000000000000
#define KFD_MMAP_EVENTS_MASK 0x4000000000000
/*
* When working with cp scheduler we should assign the HIQ manually or via
* the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
* definitions for Kaveri. In Kaveri only the first ME queues participates
* in the cp scheduling taking that in mind we set the HIQ slot in the
* second ME.
*/
#define KFD_CIK_HIQ_PIPE 4
#define KFD_CIK_HIQ_QUEUE 0
/* GPU ID hash width in bits */
#define KFD_GPU_ID_HASH_WIDTH 16
/* Macro for allocating structures */
#define kfd_alloc_struct(ptr_to_struct) \
((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
#define KFD_MAX_NUM_OF_PROCESSES 512
#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
/*
* Kernel module parameter to specify maximum number of supported queues per
* device
*/
extern int max_num_of_queues_per_device;
#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \
(KFD_MAX_NUM_OF_PROCESSES * \
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
#define KFD_KERNEL_QUEUE_SIZE 2048
/* Kernel module parameter to specify the scheduling policy */
extern int sched_policy;
/*
* Kernel module parameter to specify whether to send sigterm to HSA process on
* unhandled exception
*/
extern int send_sigterm;
/**
* enum kfd_sched_policy
*
* @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
* scheduling. In this scheduling mode we're using the firmware code to
* schedule the user mode queues and kernel queues such as HIQ and DIQ.
* the HIQ queue is used as a special queue that dispatches the configuration
* to the cp and the user mode queues list that are currently running.
* the DIQ queue is a debugging queue that dispatches debugging commands to the
* firmware.
* in this scheduling mode user mode queues over subscription feature is
* enabled.
*
* @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
* subscription feature disabled.
*
* @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
* set the command processor registers and sets the queues "manually". This
* mode is used *ONLY* for debugging proposes.
*
*/
enum kfd_sched_policy {
KFD_SCHED_POLICY_HWS = 0,
KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
KFD_SCHED_POLICY_NO_HWS
};
enum cache_policy {
cache_policy_coherent,
cache_policy_noncoherent
};
enum asic_family_type {
CHIP_KAVERI = 0,
CHIP_CARRIZO
};
struct kfd_event_interrupt_class {
bool (*interrupt_isr)(struct kfd_dev *dev,
const uint32_t *ih_ring_entry);
void (*interrupt_wq)(struct kfd_dev *dev,
const uint32_t *ih_ring_entry);
};
struct kfd_device_info {
unsigned int asic_family;
const struct kfd_event_interrupt_class *event_interrupt_class;
unsigned int max_pasid_bits;
unsigned int max_no_of_hqd;
size_t ih_ring_entry_size;
uint8_t num_of_watch_points;
uint16_t mqd_size_aligned;
};
struct kfd_mem_obj {
uint32_t range_start;
uint32_t range_end;
uint64_t gpu_addr;
uint32_t *cpu_ptr;
};
struct kfd_dev {
struct kgd_dev *kgd;
const struct kfd_device_info *device_info;
struct pci_dev *pdev;
unsigned int id; /* topology stub index */
phys_addr_t doorbell_base; /* Start of actual doorbells used by
* KFD. It is aligned for mapping
* into user mode
*/
size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell
* to HW doorbell, GFX reserved some
* at the start)
*/
size_t doorbell_process_limit; /* Number of processes we have doorbell
* space for.
*/
u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
* page used by kernel queue
*/
struct kgd2kfd_shared_resources shared_resources;
const struct kfd2kgd_calls *kfd2kgd;
struct mutex doorbell_mutex;
DECLARE_BITMAP(doorbell_available_index,
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
void *gtt_mem;
uint64_t gtt_start_gpu_addr;
void *gtt_start_cpu_ptr;
void *gtt_sa_bitmap;
struct mutex gtt_sa_lock;
unsigned int gtt_sa_chunk_size;
unsigned int gtt_sa_num_of_chunks;
/* Interrupts */
void *interrupt_ring;
size_t interrupt_ring_size;
atomic_t interrupt_ring_rptr;
atomic_t interrupt_ring_wptr;
struct work_struct interrupt_work;
spinlock_t interrupt_lock;
/* QCM Device instance */
struct device_queue_manager *dqm;
bool init_complete;
/*
* Interrupts of interest to KFD are copied
* from the HW ring into a SW ring.
