linux/drivers/net/wireless/rt2x00/rt2x00dev.c
David S. Miller 72948cdcbb Merge git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next
John W. Linville says:

====================
pull request: wireless-next 2014-07-03

Please pull this first batch of wireless updates intended for the
3.17 stream...

For the mac80211 bits, Johannes says:

"The biggest thing here is probably Arik's TDLS rework, beyond that we
have smaller improvements and features like David's scanning IE thing,
Luca's queue work, some CSA work, etc. Also your PID rate control
removal, of course."

For the iwlwifi bits, Emmanuel says:

"I have here a whole bunch of various things. Andy contributes
better debug prints for dvm specific flows and a module parameter to
completely disable power save for dvm. Andrei is sharing the premises
of his work on CSA - more to come. Eran and Liad keep on working
on the new devices. I have the regular amount of BT Coex stuff and
I continue to work on the firmware error report system adding more
debug capabilities. More to come on that subject too."

On top of that, there are some cleanups to the new rsi driver, some
continuing improvements to the rtl818x drivers, and the usual bundles
of updates to ath9k, b43, mwifiex, wil6210, and a few other bits here
and there.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-08 14:20:31 -07:00

1550 lines
39 KiB
C

/*
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
/*
* Utility functions.
*/
u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
/*
* When in STA mode, bssidx is always 0 otherwise local_address[5]
* contains the bss number, see BSS_ID_MASK comments for details.
*/
if (rt2x00dev->intf_sta_count)
return 0;
return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
}
EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* And check if the hardware button has been disabled.
*/
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return 0;
/*
* Initialize all data queues.
*/
rt2x00queue_init_queues(rt2x00dev);
/*
* Enable radio.
*/
status =
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
if (status)
return status;
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
rt2x00leds_led_radio(rt2x00dev, true);
rt2x00led_led_activity(rt2x00dev, true);
set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
/*
* Enable queues.
*/
rt2x00queue_start_queues(rt2x00dev);
rt2x00link_start_tuner(rt2x00dev);
rt2x00link_start_agc(rt2x00dev);
if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
rt2x00link_start_vcocal(rt2x00dev);
/*
* Start watchdog monitoring.
*/
rt2x00link_start_watchdog(rt2x00dev);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Stop watchdog monitoring.
*/
rt2x00link_stop_watchdog(rt2x00dev);
/*
* Stop all queues
*/
rt2x00link_stop_agc(rt2x00dev);
if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
rt2x00link_stop_vcocal(rt2x00dev);
rt2x00link_stop_tuner(rt2x00dev);
rt2x00queue_stop_queues(rt2x00dev);
rt2x00queue_flush_queues(rt2x00dev, true);
/*
* Disable radio.
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
rt2x00led_led_activity(rt2x00dev, false);
rt2x00leds_led_radio(rt2x00dev, false);
}
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
struct rt2x00_intf *intf = vif_to_intf(vif);
/*
* It is possible the radio was disabled while the work had been
* scheduled. If that happens we should return here immediately,
* note that in the spinlock protected area above the delayed_flags
* have been cleared correctly.
*/
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
mutex_lock(&intf->beacon_skb_mutex);
rt2x00queue_update_beacon(rt2x00dev, vif);
mutex_unlock(&intf->beacon_skb_mutex);
}
}
static void rt2x00lib_intf_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, intf_work);
/*
* Iterate over each interface and perform the
* requested configurations.
*/
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_intf_scheduled_iter,
rt2x00dev);
}
static void rt2x00lib_autowakeup(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, autowakeup_work.work);
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
return;
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
}
/*
* Interrupt context handlers.
*/
static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ieee80211_tx_control control = {};
struct rt2x00_dev *rt2x00dev = data;
struct sk_buff *skb;
/*
* Only AP mode interfaces do broad- and multicast buffering
*/
if (vif->type != NL80211_IFTYPE_AP)
return;
/*
* Send out buffered broad- and multicast frames
*/
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
while (skb) {
rt2x00mac_tx(rt2x00dev->hw, &control, skb);
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
}
}
static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
if (vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_ADHOC &&
vif->type != NL80211_IFTYPE_MESH_POINT &&
vif->type != NL80211_IFTYPE_WDS)
return;
/*
* Update the beacon without locking. This is safe on PCI devices
* as they only update the beacon periodically here. This should
* never be called for USB devices.
