351a4dedb3
The New QED firmware contains several fixes, including: - Wrong classification of packets in 4-port devices. - Anti-spoof interoperability with encapsulated packets. - Tx-switching of encapsulated packets. It also slightly improves Tx performance of the device. In addition, this firmware contains the necessary logic for supporting iscsi & rdma, for which we plan on pushing protocol drivers in the imminent future. Signed-off-by: Yuval Mintz <Yuval.Mintz@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
576 lines
14 KiB
C
576 lines
14 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015 QLogic Corporation
|
|
*
|
|
* This software is available under the terms of the GNU General Public License
|
|
* (GPL) Version 2, available from the file COPYING in the main directory of
|
|
* this source tree.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include "qed.h"
|
|
#include "qed_hsi.h"
|
|
#include "qed_hw.h"
|
|
#include "qed_init_ops.h"
|
|
#include "qed_reg_addr.h"
|
|
#include "qed_sriov.h"
|
|
|
|
#define QED_INIT_MAX_POLL_COUNT 100
|
|
#define QED_INIT_POLL_PERIOD_US 500
|
|
|
|
static u32 pxp_global_win[] = {
|
|
0,
|
|
0,
|
|
0x1c02, /* win 2: addr=0x1c02000, size=4096 bytes */
|
|
0x1c80, /* win 3: addr=0x1c80000, size=4096 bytes */
|
|
0x1d00, /* win 4: addr=0x1d00000, size=4096 bytes */
|
|
0x1d01, /* win 5: addr=0x1d01000, size=4096 bytes */
|
|
0x1d80, /* win 6: addr=0x1d80000, size=4096 bytes */
|
|
0x1d81, /* win 7: addr=0x1d81000, size=4096 bytes */
|
|
0x1d82, /* win 8: addr=0x1d82000, size=4096 bytes */
|
|
0x1e00, /* win 9: addr=0x1e00000, size=4096 bytes */
|
|
0x1e80, /* win 10: addr=0x1e80000, size=4096 bytes */
|
|
0x1f00, /* win 11: addr=0x1f00000, size=4096 bytes */
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
};
|
|
|
|
void qed_init_iro_array(struct qed_dev *cdev)
|
|
{
|
|
cdev->iro_arr = iro_arr;
|
|
}
|
|
|
|
/* Runtime configuration helpers */
|
|
void qed_init_clear_rt_data(struct qed_hwfn *p_hwfn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < RUNTIME_ARRAY_SIZE; i++)
|
|
p_hwfn->rt_data.b_valid[i] = false;
|
|
}
|
|
|
|
void qed_init_store_rt_reg(struct qed_hwfn *p_hwfn,
|
|
u32 rt_offset,
|
|
u32 val)
|
|
{
|
|
p_hwfn->rt_data.init_val[rt_offset] = val;
|
|
p_hwfn->rt_data.b_valid[rt_offset] = true;
|
|
}
|
|
|
|
void qed_init_store_rt_agg(struct qed_hwfn *p_hwfn,
|
|
u32 rt_offset, u32 *p_val,
|
|
size_t size)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < size / sizeof(u32); i++) {
|
|
p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i];
|
|
p_hwfn->rt_data.b_valid[rt_offset + i] = true;
|
|
}
|
|
}
|
|
|
|
static int qed_init_rt(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 addr,
|
|
u16 rt_offset,
|
|
u16 size,
|
|
bool b_must_dmae)
|
|
{
|
|
u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset];
|
|
bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset];
|
|
u16 i, segment;
|
|
int rc = 0;
|
|
|
|
/* Since not all RT entries are initialized, go over the RT and
|
|
* for each segment of initialized values use DMA.
|
|
*/
|
|
for (i = 0; i < size; i++) {
|
|
if (!p_valid[i])
|
|
continue;
|
|
|
|
/* In case there isn't any wide-bus configuration here,
|
|
* simply write the data instead of using dmae.
