linux/drivers/ssb/main.c
Kay Sievers b7b05fe7f9 ssb: struct device - replace bus_id with dev_name(), dev_set_name()
This patch is part of a larger patch series which will remove
the "char bus_id[20]" name string from struct device. The device
name is managed in the kobject anyway, and without any size
limitation, and just needlessly copied into "struct device".

To set and read the device name dev_name(dev) and dev_set_name(dev)
must be used. If your code uses static kobjects, which it shouldn't
do, "const char *init_name" can be used to statically provide the
name the registered device should have. At registration time, the
init_name field is cleared, to enforce the use of dev_name(dev) to
access the device name at a later time.

We need to get rid of all occurrences of bus_id in the entire tree
to be able to enable the new interface. Please apply this patch,
and possibly convert any remaining remaining occurrences of bus_id.

We want to submit a patch to -next, which will remove bus_id from
"struct device", to find the remaining pieces to convert, and finally
switch over to the new api, which will remove the 20 bytes array
and does no longer have a size limitation.

CC: Michael Buesch <mb@bu3sch.de>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-Off-By: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-11-21 11:06:03 -05:00

1393 lines
31 KiB
C

/*
* Sonics Silicon Backplane
* Subsystem core
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include "ssb_private.h"
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/ssb/ssb_driver_gige.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>
MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
MODULE_LICENSE("GPL");
/* Temporary list of yet-to-be-attached buses */
static LIST_HEAD(attach_queue);
/* List if running buses */
static LIST_HEAD(buses);
/* Software ID counter */
static unsigned int next_busnumber;
/* buses_mutes locks the two buslists and the next_busnumber.
* Don't lock this directly, but use ssb_buses_[un]lock() below. */
static DEFINE_MUTEX(buses_mutex);
/* There are differences in the codeflow, if the bus is
* initialized from early boot, as various needed services
* are not available early. This is a mechanism to delay
* these initializations to after early boot has finished.
* It's also used to avoid mutex locking, as that's not
* available and needed early. */
static bool ssb_is_early_boot = 1;
static void ssb_buses_lock(void);
static void ssb_buses_unlock(void);
#ifdef CONFIG_SSB_PCIHOST
struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
{
struct ssb_bus *bus;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
if (bus->bustype == SSB_BUSTYPE_PCI &&
bus->host_pci == pdev)
goto found;
}
bus = NULL;
found:
ssb_buses_unlock();
return bus;
}
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
{
struct ssb_bus *bus;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
bus->host_pcmcia == pdev)
goto found;
}
bus = NULL;
found:
ssb_buses_unlock();
return bus;
}
#endif /* CONFIG_SSB_PCMCIAHOST */
int ssb_for_each_bus_call(unsigned long data,
int (*func)(struct ssb_bus *bus, unsigned long data))
{
struct ssb_bus *bus;
int res;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
res = func(bus, data);
if (res >= 0) {
ssb_buses_unlock();
return res;
}
}
ssb_buses_unlock();
return -ENODEV;
}
static struct ssb_device *ssb_device_get(struct ssb_device *dev)
{
if (dev)
get_device(dev->dev);
return dev;
}
static void ssb_device_put(struct ssb_device *dev)
{
if (dev)
put_device(dev->dev);
}
static int ssb_device_resume(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
int err = 0;
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->resume)
err = ssb_drv->resume(ssb_dev);
if (err)
goto out;
}
out:
return err;
}
static int ssb_device_suspend(struct device *dev, pm_message_t state)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
int err = 0;
