mainlining shenanigans
We found that a process with 10 thousnads threads has been encountered
a regression problem from Linux-v4.14 to Linux-v5.4. It is a kind of
workload which will concurrently allocate lots of memory in different
threads sometimes. In this case, we will see the down_read_trylock()
with a high hotspot. Therefore, we suppose that rwsem has a regression
at least since Linux-v5.4. In order to easily debug this problem, we
write a simply benchmark to create the similar situation lile the
following.
```c++
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sched.h>
#include <cstdio>
#include <cassert>
#include <thread>
#include <vector>
#include <chrono>
volatile int mutex;
void trigger(int cpu, char* ptr, std::size_t sz)
{
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
assert(pthread_setaffinity_np(pthread_self(), sizeof(set), &set) == 0);
while (mutex);
for (std::size_t i = 0; i < sz; i += 4096) {
*ptr = '\0';
ptr += 4096;
}
}
int main(int argc, char* argv[])
{
std::size_t sz = 100;
if (argc > 1)
sz = atoi(argv[1]);
auto nproc = std:🧵:hardware_concurrency();
std::vector<std::thread> thr;
sz <<= 30;
auto* ptr = mmap(nullptr, sz, PROT_READ | PROT_WRITE, MAP_ANON |
MAP_PRIVATE, -1, 0);
assert(ptr != MAP_FAILED);
char* cptr = static_cast<char*>(ptr);
auto run = sz / nproc;
run = (run >> 12) << 12;
mutex = 1;
for (auto i = 0U; i < nproc; ++i) {
thr.emplace_back(std::thread([i, cptr, run]() { trigger(i, cptr, run); }));
cptr += run;
}
rusage usage_start;
getrusage(RUSAGE_SELF, &usage_start);
auto start = std::chrono::system_clock::now();
mutex = 0;
for (auto& t : thr)
t.join();
rusage usage_end;
getrusage(RUSAGE_SELF, &usage_end);
auto end = std::chrono::system_clock::now();
timeval utime;
timeval stime;
timersub(&usage_end.ru_utime, &usage_start.ru_utime, &utime);
timersub(&usage_end.ru_stime, &usage_start.ru_stime, &stime);
printf("usr: %ld.%06ld\n", utime.tv_sec, utime.tv_usec);
printf("sys: %ld.%06ld\n", stime.tv_sec, stime.tv_usec);
printf("real: %lu\n",
std::chrono::duration_cast<std::chrono::milliseconds>(end -
start).count());
return 0;
}
```
The functionality of above program is simply which creates `nproc`
threads and each of them are trying to touch memory (trigger page
fault) on different CPU. Then we will see the similar profile by
`perf top`.
25.55% [kernel] [k] down_read_trylock
14.78% [kernel] [k] handle_mm_fault
13.45% [kernel] [k] up_read
8.61% [kernel] [k] clear_page_erms
3.89% [kernel] [k] __do_page_fault
The highest hot instruction, which accounts for about 92%, in
down_read_trylock() is cmpxchg like the following.
91.89 │ lock cmpxchg %rdx,(%rdi)
Sice the problem is found by migrating from Linux-v4.14 to Linux-v5.4,
so we easily found that the commit
|
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.