|
|
*/
|
|
if (!b_must_dmae) {
|
|
qed_wr(p_hwfn, p_ptt, addr + (i << 2),
|
|
p_init_val[i]);
|
|
continue;
|
|
}
|
|
|
|
/* Start of a new segment */
|
|
for (segment = 1; i + segment < size; segment++)
|
|
if (!p_valid[i + segment])
|
|
break;
|
|
|
|
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
|
|
(uintptr_t)(p_init_val + i),
|
|
addr + (i << 2), segment, 0);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* Jump over the entire segment, including invalid entry */
|
|
i += segment;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int qed_init_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_rt_data *rt_data = &p_hwfn->rt_data;
|
|
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return 0;
|
|
|
|
rt_data->b_valid = kzalloc(sizeof(bool) * RUNTIME_ARRAY_SIZE,
|
|
GFP_KERNEL);
|
|
if (!rt_data->b_valid)
|
|
return -ENOMEM;
|
|
|
|
rt_data->init_val = kzalloc(sizeof(u32) * RUNTIME_ARRAY_SIZE,
|
|
GFP_KERNEL);
|
|
if (!rt_data->init_val) {
|
|
kfree(rt_data->b_valid);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void qed_init_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
kfree(p_hwfn->rt_data.init_val);
|
|
kfree(p_hwfn->rt_data.b_valid);
|
|
}
|
|
|
|
static int qed_init_array_dmae(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 addr,
|
|
u32 dmae_data_offset,
|
|
u32 size,
|
|
const u32 *buf,
|
|
bool b_must_dmae,
|
|
bool b_can_dmae)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* Perform DMAE only for lengthy enough sections or for wide-bus */
|
|
if (!b_can_dmae || (!b_must_dmae && (size < 16))) {
|
|
const u32 *data = buf + dmae_data_offset;
|
|
u32 i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
qed_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]);
|
|
} else {
|
|
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
|
|
(uintptr_t)(buf + dmae_data_offset),
|
|
addr, size, 0);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qed_init_fill_dmae(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 addr,
|
|
u32 fill,
|
|
u32 fill_count)
|
|
{
|
|
static u32 zero_buffer[DMAE_MAX_RW_SIZE];
|
|
|
|
memset(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE);
|
|
|
|
/* invoke the DMAE virtual/physical buffer API with
|
|
* 1. DMAE init channel
|
|
* 2. addr,
|
|
* 3. p_hwfb->temp_data,
|
|
* 4. fill_count
|
|
*/
|
|
|
|
return qed_dmae_host2grc(p_hwfn, p_ptt,
|
|
(uintptr_t)(&zero_buffer[0]),
|
|
addr, fill_count,
|
|
QED_DMAE_FLAG_RW_REPL_SRC);
|
|
}
|
|
|
|
static void qed_init_fill(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 addr,
|
|
u32 fill,
|
|
u32 fill_count)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < fill_count; i++, addr += sizeof(u32))
|
|
qed_wr(p_hwfn, p_ptt, addr, fill);
|
|
}
|
|
|
|
static int qed_init_cmd_array(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct init_write_op *cmd,
|
|
bool b_must_dmae,
|
|
bool b_can_dmae)
|
|
{
|
|
u32 data = le32_to_cpu(cmd->data);
|
|
u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
|
|
u32 dmae_array_offset = le32_to_cpu(cmd->args.array_offset);
|
|
u32 offset, output_len, input_len, max_size;
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