*/
WARN_ON(rt2x00_is_usb(rt2x00dev));
rt2x00queue_update_beacon(rt2x00dev, vif);
}
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/* send buffered bc/mc frames out for every bssid */
ieee80211_iterate_active_interfaces_atomic(
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_bc_buffer_iter, rt2x00dev);
/*
* Devices with pre tbtt interrupt don't need to update the beacon
* here as they will fetch the next beacon directly prior to
* transmission.
*/
if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
return;
/* fetch next beacon */
ieee80211_iterate_active_interfaces_atomic(
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_beaconupdate_iter, rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/* fetch next beacon */
ieee80211_iterate_active_interfaces_atomic(
rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
rt2x00lib_beaconupdate_iter, rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
void rt2x00lib_dmastart(struct queue_entry *entry)
{
set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
rt2x00queue_index_inc(entry, Q_INDEX);
}
EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
void rt2x00lib_dmadone(struct queue_entry *entry)
{
set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
}
EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_bar *bar = (void *) entry->skb->data;
struct rt2x00_bar_list_entry *bar_entry;
int ret;
if (likely(!ieee80211_is_back_req(bar->frame_control)))
return 0;
/*
* Unlike all other frames, the status report for BARs does
* not directly come from the hardware as it is incapable of
* matching a BA to a previously send BAR. The hardware will
* report all BARs as if they weren't acked at all.
*
* Instead the RX-path will scan for incoming BAs and set the
* block_acked flag if it sees one that was likely caused by
* a BAR from us.
*
* Remove remaining BARs here and return their status for
* TX done processing.
*/
ret = 0;
rcu_read_lock();
list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
if (bar_entry->entry != entry)
continue;
spin_lock_bh(&rt2x00dev->bar_list_lock);
/* Return whether this BAR was blockacked or not */
ret = bar_entry->block_acked;
/* Remove the BAR from our checklist */
list_del_rcu(&bar_entry->list);
spin_unlock_bh(&rt2x00dev->bar_list_lock);
kfree_rcu(bar_entry, head);
break;
}
rcu_read_unlock();
return ret;
}
void rt2x00lib_txdone(struct queue_entry *entry,
struct txdone_entry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
unsigned int header_length, i;
u8 rate_idx, rate_flags, retry_rates;
u8 skbdesc_flags = skbdesc->flags;
bool success;
/*
* Unmap the skb.
*/
rt2x00queue_unmap_skb(entry);
/*
* Remove the extra tx headroom from the skb.
*/
skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
/*
* Signal that the TX descriptor is no longer in the skb.
*/
skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
/*
* Determine the length of 802.11 header.
*/
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
/*
* Remove L2 padding which was added during
*/
if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
rt2x00queue_remove_l2pad(entry->skb, header_length);
/*
* If the IV/EIV data was stripped from the frame before it was
* passed to the hardware, we should now reinsert it again because
* mac80211 will expect the same data to be present it the
* frame as it was passed to us.
*/
if (rt2x00_has_cap_hw_crypto(rt2x00dev))
rt2x00crypto_tx_insert_iv(entry->skb, header_length);
/*
* Send frame to debugfs immediately, after this call is completed
* we are going to overwrite the skb->cb array.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
/*
* Determine if the frame has been successfully transmitted and
* remove BARs from our check list while checking for their
* TX status.
*/
success =
rt2x00lib_txdone_bar_status(entry) ||
test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
test_bit(TXDONE_UNKNOWN, &txdesc->flags);
/*
* Update TX statistics.
*/
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += !success;
rate_idx = skbdesc->tx_rate_idx;
rate_flags = skbdesc->tx_rate_flags;
retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
(txdesc->retry + 1) : 1;
/*
* Initialize TX status
*/
memset(&tx_info->status, 0, sizeof(tx_info->status));
tx_info->status.ack_signal = 0;
/*
* Frame was send with retries, hardware tried
* different rates to send out the frame, at each
* retry it lowered the rate 1 step except when the
* lowest rate was used.