*/
bool interrupts_active;
/* Debug manager */
struct kfd_dbgmgr *dbgmgr;
};
/* KGD2KFD callbacks */
void kgd2kfd_exit(void);
struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
bool kgd2kfd_device_init(struct kfd_dev *kfd,
const struct kgd2kfd_shared_resources *gpu_resources);
void kgd2kfd_device_exit(struct kfd_dev *kfd);
enum kfd_mempool {
KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
KFD_MEMPOOL_FRAMEBUFFER = 3,
};
/* Character device interface */
int kfd_chardev_init(void);
void kfd_chardev_exit(void);
struct device *kfd_chardev(void);
/**
* enum kfd_preempt_type_filter
*
* @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue.
*
* @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the
* running queues list.
*
* @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to
* specific process.
*
*/
enum kfd_preempt_type_filter {
KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE,
KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES,
KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES,
KFD_PREEMPT_TYPE_FILTER_BY_PASID
};
enum kfd_preempt_type {
KFD_PREEMPT_TYPE_WAVEFRONT,
KFD_PREEMPT_TYPE_WAVEFRONT_RESET
};
/**
* enum kfd_queue_type
*
* @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
*
* @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
*
* @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
*
* @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
*/
enum kfd_queue_type {
KFD_QUEUE_TYPE_COMPUTE,
KFD_QUEUE_TYPE_SDMA,
KFD_QUEUE_TYPE_HIQ,
KFD_QUEUE_TYPE_DIQ
};
enum kfd_queue_format {
KFD_QUEUE_FORMAT_PM4,
KFD_QUEUE_FORMAT_AQL
};
/**
* struct queue_properties
*
* @type: The queue type.
*
* @queue_id: Queue identifier.
*
* @queue_address: Queue ring buffer address.
*
* @queue_size: Queue ring buffer size.
*
* @priority: Defines the queue priority relative to other queues in the
* process.
* This is just an indication and HW scheduling may override the priority as
* necessary while keeping the relative prioritization.
* the priority granularity is from 0 to f which f is the highest priority.
* currently all queues are initialized with the highest priority.
*
* @queue_percent: This field is partially implemented and currently a zero in
* this field defines that the queue is non active.
*
* @read_ptr: User space address which points to the number of dwords the
* cp read from the ring buffer. This field updates automatically by the H/W.
*
* @write_ptr: Defines the number of dwords written to the ring buffer.
*
* @doorbell_ptr: This field aim is to notify the H/W of new packet written to
* the queue ring buffer. This field should be similar to write_ptr and the user
* should update this field after he updated the write_ptr.
*
* @doorbell_off: The doorbell offset in the doorbell pci-bar.
*
* @is_interop: Defines if this is a interop queue. Interop queue means that the
* queue can access both graphics and compute resources.
*
* @is_active: Defines if the queue is active or not.
*
* @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
* of the queue.
*
* This structure represents the queue properties for each queue no matter if
* it's user mode or kernel mode queue.
*
*/
struct queue_properties {
enum kfd_queue_type type;
enum kfd_queue_format format;
unsigned int queue_id;
uint64_t queue_address;
uint64_t queue_size;
uint32_t priority;
uint32_t queue_percent;
uint32_t *read_ptr;
uint32_t *write_ptr;
uint32_t __iomem *doorbell_ptr;
uint32_t doorbell_off;
bool is_interop;
bool is_active;
/* Not relevant for user mode queues in cp scheduling */
unsigned int vmid;
/* Relevant only for sdma queues*/
uint32_t sdma_engine_id;
uint32_t sdma_queue_id;
uint32_t sdma_vm_addr;
/* Relevant only for VI */
uint64_t eop_ring_buffer_address;
uint32_t eop_ring_buffer_size;
uint64_t ctx_save_restore_area_address;
uint32_t ctx_save_restore_area_size;
};
/**
* struct queue
*
* @list: Queue linked list.
*
* @mqd: The queue MQD.
*
* @mqd_mem_obj: The MQD local gpu memory object.
*
* @gart_mqd_addr: The MQD gart mc address.
*
* @properties: The queue properties.
*
* @mec: Used only in no cp scheduling mode and identifies to micro engine id
* that the queue should be execute on.
*
* @pipe: Used only in no cp scheduling mode and identifies the queue's pipe id.
*
* @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
*
* @process: The kfd process that created this queue.
*
* @device: The kfd device that created this queue.
*
* This structure represents user mode compute queues.
* It contains all the necessary data to handle such queues.
*
*/
struct queue {
struct list_head list;
void *mqd;
struct kfd_mem_obj *mqd_mem_obj;
uint64_t gart_mqd_addr;
struct queue_properties properties;
uint32_t mec;
uint32_t pipe;
uint32_t queue;
unsigned int sdma_id;
struct kfd_process *process;
struct kfd_dev *device;
};
/*
* Please read the kfd_mqd_manager.h description.