union init_array_hdr *hdr;
|
|
const u32 *array_data;
|
|
int rc = 0;
|
|
u32 size;
|
|
|
|
array_data = cdev->fw_data->arr_data;
|
|
|
|
hdr = (union init_array_hdr *)(array_data +
|
|
dmae_array_offset);
|
|
data = le32_to_cpu(hdr->raw.data);
|
|
switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) {
|
|
case INIT_ARR_ZIPPED:
|
|
offset = dmae_array_offset + 1;
|
|
input_len = GET_FIELD(data,
|
|
INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE);
|
|
max_size = MAX_ZIPPED_SIZE * 4;
|
|
memset(p_hwfn->unzip_buf, 0, max_size);
|
|
|
|
output_len = qed_unzip_data(p_hwfn, input_len,
|
|
(u8 *)&array_data[offset],
|
|
max_size, (u8 *)p_hwfn->unzip_buf);
|
|
if (output_len) {
|
|
rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 0,
|
|
output_len,
|
|
p_hwfn->unzip_buf,
|
|
b_must_dmae, b_can_dmae);
|
|
} else {
|
|
DP_NOTICE(p_hwfn, "Failed to unzip dmae data\n");
|
|
rc = -EINVAL;
|
|
}
|
|
break;
|
|
case INIT_ARR_PATTERN:
|
|
{
|
|
u32 repeats = GET_FIELD(data,
|
|
INIT_ARRAY_PATTERN_HDR_REPETITIONS);
|
|
u32 i;
|
|
|
|
size = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE);
|
|
|
|
for (i = 0; i < repeats; i++, addr += size << 2) {
|
|
rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
|
|
dmae_array_offset + 1,
|
|
size, array_data,
|
|
b_must_dmae, b_can_dmae);
|
|
if (rc)
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case INIT_ARR_STANDARD:
|
|
size = GET_FIELD(data, INIT_ARRAY_STANDARD_HDR_SIZE);
|
|
rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
|
|
dmae_array_offset + 1,
|
|
size, array_data,
|
|
b_must_dmae, b_can_dmae);
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* init_ops write command */
|
|
static int qed_init_cmd_wr(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct init_write_op *cmd,
|
|
bool b_can_dmae)
|
|
{
|
|
u32 data = le32_to_cpu(cmd->data);
|
|
u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
|
|
bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS);
|
|
union init_write_args *arg = &cmd->args;
|
|
int rc = 0;
|
|
|
|
/* Sanitize */
|
|
if (b_must_dmae && !b_can_dmae) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Need to write to %08x for Wide-bus but DMAE isn't allowed\n",
|
|
addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) {
|
|
case INIT_SRC_INLINE:
|
|
qed_wr(p_hwfn, p_ptt, addr,
|
|
le32_to_cpu(arg->inline_val));
|
|
break;
|
|
case INIT_SRC_ZEROS:
|
|
if (b_must_dmae ||
|
|
(b_can_dmae && (le32_to_cpu(arg->zeros_count) >= 64)))
|
|
rc = qed_init_fill_dmae(p_hwfn, p_ptt, addr, 0,
|
|
le32_to_cpu(arg->zeros_count));
|
|
else
|
|
qed_init_fill(p_hwfn, p_ptt, addr, 0,
|
|
le32_to_cpu(arg->zeros_count));
|
|
break;
|
|
case INIT_SRC_ARRAY:
|
|
rc = qed_init_cmd_array(p_hwfn, p_ptt, cmd,
|
|
b_must_dmae, b_can_dmae);
|
|
break;
|
|
case INIT_SRC_RUNTIME:
|
|
qed_init_rt(p_hwfn, p_ptt, addr,
|
|
le16_to_cpu(arg->runtime.offset),
|
|
le16_to_cpu(arg->runtime.size),
|
|
b_must_dmae);
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static inline bool comp_eq(u32 val, u32 expected_val)
|
|
{
|
|
return val == expected_val;
|
|
}
|
|
|
|
static inline bool comp_and(u32 val, u32 expected_val)
|
|
{
|
|