*/
for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
tx_info->status.rates[i].idx = rate_idx - i;
tx_info->status.rates[i].flags = rate_flags;
if (rate_idx - i == 0) {
/*
* The lowest rate (index 0) was used until the
* number of max retries was reached.
*/
tx_info->status.rates[i].count = retry_rates - i;
i++;
break;
}
tx_info->status.rates[i].count = 1;
}
if (i < (IEEE80211_TX_MAX_RATES - 1))
tx_info->status.rates[i].idx = -1; /* terminate */
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
if (success)
tx_info->flags |= IEEE80211_TX_STAT_ACK;
else
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
}
/*
* Every single frame has it's own tx status, hence report
* every frame as ampdu of size 1.
*
* TODO: if we can find out how many frames were aggregated
* by the hw we could provide the real ampdu_len to mac80211
* which would allow the rc algorithm to better decide on
* which rates are suitable.
*/
if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
tx_info->status.ampdu_len = 1;
tx_info->status.ampdu_ack_len = success ? 1 : 0;
if (!success)
tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
}
if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
if (success)
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
else
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
}
/*
* Only send the status report to mac80211 when it's a frame
* that originated in mac80211. If this was a extra frame coming
* through a mac80211 library call (RTS/CTS) then we should not
* send the status report back.
*/
if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
ieee80211_tx_status(rt2x00dev->hw, entry->skb);
else
ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
} else
dev_kfree_skb_any(entry->skb);
/*
* Make this entry available for reuse.
*/
entry->skb = NULL;
entry->flags = 0;
rt2x00dev->ops->lib->clear_entry(entry);
rt2x00queue_index_inc(entry, Q_INDEX_DONE);
/*
* If the data queue was below the threshold before the txdone
* handler we must make sure the packet queue in the mac80211 stack
* is reenabled when the txdone handler has finished. This has to be
* serialized with rt2x00mac_tx(), otherwise we can wake up queue
* before it was stopped.
*/
spin_lock_bh(&entry->queue->tx_lock);
if (!rt2x00queue_threshold(entry->queue))
rt2x00queue_unpause_queue(entry->queue);
spin_unlock_bh(&entry->queue->tx_lock);
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
{
struct txdone_entry_desc txdesc;
txdesc.flags = 0;
__set_bit(status, &txdesc.flags);
txdesc.retry = 0;
rt2x00lib_txdone(entry, &txdesc);
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
{
struct ieee80211_mgmt *mgmt = (void *)data;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos + 2 + pos[1] > end)
return NULL;
if (pos[0] == ie)
return pos;
pos += 2 + pos[1];
}
return NULL;
}
static void rt2x00lib_sleep(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, sleep_work);
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
return;
/*
* Check again is powersaving is enabled, to prevent races from delayed
* work execution.
*/
if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
IEEE80211_CONF_CHANGE_PS);
}
static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct rxdone_entry_desc *rxdesc)
{
struct rt2x00_bar_list_entry *entry;
struct ieee80211_bar *ba = (void *)skb->data;
if (likely(!ieee80211_is_back(ba->frame_control)))
return;
if (rxdesc->size < sizeof(*ba) + FCS_LEN)
return;
rcu_read_lock();
list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
if (ba->start_seq_num != entry->start_seq_num)
continue;
#define TID_CHECK(a, b) ( \
((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
if (!TID_CHECK(ba->control, entry->control))
continue;
#undef TID_CHECK
if (!ether_addr_equal_64bits(ba->ra, entry->ta))
continue;
if (!ether_addr_equal_64bits(ba->ta, entry->ra))
continue;
/* Mark BAR since we received the according BA */
spin_lock_bh(&rt2x00dev->bar_list_lock);
entry->block_acked = 1;
spin_unlock_bh(&rt2x00dev->bar_list_lock);
break;
}
rcu_read_unlock();
}
static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct rxdone_entry_desc *rxdesc)
{
struct ieee80211_hdr *hdr = (void *) skb->data;
struct ieee80211_tim_ie *tim_ie;
u8 *tim;
u8 tim_len;
bool cam;