*/
enum KFD_MQD_TYPE {
KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */
KFD_MQD_TYPE_HIQ, /* for hiq */
KFD_MQD_TYPE_CP, /* for cp queues and diq */
KFD_MQD_TYPE_SDMA, /* for sdma queues */
KFD_MQD_TYPE_MAX
};
struct scheduling_resources {
unsigned int vmid_mask;
enum kfd_queue_type type;
uint64_t queue_mask;
uint64_t gws_mask;
uint32_t oac_mask;
uint32_t gds_heap_base;
uint32_t gds_heap_size;
};
struct process_queue_manager {
/* data */
struct kfd_process *process;
unsigned int num_concurrent_processes;
struct list_head queues;
unsigned long *queue_slot_bitmap;
};
struct qcm_process_device {
/* The Device Queue Manager that owns this data */
struct device_queue_manager *dqm;
struct process_queue_manager *pqm;
/* Queues list */
struct list_head queues_list;
struct list_head priv_queue_list;
unsigned int queue_count;
unsigned int vmid;
bool is_debug;
/*
* All the memory management data should be here too
*/
uint64_t gds_context_area;
uint32_t sh_mem_config;
uint32_t sh_mem_bases;
uint32_t sh_mem_ape1_base;
uint32_t sh_mem_ape1_limit;
uint32_t page_table_base;
uint32_t gds_size;
uint32_t num_gws;
uint32_t num_oac;
};
/* Data that is per-process-per device. */
struct kfd_process_device {
/*
* List of all per-device data for a process.
* Starts from kfd_process.per_device_data.
*/
struct list_head per_device_list;
/* The device that owns this data. */
struct kfd_dev *dev;
/* per-process-per device QCM data structure */
struct qcm_process_device qpd;
/*Apertures*/
uint64_t lds_base;
uint64_t lds_limit;
uint64_t gpuvm_base;
uint64_t gpuvm_limit;
uint64_t scratch_base;
uint64_t scratch_limit;
/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
bool bound;
/* This flag tells if we should reset all
* wavefronts on process termination
*/
bool reset_wavefronts;
};
#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
/* Process data */
struct kfd_process {
/*
* kfd_process are stored in an mm_struct*->kfd_process*
* hash table (kfd_processes in kfd_process.c)
*/
struct hlist_node kfd_processes;
struct mm_struct *mm;
struct mutex mutex;
/*
* In any process, the thread that started main() is the lead
* thread and outlives the rest.
* It is here because amd_iommu_bind_pasid wants a task_struct.
*/
struct task_struct *lead_thread;
/* We want to receive a notification when the mm_struct is destroyed */
struct mmu_notifier mmu_notifier;
/* Use for delayed freeing of kfd_process structure */
struct rcu_head rcu;
unsigned int pasid;
/*
* List of kfd_process_device structures,
* one for each device the process is using.
*/
struct list_head per_device_data;
struct process_queue_manager pqm;
/* The process's queues. */
size_t queue_array_size;
/* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */
struct kfd_queue **queues;
/*Is the user space process 32 bit?*/
bool is_32bit_user_mode;
/* Event-related data */
struct mutex event_mutex;
/* All events in process hashed by ID, linked on kfd_event.events. */
DECLARE_HASHTABLE(events, 4);
struct list_head signal_event_pages; /* struct slot_page_header.
event_pages */
u32 next_nonsignal_event_id;
size_t signal_event_count;
};
/**
* Ioctl function type.
*
* \param filep pointer to file structure.
* \param p amdkfd process pointer.
* \param data pointer to arg that was copied from user.