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->suspend)
err = ssb_drv->suspend(ssb_dev, state);
if (err)
goto out;
}
out:
return err;
}
int ssb_bus_resume(struct ssb_bus *bus)
{
int err;
/* Reset HW state information in memory, so that HW is
* completely reinitialized. */
bus->mapped_device = NULL;
#ifdef CONFIG_SSB_DRIVER_PCICORE
bus->pcicore.setup_done = 0;
#endif
err = ssb_bus_powerup(bus, 0);
if (err)
return err;
err = ssb_pcmcia_hardware_setup(bus);
if (err) {
ssb_bus_may_powerdown(bus);
return err;
}
ssb_chipco_resume(&bus->chipco);
ssb_bus_may_powerdown(bus);
return 0;
}
EXPORT_SYMBOL(ssb_bus_resume);
int ssb_bus_suspend(struct ssb_bus *bus)
{
ssb_chipco_suspend(&bus->chipco);
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
return 0;
}
EXPORT_SYMBOL(ssb_bus_suspend);
#ifdef CONFIG_SSB_SPROM
int ssb_devices_freeze(struct ssb_bus *bus)
{
struct ssb_device *dev;
struct ssb_driver *drv;
int err = 0;
int i;
pm_message_t state = PMSG_FREEZE;
/* First check that we are capable to freeze all devices. */
for (i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
if (!drv->suspend) {
/* Nope, can't suspend this one. */
return -EOPNOTSUPP;
}
}
/* Now suspend all devices */
for (i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
err = drv->suspend(dev, state);
if (err) {
ssb_printk(KERN_ERR PFX "Failed to freeze device %s\n",
dev_name(dev->dev));
goto err_unwind;
}
}
return 0;
err_unwind:
for (i--; i >= 0; i--) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
if (drv->resume)
drv->resume(dev);
}
return err;
}
int ssb_devices_thaw(struct ssb_bus *bus)
{
struct ssb_device *dev;
struct ssb_driver *drv;
int err;
int i;
for (i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
if (SSB_WARN_ON(!drv->resume))
continue;
err = drv->resume(dev);
if (err) {
ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
dev_name(dev->dev));
}
}
return 0;
}
#endif /* CONFIG_SSB_SPROM */
static void ssb_device_shutdown(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
if (!dev->driver)
return;
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->shutdown)
ssb_drv->shutdown(ssb_dev);
}
static int ssb_device_remove(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->remove)
ssb_drv->remove(ssb_dev);
ssb_device_put(ssb_dev);
return 0;
}
static int ssb_device_probe(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
int err = 0;
ssb_device_get(ssb_dev);
if (ssb_drv && ssb_drv->probe)
err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
if (err)
ssb_device_put(ssb_dev);
return err;
}
static int ssb_match_devid(const struct ssb_device_id *tabid,
const struct ssb_device_id *devid)
{
if ((tabid->vendor != devid->vendor) &&
tabid->vendor != SSB_ANY_VENDOR)
return 0;
if ((tabid->coreid != devid->coreid) &&
tabid->coreid != SSB_ANY_ID)
return 0;
if ((tabid->revision != devid->revision) &&
tabid->revision != SSB_ANY_REV)
return 0;
return 1;
}
static int ssb_bus_match(struct device *dev, struct device_driver *drv)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
const struct ssb_device_id *id;
for (id = ssb_drv->id_table;
id->vendor || id->coreid || id->revision;
id++) {
if (ssb_match_devid(id, &ssb_dev->id))
return 1; /* found */
}
return 0;
}
static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
if (!dev)
return -ENODEV;
return add_uevent_var(env,
"MODALIAS=ssb:v%04Xid%04Xrev%02X",
ssb_dev->id.vendor, ssb_dev->id.coreid,
ssb_dev->id.revision);
}
static struct bus_type ssb_bustype = {
.name = "ssb",
.match = ssb_bus_match,
.probe = ssb_device_probe,
.remove = ssb_device_remove,
.shutdown = ssb_device_shutdown,
.suspend = ssb_device_suspend,
.resume = ssb_device_resume,
.uevent = ssb_device_uevent,
};
static void ssb_buses_lock(void)
{
/* See the comment at the ssb_is_early_boot definition */
if (!ssb_is_early_boot)
mutex_lock(&buses_mutex);
}
static void ssb_buses_unlock(void)
{
/* See the comment at the ssb_is_early_boot definition */