/* If this is not a beacon, or if mac80211 has no powersaving
* configured, or if the device is already in powersaving mode
* we can exit now. */
if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
!(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
return;
/* min. beacon length + FCS_LEN */
if (skb->len <= 40 + FCS_LEN)
return;
/* and only beacons from the associated BSSID, please */
if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
!rt2x00dev->aid)
return;
rt2x00dev->last_beacon = jiffies;
tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
if (!tim)
return;
if (tim[1] < sizeof(*tim_ie))
return;
tim_len = tim[1];
tim_ie = (struct ieee80211_tim_ie *) &tim[2];
/* Check whenever the PHY can be turned off again. */
/* 1. What about buffered unicast traffic for our AID? */
cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
/* 2. Maybe the AP wants to send multicast/broadcast data? */
cam |= (tim_ie->bitmap_ctrl & 0x01);
if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
}
static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
struct rxdone_entry_desc *rxdesc)
{
struct ieee80211_supported_band *sband;
const struct rt2x00_rate *rate;
unsigned int i;
int signal = rxdesc->signal;
int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
switch (rxdesc->rate_mode) {
case RATE_MODE_CCK:
case RATE_MODE_OFDM:
/*
* For non-HT rates the MCS value needs to contain the
* actually used rate modulation (CCK or OFDM).
*/
if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
signal = RATE_MCS(rxdesc->rate_mode, signal);
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
for (i = 0; i < sband->n_bitrates; i++) {
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
if (((type == RXDONE_SIGNAL_PLCP) &&
(rate->plcp == signal)) ||
((type == RXDONE_SIGNAL_BITRATE) &&
(rate->bitrate == signal)) ||
((type == RXDONE_SIGNAL_MCS) &&
(rate->mcs == signal))) {
return i;
}
}
break;
case RATE_MODE_HT_MIX:
case RATE_MODE_HT_GREENFIELD:
if (signal >= 0 && signal <= 76)
return signal;
break;
default:
break;
}
rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
rxdesc->rate_mode, signal, type);
return 0;
}
void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct rxdone_entry_desc rxdesc;
struct sk_buff *skb;
struct ieee80211_rx_status *rx_status;
unsigned int header_length;
int rate_idx;
if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
goto submit_entry;
if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
goto submit_entry;
/*
* Allocate a new sk_buffer. If no new buffer available, drop the
* received frame and reuse the existing buffer.
*/
skb = rt2x00queue_alloc_rxskb(entry, gfp);
if (!skb)
goto submit_entry;
/*
* Unmap the skb.
*/
rt2x00queue_unmap_skb(entry);
/*
* Extract the RXD details.
*/
memset(&rxdesc, 0, sizeof(rxdesc));
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
/*
* Check for valid size in case we get corrupted descriptor from
* hardware.
*/
if (unlikely(rxdesc.size == 0 ||
rxdesc.size > entry->queue->data_size)) {
rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
rxdesc.size, entry->queue->data_size);
dev_kfree_skb(entry->skb);
goto renew_skb;
}
/*
* The data behind the ieee80211 header must be
* aligned on a 4 byte boundary.
*/
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
/*
* Hardware might have stripped the IV/EIV/ICV data,
* in that case it is possible that the data was
* provided separately (through hardware descriptor)
* in which case we should reinsert the data into the frame.
*/
if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
(rxdesc.flags & RX_FLAG_IV_STRIPPED))
rt2x00crypto_rx_insert_iv(entry->skb, header_length,
&rxdesc);
else if (header_length &&
(rxdesc.size > header_length) &&
(rxdesc.dev_flags & RXDONE_L2PAD))
rt2x00queue_remove_l2pad(entry->skb, header_length);
/* Trim buffer to correct size */
skb_trim(entry->skb, rxdesc.size);
/*
* Translate the signal to the correct bitrate index.
*/
rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
rxdesc.flags |= RX_FLAG_HT;
/*
* Check if this is a beacon, and more frames have been
* buffered while we were in powersaving mode.
*/
rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
/*
* Check for incoming BlockAcks to match to the BlockAckReqs
* we've send out.