return (val & expected_val) == expected_val;
|
|
}
|
|
|
|
static inline bool comp_or(u32 val, u32 expected_val)
|
|
{
|
|
return (val | expected_val) > 0;
|
|
}
|
|
|
|
/* init_ops read/poll commands */
|
|
static void qed_init_cmd_rd(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct init_read_op *cmd)
|
|
{
|
|
bool (*comp_check)(u32 val, u32 expected_val);
|
|
u32 delay = QED_INIT_POLL_PERIOD_US, val;
|
|
u32 data, addr, poll;
|
|
int i;
|
|
|
|
data = le32_to_cpu(cmd->op_data);
|
|
addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2;
|
|
poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE);
|
|
|
|
|
|
val = qed_rd(p_hwfn, p_ptt, addr);
|
|
|
|
if (poll == INIT_POLL_NONE)
|
|
return;
|
|
|
|
switch (poll) {
|
|
case INIT_POLL_EQ:
|
|
comp_check = comp_eq;
|
|
break;
|
|
case INIT_POLL_OR:
|
|
comp_check = comp_or;
|
|
break;
|
|
case INIT_POLL_AND:
|
|
comp_check = comp_and;
|
|
break;
|
|
default:
|
|
DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n",
|
|
cmd->op_data);
|
|
return;
|
|
}
|
|
|
|
data = le32_to_cpu(cmd->expected_val);
|
|
for (i = 0;
|
|
i < QED_INIT_MAX_POLL_COUNT && !comp_check(val, data);
|
|
i++) {
|
|
udelay(delay);
|
|
val = qed_rd(p_hwfn, p_ptt, addr);
|
|
}
|
|
|
|
if (i == QED_INIT_MAX_POLL_COUNT) {
|
|
DP_ERR(p_hwfn,
|
|
"Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparsion %08x)]\n",
|
|
addr, le32_to_cpu(cmd->expected_val),
|
|
val, le32_to_cpu(cmd->op_data));
|
|
}
|
|
}
|
|
|
|
/* init_ops callbacks entry point */
|
|
static void qed_init_cmd_cb(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct init_callback_op *p_cmd)
|
|
{
|
|
DP_NOTICE(p_hwfn, "Currently init values have no need of callbacks\n");
|
|
}
|
|
|
|
static u8 qed_init_cmd_mode_match(struct qed_hwfn *p_hwfn,
|
|
u16 *offset,
|
|
int modes)
|
|
{
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
const u8 *modes_tree_buf;
|
|
u8 arg1, arg2, tree_val;
|
|
|
|
modes_tree_buf = cdev->fw_data->modes_tree_buf;
|
|
tree_val = modes_tree_buf[(*offset)++];
|
|
switch (tree_val) {
|
|
case INIT_MODE_OP_NOT:
|
|
return qed_init_cmd_mode_match(p_hwfn, offset, modes) ^ 1;
|
|
case INIT_MODE_OP_OR:
|
|
arg1 = qed_init_cmd_mode_match(p_hwfn, offset, modes);
|
|
arg2 = qed_init_cmd_mode_match(p_hwfn, offset, modes);
|
|
return arg1 | arg2;
|
|
case INIT_MODE_OP_AND:
|
|
arg1 = qed_init_cmd_mode_match(p_hwfn, offset, modes);
|
|
arg2 = qed_init_cmd_mode_match(p_hwfn, offset, modes);
|
|
return arg1 & arg2;
|
|
default:
|
|
tree_val -= MAX_INIT_MODE_OPS;
|
|
return (modes & (1 << tree_val)) ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
static u32 qed_init_cmd_mode(struct qed_hwfn *p_hwfn,
|
|
struct init_if_mode_op *p_cmd,
|
|
int modes)
|
|
{
|
|
u16 offset = le16_to_cpu(p_cmd->modes_buf_offset);
|
|
|
|
if (qed_init_cmd_mode_match(p_hwfn, &offset, modes))
|
|
return 0;
|
|
else
|
|
return GET_FIELD(le32_to_cpu(p_cmd->op_data),
|
|
INIT_IF_MODE_OP_CMD_OFFSET);
|
|
}
|
|
|
|
static u32 qed_init_cmd_phase(struct qed_hwfn *p_hwfn,
|
|
struct init_if_phase_op *p_cmd,
|
|
u32 phase,
|
|
u32 phase_id)
|
|
{
|
|
u32 data = le32_to_cpu(p_cmd->phase_data);
|
|
u32 op_data = le32_to_cpu(p_cmd->op_data);
|
|
|
|