if (!ssb_is_early_boot)
mutex_unlock(&buses_mutex);
}
static void ssb_devices_unregister(struct ssb_bus *bus)
{
struct ssb_device *sdev;
int i;
for (i = bus->nr_devices - 1; i >= 0; i--) {
sdev = &(bus->devices[i]);
if (sdev->dev)
device_unregister(sdev->dev);
}
}
void ssb_bus_unregister(struct ssb_bus *bus)
{
ssb_buses_lock();
ssb_devices_unregister(bus);
list_del(&bus->list);
ssb_buses_unlock();
ssb_pcmcia_exit(bus);
ssb_pci_exit(bus);
ssb_iounmap(bus);
}
EXPORT_SYMBOL(ssb_bus_unregister);
static void ssb_release_dev(struct device *dev)
{
struct __ssb_dev_wrapper *devwrap;
devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
kfree(devwrap);
}
static int ssb_devices_register(struct ssb_bus *bus)
{
struct ssb_device *sdev;
struct device *dev;
struct __ssb_dev_wrapper *devwrap;
int i, err = 0;
int dev_idx = 0;
for (i = 0; i < bus->nr_devices; i++) {
sdev = &(bus->devices[i]);
/* We don't register SSB-system devices to the kernel,
* as the drivers for them are built into SSB. */
switch (sdev->id.coreid) {
case SSB_DEV_CHIPCOMMON:
case SSB_DEV_PCI:
case SSB_DEV_PCIE:
case SSB_DEV_PCMCIA:
case SSB_DEV_MIPS:
case SSB_DEV_MIPS_3302:
case SSB_DEV_EXTIF:
continue;
}
devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
if (!devwrap) {
ssb_printk(KERN_ERR PFX
"Could not allocate device\n");
err = -ENOMEM;
goto error;
}
dev = &devwrap->dev;
devwrap->sdev = sdev;
dev->release = ssb_release_dev;
dev->bus = &ssb_bustype;
dev_set_name(dev, "ssb%u:%d", bus->busnumber, dev_idx);
switch (bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
sdev->irq = bus->host_pci->irq;
dev->parent = &bus->host_pci->dev;
#endif
break;
case SSB_BUSTYPE_PCMCIA:
#ifdef CONFIG_SSB_PCMCIAHOST
sdev->irq = bus->host_pcmcia->irq.AssignedIRQ;
dev->parent = &bus->host_pcmcia->dev;
#endif
break;
case SSB_BUSTYPE_SSB:
dev->dma_mask = &dev->coherent_dma_mask;
break;
}
sdev->dev = dev;
err = device_register(dev);
if (err) {
ssb_printk(KERN_ERR PFX
"Could not register %s\n",
dev_name(dev));
/* Set dev to NULL to not unregister
* dev on error unwinding. */
sdev->dev = NULL;
kfree(devwrap);
goto error;
}
dev_idx++;
}
return 0;
error:
/* Unwind the already registered devices. */
ssb_devices_unregister(bus);
return err;
}
/* Needs ssb_buses_lock() */
static int ssb_attach_queued_buses(void)
{
struct ssb_bus *bus, *n;
int err = 0;
int drop_them_all = 0;
list_for_each_entry_safe(bus, n, &attach_queue, list) {
if (drop_them_all) {
list_del(&bus->list);
continue;
}
/* Can't init the PCIcore in ssb_bus_register(), as that
* is too early in boot for embedded systems
* (no udelay() available). So do it here in attach stage.
*/
err = ssb_bus_powerup(bus, 0);
if (err)
goto error;
ssb_pcicore_init(&bus->pcicore);
ssb_bus_may_powerdown(bus);
err = ssb_devices_register(bus);
error:
if (err) {
drop_them_all = 1;
list_del(&bus->list);
continue;
}
list_move_tail(&bus->list, &buses);
}
return err;
}
static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readb(bus->mmio + offset);
}
static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readw(bus->mmio + offset);
}
static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readl(bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr;
offset += dev->core_index * SSB_CORE_SIZE;
addr = bus->mmio + offset;
switch (reg_width) {
case sizeof(u8): {
u8 *buf = buffer;
while (count) {
*buf = __raw_readb(addr);
buf++;
count--;
}
break;
}
case sizeof(u16): {
__le16 *buf = buffer;
SSB_WARN_ON(count & 1);
while (count) {
*buf = (__force __le16)__raw_readw(addr);
buf++;
count -= 2;
}
break;
}
case sizeof(u32): {
__le32 *buf = buffer;
SSB_WARN_ON(count & 3);
while (count) {
*buf = (__force __le32)__raw_readl(addr);
buf++;
count -= 4;
}
break;
}
default:
SSB_WARN_ON(1);
}
}
#endif /* CONFIG_SSB_BLOCKIO */
static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writeb(value, bus->mmio + offset);
}
static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writew(value, bus->mmio + offset);