*/
typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
void *data);
struct amdkfd_ioctl_desc {
unsigned int cmd;
int flags;
amdkfd_ioctl_t *func;
unsigned int cmd_drv;
const char *name;
};
void kfd_process_create_wq(void);
void kfd_process_destroy_wq(void);
struct kfd_process *kfd_create_process(const struct task_struct *);
struct kfd_process *kfd_get_process(const struct task_struct *);
struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
struct kfd_process *p);
void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid);
struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
struct kfd_process *p);
struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
struct kfd_process *p);
/* Process device data iterator */
struct kfd_process_device *kfd_get_first_process_device_data(struct kfd_process *p);
struct kfd_process_device *kfd_get_next_process_device_data(struct kfd_process *p,
struct kfd_process_device *pdd);
bool kfd_has_process_device_data(struct kfd_process *p);
/* PASIDs */
int kfd_pasid_init(void);
void kfd_pasid_exit(void);
bool kfd_set_pasid_limit(unsigned int new_limit);
unsigned int kfd_get_pasid_limit(void);
unsigned int kfd_pasid_alloc(void);
void kfd_pasid_free(unsigned int pasid);
/* Doorbells */
void kfd_doorbell_init(struct kfd_dev *kfd);
int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
unsigned int *doorbell_off);
void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
u32 read_kernel_doorbell(u32 __iomem *db);
void write_kernel_doorbell(u32 __iomem *db, u32 value);
unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
struct kfd_process *process,
unsigned int queue_id);
/* GTT Sub-Allocator */
int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
struct kfd_mem_obj **mem_obj);
int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
extern struct device *kfd_device;
/* Topology */
int kfd_topology_init(void);
void kfd_topology_shutdown(void);
int kfd_topology_add_device(struct kfd_dev *gpu);
int kfd_topology_remove_device(struct kfd_dev *gpu);
struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
/* Interrupts */
int kfd_interrupt_init(struct kfd_dev *dev);
void kfd_interrupt_exit(struct kfd_dev *dev);
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry);
/* Power Management */
void kgd2kfd_suspend(struct kfd_dev *kfd);
int kgd2kfd_resume(struct kfd_dev *kfd);
/* amdkfd Apertures */
int kfd_init_apertures(struct kfd_process *process);
/* Queue Context Management */
struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd);
int init_queue(struct queue **q, const struct queue_properties *properties);
void uninit_queue(struct queue *q);
void print_queue_properties(struct queue_properties *q);
void print_queue(struct queue *q);
struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
struct kfd_dev *dev);
struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
struct kfd_dev *dev);
struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
struct kfd_dev *dev);
struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
void device_queue_manager_uninit(struct device_queue_manager *dqm);
struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
enum kfd_queue_type type);
void kernel_queue_uninit(struct kernel_queue *kq);
/* Process Queue Manager */
struct process_queue_node {
struct queue *q;
struct kernel_queue *kq;
struct list_head process_queue_list;
};
int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
void pqm_uninit(struct process_queue_manager *pqm);
int pqm_create_queue(struct process_queue_manager *pqm,
struct kfd_dev *dev,
struct file *f,
struct queue_properties *properties,
unsigned int flags,
enum kfd_queue_type type,
unsigned int *qid);
int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
struct queue_properties *p);
struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
unsigned int qid);
int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
unsigned int fence_value,
unsigned long timeout);
/* Packet Manager */
#define KFD_HIQ_TIMEOUT (500)
#define KFD_FENCE_COMPLETED (100)
#define KFD_FENCE_INIT (10)
#define KFD_UNMAP_LATENCY (150)
struct packet_manager {
struct device_queue_manager *dqm;
struct kernel_queue *priv_queue;
struct mutex lock;
bool allocated;
struct kfd_mem_obj *ib_buffer_obj;
};
int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
void pm_uninit(struct packet_manager *pm);
int pm_send_set_resources(struct packet_manager *pm,
struct scheduling_resources *res);
int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
uint32_t fence_value);
int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
enum kfd_preempt_type_filter mode,
uint32_t filter_param, bool reset,
unsigned int sdma_engine);
void pm_release_ib(struct packet_manager *pm);
uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
struct kfd_process *process);
/* Events */
extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
extern const struct kfd_device_global_init_class device_global_init_class_cik;
enum kfd_event_wait_result {
KFD_WAIT_COMPLETE,
KFD_WAIT_TIMEOUT,
KFD_WAIT_ERROR
};
void kfd_event_init_process(struct kfd_process *p);
void kfd_event_free_process(struct kfd_process *p);
int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
int kfd_wait_on_events(struct kfd_process *p,
uint32_t num_events, void __user *data,
bool all, uint32_t user_timeout_ms,
enum kfd_event_wait_result *wait_result);
void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
uint32_t valid_id_bits);
void kfd_signal_iommu_event(struct kfd_dev *dev,
unsigned int pasid, unsigned long address,
bool is_write_requested, bool is_execute_requested);
void kfd_signal_hw_exception_event(unsigned int pasid);
int kfd_set_event(struct kfd_process *p, uint32_t event_id);
int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
int kfd_event_create(struct file *devkfd, struct kfd_process *p,
uint32_t event_type, bool auto_reset, uint32_t node_id,
uint32_t *event_id, uint32_t *event_trigger_data,
uint64_t *event_page_offset, uint32_t *event_slot_index);
int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
#endif