*/
rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
/*
* Update extra components
*/
rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
/*
* Initialize RX status information, and send frame
* to mac80211.
*/
rx_status = IEEE80211_SKB_RXCB(entry->skb);
/* Ensure that all fields of rx_status are initialized
* properly. The skb->cb array was used for driver
* specific informations, so rx_status might contain
* garbage.
*/
memset(rx_status, 0, sizeof(*rx_status));
rx_status->mactime = rxdesc.timestamp;
rx_status->band = rt2x00dev->curr_band;
rx_status->freq = rt2x00dev->curr_freq;
rx_status->rate_idx = rate_idx;
rx_status->signal = rxdesc.rssi;
rx_status->flag = rxdesc.flags;
rx_status->antenna = rt2x00dev->link.ant.active.rx;
ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
renew_skb:
/*
* Replace the skb with the freshly allocated one.
*/
entry->skb = skb;
submit_entry:
entry->flags = 0;
rt2x00queue_index_inc(entry, Q_INDEX_DONE);
if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2x00dev->ops->lib->clear_entry(entry);
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* Driver initialization handlers.
*/
const struct rt2x00_rate rt2x00_supported_rates[12] = {
{
.flags = DEV_RATE_CCK,
.bitrate = 10,
.ratemask = BIT(0),
.plcp = 0x00,
.mcs = RATE_MCS(RATE_MODE_CCK, 0),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 20,
.ratemask = BIT(1),
.plcp = 0x01,
.mcs = RATE_MCS(RATE_MODE_CCK, 1),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 55,
.ratemask = BIT(2),
.plcp = 0x02,
.mcs = RATE_MCS(RATE_MODE_CCK, 2),
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
.bitrate = 110,
.ratemask = BIT(3),
.plcp = 0x03,
.mcs = RATE_MCS(RATE_MODE_CCK, 3),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 60,
.ratemask = BIT(4),
.plcp = 0x0b,
.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 90,
.ratemask = BIT(5),
.plcp = 0x0f,
.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 120,
.ratemask = BIT(6),
.plcp = 0x0a,
.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 180,
.ratemask = BIT(7),
.plcp = 0x0e,
.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 240,
.ratemask = BIT(8),
.plcp = 0x09,
.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 360,
.ratemask = BIT(9),
.plcp = 0x0d,
.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 480,
.ratemask = BIT(10),
.plcp = 0x08,
.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 540,
.ratemask = BIT(11),
.plcp = 0x0c,
.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
},
};
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power,
const int value)
{
/* XXX: this assumption about the band is wrong for 802.11j */
entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
entry->center_freq = ieee80211_channel_to_frequency(channel,
entry->band);
entry->hw_value = value;
entry->max_power = tx_power;
entry->max_antenna_gain = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const u16 index, const struct rt2x00_rate *rate)
{
entry->flags = 0;
entry->bitrate = rate->bitrate;
entry->hw_value = index;
entry->hw_value_short = index;
if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
}
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int num_rates;
unsigned int i;
num_rates = 0;
if (spec->supported_rates & SUPPORT_RATE_CCK)
num_rates += 4;
if (spec->supported_rates & SUPPORT_RATE_OFDM)
num_rates += 8;
channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
for (i = 0; i < num_rates; i++)
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
/*
* Initialize Channel list.
*/
for (i = 0; i < spec->num_channels; i++) {
rt2x00lib_channel(&channels[i],
spec->channels[i].channel,
spec->channels_info[i].max_power, i);
}
/*
* Intitialize 802.11b, 802.11g
* Rates: CCK, OFDM.
* Channels: 2.4 GHz
*/
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&rt2x00dev->bands[IEEE80211_BAND_2GHZ];
memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
&spec->ht, sizeof(spec->ht));
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
spec->num_channels - 14;
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
num_rates - 4;
rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&rt2x00dev->bands[IEEE80211_BAND_5GHZ];
memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
&spec->ht, sizeof(spec->ht));
}
return 0;
exit_free_channels:
kfree(channels);
rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
return -ENOMEM;
}
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
}
kfree(rt2x00dev->spec.channels_info);
}
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
return 0;
/*
* Initialize HW modes.