}
static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writel(value, bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr;
offset += dev->core_index * SSB_CORE_SIZE;
addr = bus->mmio + offset;
switch (reg_width) {
case sizeof(u8): {
const u8 *buf = buffer;
while (count) {
__raw_writeb(*buf, addr);
buf++;
count--;
}
break;
}
case sizeof(u16): {
const __le16 *buf = buffer;
SSB_WARN_ON(count & 1);
while (count) {
__raw_writew((__force u16)(*buf), addr);
buf++;
count -= 2;
}
break;
}
case sizeof(u32): {
const __le32 *buf = buffer;
SSB_WARN_ON(count & 3);
while (count) {
__raw_writel((__force u32)(*buf), addr);
buf++;
count -= 4;
}
break;
}
default:
SSB_WARN_ON(1);
}
}
#endif /* CONFIG_SSB_BLOCKIO */
/* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
static const struct ssb_bus_ops ssb_ssb_ops = {
.read8 = ssb_ssb_read8,
.read16 = ssb_ssb_read16,
.read32 = ssb_ssb_read32,
.write8 = ssb_ssb_write8,
.write16 = ssb_ssb_write16,
.write32 = ssb_ssb_write32,
#ifdef CONFIG_SSB_BLOCKIO
.block_read = ssb_ssb_block_read,
.block_write = ssb_ssb_block_write,
#endif
};
static int ssb_fetch_invariants(struct ssb_bus *bus,
ssb_invariants_func_t get_invariants)
{
struct ssb_init_invariants iv;
int err;
memset(&iv, 0, sizeof(iv));
err = get_invariants(bus, &iv);
if (err)
goto out;
memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
bus->has_cardbus_slot = iv.has_cardbus_slot;
out:
return err;
}
static int ssb_bus_register(struct ssb_bus *bus,
ssb_invariants_func_t get_invariants,
unsigned long baseaddr)
{
int err;
spin_lock_init(&bus->bar_lock);
INIT_LIST_HEAD(&bus->list);
#ifdef CONFIG_SSB_EMBEDDED
spin_lock_init(&bus->gpio_lock);
#endif
/* Powerup the bus */
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
if (err)
goto out;
ssb_buses_lock();
bus->busnumber = next_busnumber;
/* Scan for devices (cores) */
err = ssb_bus_scan(bus, baseaddr);
if (err)
goto err_disable_xtal;
/* Init PCI-host device (if any) */
err = ssb_pci_init(bus);
if (err)
goto err_unmap;
/* Init PCMCIA-host device (if any) */
err = ssb_pcmcia_init(bus);
if (err)
goto err_pci_exit;
/* Initialize basic system devices (if available) */
err = ssb_bus_powerup(bus, 0);
if (err)
goto err_pcmcia_exit;
ssb_chipcommon_init(&bus->chipco);
ssb_mipscore_init(&bus->mipscore);
err = ssb_fetch_invariants(bus, get_invariants);
if (err) {
ssb_bus_may_powerdown(bus);
goto err_pcmcia_exit;
}
ssb_bus_may_powerdown(bus);
/* Queue it for attach.
* See the comment at the ssb_is_early_boot definition. */
list_add_tail(&bus->list, &attach_queue);
if (!ssb_is_early_boot) {
/* This is not early boot, so we must attach the bus now */
err = ssb_attach_queued_buses();
if (err)
goto err_dequeue;
}
next_busnumber++;
ssb_buses_unlock();
out:
return err;
err_dequeue:
list_del(&bus->list);
err_pcmcia_exit:
ssb_pcmcia_exit(bus);
err_pci_exit:
ssb_pci_exit(bus);
err_unmap:
ssb_iounmap(bus);
err_disable_xtal:
ssb_buses_unlock();
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
return err;
}
#ifdef CONFIG_SSB_PCIHOST
int ssb_bus_pcibus_register(struct ssb_bus *bus,
struct pci_dev *host_pci)
{
int err;
bus->bustype = SSB_BUSTYPE_PCI;
bus->host_pci = host_pci;
bus->ops = &ssb_pci_ops;
err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
if (!err) {
ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
"PCI device %s\n", dev_name(&host_pci->dev));
}
return err;
}
EXPORT_SYMBOL(ssb_bus_pcibus_register);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr)
{
int err;
bus->bustype = SSB_BUSTYPE_PCMCIA;
bus->host_pcmcia = pcmcia_dev;
bus->ops = &ssb_pcmcia_ops;
err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
if (!err) {
ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
"PCMCIA device %s\n", pcmcia_dev->devname);
}
return err;
}
EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
#endif /* CONFIG_SSB_PCMCIAHOST */
int ssb_bus_ssbbus_register(struct ssb_bus *bus,