if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase &&
|
|
(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID ||
|
|
GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id)))
|
|
return GET_FIELD(op_data, INIT_IF_PHASE_OP_CMD_OFFSET);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int qed_init_run(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
int phase,
|
|
int phase_id,
|
|
int modes)
|
|
{
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
u32 cmd_num, num_init_ops;
|
|
union init_op *init_ops;
|
|
bool b_dmae = false;
|
|
int rc = 0;
|
|
|
|
num_init_ops = cdev->fw_data->init_ops_size;
|
|
init_ops = cdev->fw_data->init_ops;
|
|
|
|
p_hwfn->unzip_buf = kzalloc(MAX_ZIPPED_SIZE * 4, GFP_ATOMIC);
|
|
if (!p_hwfn->unzip_buf) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate unzip buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) {
|
|
union init_op *cmd = &init_ops[cmd_num];
|
|
u32 data = le32_to_cpu(cmd->raw.op_data);
|
|
|
|
switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) {
|
|
case INIT_OP_WRITE:
|
|
rc = qed_init_cmd_wr(p_hwfn, p_ptt, &cmd->write,
|
|
b_dmae);
|
|
break;
|
|
case INIT_OP_READ:
|
|
qed_init_cmd_rd(p_hwfn, p_ptt, &cmd->read);
|
|
break;
|
|
case INIT_OP_IF_MODE:
|
|
cmd_num += qed_init_cmd_mode(p_hwfn, &cmd->if_mode,
|
|
modes);
|
|
break;
|
|
case INIT_OP_IF_PHASE:
|
|
cmd_num += qed_init_cmd_phase(p_hwfn, &cmd->if_phase,
|
|
phase, phase_id);
|
|
b_dmae = GET_FIELD(data, INIT_IF_PHASE_OP_DMAE_ENABLE);
|
|
break;
|
|
case INIT_OP_DELAY:
|
|
/* qed_init_run is always invoked from
|
|
* sleep-able context
|
|
*/
|
|
udelay(le32_to_cpu(cmd->delay.delay));
|
|
break;
|
|
|
|
case INIT_OP_CALLBACK:
|
|
qed_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback);
|
|
break;
|
|
}
|
|
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
kfree(p_hwfn->unzip_buf);
|
|
return rc;
|
|
}
|
|
|
|
void qed_gtt_init(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 gtt_base;
|
|
u32 i;
|
|
|
|
/* Set the global windows */
|
|
gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(pxp_global_win); i++)
|
|
if (pxp_global_win[i])
|
|
REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE,
|
|
pxp_global_win[i]);
|
|
}
|
|
|
|
int qed_init_fw_data(struct qed_dev *cdev, const u8 *data)
|
|
{
|
|
struct qed_fw_data *fw = cdev->fw_data;
|
|
struct bin_buffer_hdr *buf_hdr;
|
|
u32 offset, len;
|
|
|
|
if (!data) {
|
|
DP_NOTICE(cdev, "Invalid fw data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* First Dword contains metadata and should be skipped */
|
|
buf_hdr = (struct bin_buffer_hdr *)(data + sizeof(u32));
|
|
|
|
offset = buf_hdr[BIN_BUF_FW_VER_INFO].offset;
|
|
fw->fw_ver_info = (struct fw_ver_info *)(data + offset);
|
|
|
|
offset = buf_hdr[BIN_BUF_INIT_CMD].offset;
|
|
fw->init_ops = (union init_op *)(data + offset);
|
|
|
|
offset = buf_hdr[BIN_BUF_INIT_VAL].offset;
|
|
fw->arr_data = (u32 *)(data + offset);
|
|
|
|
offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset;
|
|
fw->modes_tree_buf = (u8 *)(data + offset);
|
|
len = buf_hdr[BIN_BUF_INIT_CMD].length;
|
|
fw->init_ops_size = len / sizeof(struct init_raw_op);
|
|
|
|
return 0;
|
|
}
|