*/
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Initialize HW fields.
*/
rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
/*
* Initialize extra TX headroom required.
*/
rt2x00dev->hw->extra_tx_headroom =
max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
rt2x00dev->extra_tx_headroom);
/*
* Take TX headroom required for alignment into account.
*/
if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
/*
* Tell mac80211 about the size of our private STA structure.
*/
rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
/*
* Allocate tx status FIFO for driver use.
*/
if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
/*
* Allocate the txstatus fifo. In the worst case the tx
* status fifo has to hold the tx status of all entries
* in all tx queues. Hence, calculate the kfifo size as
* tx_queues * entry_num and round up to the nearest
* power of 2.
*/
int kfifo_size =
roundup_pow_of_two(rt2x00dev->ops->tx_queues *
rt2x00dev->tx->limit *
sizeof(u32));
status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
GFP_KERNEL);
if (status)
return status;
}
/*
* Initialize tasklets if used by the driver. Tasklets are
* disabled until the interrupts are turned on. The driver
* has to handle that.
*/
#define RT2X00_TASKLET_INIT(taskletname) \
if (rt2x00dev->ops->lib->taskletname) { \
tasklet_init(&rt2x00dev->taskletname, \
rt2x00dev->ops->lib->taskletname, \
(unsigned long)rt2x00dev); \
}
RT2X00_TASKLET_INIT(txstatus_tasklet);
RT2X00_TASKLET_INIT(pretbtt_tasklet);
RT2X00_TASKLET_INIT(tbtt_tasklet);
RT2X00_TASKLET_INIT(rxdone_tasklet);
RT2X00_TASKLET_INIT(autowake_tasklet);
#undef RT2X00_TASKLET_INIT
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status)
return status;
set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Stop rfkill polling.
*/
if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
rt2x00rfkill_unregister(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated queue entries.
*/
rt2x00queue_uninitialize(rt2x00dev);
}
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all queue entries.
*/
status = rt2x00queue_initialize(rt2x00dev);
if (status)
return status;
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status) {
rt2x00queue_uninitialize(rt2x00dev);
return status;
}
set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
/*
* Start rfkill polling.
*/
if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
rt2x00rfkill_register(rt2x00dev);
return 0;
}
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
return 0;
/*
* If this is the first interface which is added,
* we should load the firmware now.
*/
retval = rt2x00lib_load_firmware(rt2x00dev);
if (retval)
return retval;
/*
* Initialize the device.
*/
retval = rt2x00lib_initialize(rt2x00dev);
if (retval)
return retval;
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
/* Enable the radio */
retval = rt2x00lib_enable_radio(rt2x00dev);
if (retval)
return retval;
set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
return 0;
}
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
{
if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
return;
/*
* Perhaps we can add something smarter here,
* but for now just disabling the radio should do.
*/
rt2x00lib_disable_radio(rt2x00dev);
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
}
static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
{
struct ieee80211_iface_limit *if_limit;
struct ieee80211_iface_combination *if_combination;
if (rt2x00dev->ops->max_ap_intf < 2)
return;
/*
* Build up AP interface limits structure.
*/
if_limit = &rt2x00dev->if_limits_ap;
if_limit->max = rt2x00dev->ops->max_ap_intf;
if_limit->types = BIT(NL80211_IFTYPE_AP);
#ifdef CONFIG_MAC80211_MESH
if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
#endif
/*
* Build up AP interface combinations structure.
*/
if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
if_combination->limits = if_limit;
if_combination->n_limits = 1;
if_combination->max_interfaces = if_limit->max;
if_combination->num_different_channels = 1;
/*
* Finally, specify the possible combinations to mac80211.
*/
rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
rt2x00dev->hw->wiphy->n_iface_combinations = 1;
}
static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
{
if (WARN_ON(!rt2x00dev->tx))
return 0;
if (rt2x00_is_usb(rt2x00dev))
return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
return rt2x00dev->tx[0].winfo_size;
}
/*
* driver allocation handlers.
*/
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
/*
* Set possible interface combinations.
*/
rt2x00lib_set_if_combinations(rt2x00dev);
/*
* Allocate the driver data memory, if necessary.