unsigned long baseaddr,
ssb_invariants_func_t get_invariants)
{
int err;
bus->bustype = SSB_BUSTYPE_SSB;
bus->ops = &ssb_ssb_ops;
err = ssb_bus_register(bus, get_invariants, baseaddr);
if (!err) {
ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
"address 0x%08lX\n", baseaddr);
}
return err;
}
int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
{
drv->drv.name = drv->name;
drv->drv.bus = &ssb_bustype;
drv->drv.owner = owner;
return driver_register(&drv->drv);
}
EXPORT_SYMBOL(__ssb_driver_register);
void ssb_driver_unregister(struct ssb_driver *drv)
{
driver_unregister(&drv->drv);
}
EXPORT_SYMBOL(ssb_driver_unregister);
void ssb_set_devtypedata(struct ssb_device *dev, void *data)
{
struct ssb_bus *bus = dev->bus;
struct ssb_device *ent;
int i;
for (i = 0; i < bus->nr_devices; i++) {
ent = &(bus->devices[i]);
if (ent->id.vendor != dev->id.vendor)
continue;
if (ent->id.coreid != dev->id.coreid)
continue;
ent->devtypedata = data;
}
}
EXPORT_SYMBOL(ssb_set_devtypedata);
static u32 clkfactor_f6_resolve(u32 v)
{
/* map the magic values */
switch (v) {
case SSB_CHIPCO_CLK_F6_2:
return 2;
case SSB_CHIPCO_CLK_F6_3:
return 3;
case SSB_CHIPCO_CLK_F6_4:
return 4;
case SSB_CHIPCO_CLK_F6_5:
return 5;
case SSB_CHIPCO_CLK_F6_6:
return 6;
case SSB_CHIPCO_CLK_F6_7:
return 7;
}
return 0;
}
/* Calculate the speed the backplane would run at a given set of clockcontrol values */
u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
{
u32 n1, n2, clock, m1, m2, m3, mc;
n1 = (n & SSB_CHIPCO_CLK_N1);
n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
if (m & SSB_CHIPCO_CLK_T6_MMASK)
return SSB_CHIPCO_CLK_T6_M0;
return SSB_CHIPCO_CLK_T6_M1;
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
n1 = clkfactor_f6_resolve(n1);
n2 += SSB_CHIPCO_CLK_F5_BIAS;
break;
case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
n1 += SSB_CHIPCO_CLK_T2_BIAS;
n2 += SSB_CHIPCO_CLK_T2_BIAS;
SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
break;
case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
return 100000000;
default:
SSB_WARN_ON(1);
}
switch (plltype) {
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
break;
default:
clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
}
if (!clock)
return 0;
m1 = (m & SSB_CHIPCO_CLK_M1);
m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
m1 = clkfactor_f6_resolve(m1);
if ((plltype == SSB_PLLTYPE_1) ||
(plltype == SSB_PLLTYPE_3))
m2 += SSB_CHIPCO_CLK_F5_BIAS;
else
m2 = clkfactor_f6_resolve(m2);
m3 = clkfactor_f6_resolve(m3);
switch (mc) {
case SSB_CHIPCO_CLK_MC_BYPASS:
return clock;
case SSB_CHIPCO_CLK_MC_M1:
return (clock / m1);
case SSB_CHIPCO_CLK_MC_M1M2:
return (clock / (m1 * m2));
case SSB_CHIPCO_CLK_MC_M1M2M3:
return (clock / (m1 * m2 * m3));
case SSB_CHIPCO_CLK_MC_M1M3:
return (clock / (m1 * m3));
}
return 0;
case SSB_PLLTYPE_2:
m1 += SSB_CHIPCO_CLK_T2_BIAS;
m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
m3 += SSB_CHIPCO_CLK_T2_BIAS;
SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
clock /= m1;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
clock /= m2;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
clock /= m3;
return clock;
default:
SSB_WARN_ON(1);
}
return 0;
}
/* Get the current speed the backplane is running at */
u32 ssb_clockspeed(struct ssb_bus *bus)
{
u32 rate;
u32 plltype;
u32 clkctl_n, clkctl_m;
if (ssb_extif_available(&bus->extif))
ssb_extif_get_clockcontrol(&bus->extif, &plltype,
&clkctl_n, &clkctl_m);
else if (bus->chipco.dev)
ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
&clkctl_n, &clkctl_m);
else
return 0;
if (bus->chip_id == 0x5365) {
rate = 100000000;
} else {
rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
rate /= 2;
}
return rate;
}
EXPORT_SYMBOL(ssb_clockspeed);
static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
{
u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
/* The REJECT bit changed position in TMSLOW between
* Backplane revisions. */
switch (rev) {
case SSB_IDLOW_SSBREV_22:
return SSB_TMSLOW_REJECT_22;
case SSB_IDLOW_SSBREV_23:
return SSB_TMSLOW_REJECT_23;
case SSB_IDLOW_SSBREV_24: /* TODO - find the proper REJECT bits */
case SSB_IDLOW_SSBREV_25: /* same here */
case SSB_IDLOW_SSBREV_26: /* same here */
case SSB_IDLOW_SSBREV_27: /* same here */
return SSB_TMSLOW_REJECT_23; /* this is a guess */
default:
printk(KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
WARN_ON(1);
}
return (SSB_TMSLOW_REJECT_22 | SSB_TMSLOW_REJECT_23);
}
int ssb_device_is_enabled(struct ssb_device *dev)
{
u32 val;
u32 reject;
reject = ssb_tmslow_reject_bitmask(dev);
val = ssb_read32(dev, SSB_TMSLOW);
val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
return (val == SSB_TMSLOW_CLOCK);
}
EXPORT_SYMBOL(ssb_device_is_enabled);
static void ssb_flush_tmslow(struct ssb_device *dev)
{
/* Make _really_ sure the device has finished the TMSLOW
* register write transaction, as we risk running into
* a machine check exception otherwise.
* Do this by reading the register back to commit the
* PCI write and delay an additional usec for the device
* to react to the change. */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
}
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
{
u32 val;
ssb_device_disable(dev, core_specific_flags);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_FGC | core_specific_flags);
ssb_flush_tmslow(dev);
/* Clear SERR if set. This is a hw bug workaround. */
if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
ssb_write32(dev, SSB_TMSHIGH, 0);
val = ssb_read32(dev, SSB_IMSTATE);
if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
ssb_write32(dev, SSB_IMSTATE, val);
}
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
core_specific_flags);
ssb_flush_tmslow(dev);
ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
core_specific_flags);
ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_enable);
/* Wait for a bit in a register to get set or unset.
* timeout is in units of ten-microseconds */
static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
int timeout, int set)
{
int i;
u32 val;
for (i = 0; i < timeout; i++) {
val = ssb_read32(dev, reg);
if (set) {
if (val & bitmask)
return 0;
} else {
if (!(val & bitmask))
return 0;
}
udelay(10);
}
printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
"register %04X to %s.\n",
bitmask, reg, (set ? "set" : "clear"));
return -ETIMEDOUT;
}
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
{
u32 reject;
if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
return;
reject = ssb_tmslow_reject_bitmask(dev);
ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
ssb_wait_bit(dev, SSB_TMSLOW, reject, 1000, 1);
ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
reject | SSB_TMSLOW_RESET |
core_specific_flags);
ssb_flush_tmslow(dev);
ssb_write32(dev, SSB_TMSLOW,
reject | SSB_TMSLOW_RESET |
core_specific_flags);
ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_disable);
u32 ssb_dma_translation(struct ssb_device *dev)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_SSB:
return 0;
case SSB_BUSTYPE_PCI:
return SSB_PCI_DMA;
default:
__ssb_dma_not_implemented(dev);
}
return 0;
}
EXPORT_SYMBOL(ssb_dma_translation);
int ssb_dma_set_mask(struct ssb_device *dev, u64 mask)
{
#ifdef CONFIG_SSB_PCIHOST
int err;
#endif
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
err = pci_set_dma_mask(dev->bus->host_pci, mask);
if (err)
return err;
err = pci_set_consistent_dma_mask(dev->bus->host_pci, mask);
return err;
#endif
case SSB_BUSTYPE_SSB:
return dma_set_mask(dev->dev, mask);
default:
__ssb_dma_not_implemented(dev);
}
return -ENOSYS;
}
EXPORT_SYMBOL(ssb_dma_set_mask);
void * ssb_dma_alloc_consistent(struct ssb_device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp_flags)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
if (gfp_flags & GFP_DMA) {
/* Workaround: The PCI API does not support passing