*/
if (rt2x00dev->ops->drv_data_size > 0) {
rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
GFP_KERNEL);
if (!rt2x00dev->drv_data) {
retval = -ENOMEM;
goto exit;
}
}
spin_lock_init(&rt2x00dev->irqmask_lock);
mutex_init(&rt2x00dev->csr_mutex);
INIT_LIST_HEAD(&rt2x00dev->bar_list);
spin_lock_init(&rt2x00dev->bar_list_lock);
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
/*
* Make room for rt2x00_intf inside the per-interface
* structure ieee80211_vif.
*/
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
/*
* rt2x00 devices can only use the last n bits of the MAC address
* for virtual interfaces.
*/
rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
(rt2x00dev->ops->max_ap_intf - 1);
/*
* Initialize work.
*/
rt2x00dev->workqueue =
alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
if (!rt2x00dev->workqueue) {
retval = -ENOMEM;
goto exit;
}
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
if (retval) {
rt2x00_err(rt2x00dev, "Failed to allocate device\n");
goto exit;
}
/*
* Allocate queue array.
*/
retval = rt2x00queue_allocate(rt2x00dev);
if (retval)
goto exit;
/* Cache TX headroom value */
rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
/*
* Determine which operating modes are supported, all modes
* which require beaconing, depend on the availability of
* beacon entries.
*/
rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
if (rt2x00dev->bcn->limit > 0)
rt2x00dev->hw->wiphy->interface_modes |=
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_WDS);
rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_probe_hw(rt2x00dev);
if (retval) {
rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
goto exit;
}
/*
* Register extra components.
*/
rt2x00link_register(rt2x00dev);
rt2x00leds_register(rt2x00dev);
rt2x00debug_register(rt2x00dev);
/*
* Start rfkill polling.
*/
if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
rt2x00rfkill_register(rt2x00dev);
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
/*
* Stop rfkill polling.
*/
if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
rt2x00rfkill_unregister(rt2x00dev);
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Stop all work.
*/
cancel_work_sync(&rt2x00dev->intf_work);
cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
cancel_work_sync(&rt2x00dev->sleep_work);
if (rt2x00_is_usb(rt2x00dev)) {
hrtimer_cancel(&rt2x00dev->txstatus_timer);
cancel_work_sync(&rt2x00dev->rxdone_work);
cancel_work_sync(&rt2x00dev->txdone_work);
}
if (rt2x00dev->workqueue)
destroy_workqueue(rt2x00dev->workqueue);
/*
* Free the tx status fifo.
*/
kfifo_free(&rt2x00dev->txstatus_fifo);
/*
* Kill the tx status tasklet.
*/
tasklet_kill(&rt2x00dev->txstatus_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->rxdone_tasklet);
tasklet_kill(&rt2x00dev->autowake_tasklet);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Free extra components
*/
rt2x00debug_deregister(rt2x00dev);
rt2x00leds_unregister(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_remove_hw(rt2x00dev);
/*
* Free firmware image.
*/
rt2x00lib_free_firmware(rt2x00dev);
/*
* Free queue structures.
*/
rt2x00queue_free(rt2x00dev);
/*
* Free the driver data.
*/
kfree(rt2x00dev->drv_data);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
rt2x00_dbg(rt2x00dev, "Going to sleep\n");
/*
* Prevent mac80211 from accessing driver while suspended.
*/
if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
return 0;
/*
* Cleanup as much as possible.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Suspend/disable extra components.
*/
rt2x00leds_suspend(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
/*
* Set device mode to sleep for power management,
* on some hardware this call seems to consistently fail.
* From the specifications it is hard to tell why it fails,
* and if this is a "bad thing".
* Overall it is safe to just ignore the failure and
* continue suspending. The only downside is that the
* device will not be in optimal power save mode, but with
* the radio and the other components already disabled the
* device is as good as disabled.
*/
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
rt2x00_dbg(rt2x00dev, "Waking up\n");
/*
* Restore/enable extra components.
*/
rt2x00debug_register(rt2x00dev);
rt2x00leds_resume(rt2x00dev);
/*
* We are ready again to receive requests from mac80211.
*/
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");