* a GFP flag. */
return dma_alloc_coherent(&dev->bus->host_pci->dev,
size, dma_handle, gfp_flags);
}
return pci_alloc_consistent(dev->bus->host_pci, size, dma_handle);
#endif
case SSB_BUSTYPE_SSB:
return dma_alloc_coherent(dev->dev, size, dma_handle, gfp_flags);
default:
__ssb_dma_not_implemented(dev);
}
return NULL;
}
EXPORT_SYMBOL(ssb_dma_alloc_consistent);
void ssb_dma_free_consistent(struct ssb_device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
gfp_t gfp_flags)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
if (gfp_flags & GFP_DMA) {
/* Workaround: The PCI API does not support passing
* a GFP flag. */
dma_free_coherent(&dev->bus->host_pci->dev,
size, vaddr, dma_handle);
return;
}
pci_free_consistent(dev->bus->host_pci, size,
vaddr, dma_handle);
return;
#endif
case SSB_BUSTYPE_SSB:
dma_free_coherent(dev->dev, size, vaddr, dma_handle);
return;
default:
__ssb_dma_not_implemented(dev);
}
}
EXPORT_SYMBOL(ssb_dma_free_consistent);
int ssb_bus_may_powerdown(struct ssb_bus *bus)
{
struct ssb_chipcommon *cc;
int err = 0;
/* On buses where more than one core may be working
* at a time, we must not powerdown stuff if there are
* still cores that may want to run. */
if (bus->bustype == SSB_BUSTYPE_SSB)
goto out;
cc = &bus->chipco;
if (!cc->dev)
goto out;
if (cc->dev->id.revision < 5)
goto out;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
if (err)
goto error;
out:
#ifdef CONFIG_SSB_DEBUG
bus->powered_up = 0;
#endif
return err;
error:
ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
goto out;
}
EXPORT_SYMBOL(ssb_bus_may_powerdown);
int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
{
struct ssb_chipcommon *cc;
int err;
enum ssb_clkmode mode;
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
if (err)
goto error;
cc = &bus->chipco;
mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
ssb_chipco_set_clockmode(cc, mode);
#ifdef CONFIG_SSB_DEBUG
bus->powered_up = 1;
#endif
return 0;
error:
ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
return err;
}
EXPORT_SYMBOL(ssb_bus_powerup);
u32 ssb_admatch_base(u32 adm)
{
u32 base = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
base = (adm & SSB_ADM_BASE0);
break;
case SSB_ADM_TYPE1:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
base = (adm & SSB_ADM_BASE1);
break;
case SSB_ADM_TYPE2:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
base = (adm & SSB_ADM_BASE2);
break;
default:
SSB_WARN_ON(1);
}
return base;
}
EXPORT_SYMBOL(ssb_admatch_base);
u32 ssb_admatch_size(u32 adm)
{
u32 size = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
break;
case SSB_ADM_TYPE1:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
break;
case SSB_ADM_TYPE2:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
break;
default:
SSB_WARN_ON(1);
}
size = (1 << (size + 1));
return size;
}
EXPORT_SYMBOL(ssb_admatch_size);
static int __init ssb_modinit(void)
{
int err;
/* See the comment at the ssb_is_early_boot definition */
ssb_is_early_boot = 0;
err = bus_register(&ssb_bustype);
if (err)
return err;
/* Maybe we already registered some buses at early boot.
* Check for this and attach them
*/
ssb_buses_lock();
err = ssb_attach_queued_buses();
ssb_buses_unlock();
if (err)
bus_unregister(&ssb_bustype);
err = b43_pci_ssb_bridge_init();
if (err) {
ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
"initialization failed\n");
/* don't fail SSB init because of this */
err = 0;
}
err = ssb_gige_init();
if (err) {
ssb_printk(KERN_ERR "SSB Broadcom Gigabit Ethernet "
"driver initialization failed\n");
/* don't fail SSB init because of this */
err = 0;
}
return err;
}
/* ssb must be initialized after PCI but before the ssb drivers.
* That means we must use some initcall between subsys_initcall
* and device_initcall. */
fs_initcall(ssb_modinit);
static void __exit ssb_modexit(void)
{
ssb_gige_exit();
b43_pci_ssb_bridge_exit();
bus_unregister(&ssb_bustype);
}
module_exit(ssb_modexit)