linux/drivers/gpu/drm/i915/gvt/cmd_parser.c
Tvrtko Ursulin 73dec95e6b drm/i915: Emit to ringbuffer directly
This removes the usage of intel_ring_emit in favour of
directly writing to the ring buffer.

intel_ring_emit was preventing the compiler for optimising
fetch and increment of the current ring buffer pointer and
therefore generating very verbose code for every write.

It had no useful purpose since all ringbuffer operations
are started and ended with intel_ring_begin and
intel_ring_advance respectively, with no bail out in the
middle possible, so it is fine to increment the tail in
intel_ring_begin and let the code manage the pointer
itself.

Useless instruction removal amounts to approximately
two and half kilobytes of saved text on my build.

Not sure if this has any measurable performance
implications but executing a ton of useless instructions
on fast paths cannot be good.

v2:
 * Change return from intel_ring_begin to error pointer by
   popular demand.
 * Move tail increment to intel_ring_advance to enable some
   error checking.

v3:
 * Move tail advance back into intel_ring_begin.
 * Rebase and tidy.

v4:
 * Complete rebase after a few months since v3.

v5:
 * Remove unecessary cast and fix !debug compile. (Chris Wilson)

v6:
 * Make intel_ring_offset take request as well.
 * Fix recording of request postfix plus a sprinkle of asserts.
   (Chris Wilson)

v7:
 * Use intel_ring_offset to get the postfix. (Chris Wilson)
 * Convert GVT code as well.

v8:
 * Rename *out++ to *cs++.

v9:
 * Fix GVT out to cs conversion in GVT.

v10:
 * Rebase for new intel_ring_begin in selftests.

Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Zhi Wang <zhi.a.wang@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 14:30:46 +00:00

2825 lines
83 KiB
C

/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Ke Yu
* Kevin Tian <kevin.tian@intel.com>
* Zhiyuan Lv <zhiyuan.lv@intel.com>
*
* Contributors:
* Min He <min.he@intel.com>
* Ping Gao <ping.a.gao@intel.com>
* Tina Zhang <tina.zhang@intel.com>
* Yulei Zhang <yulei.zhang@intel.com>
* Zhi Wang <zhi.a.wang@intel.com>
*
*/
#include <linux/slab.h>
#include "i915_drv.h"
#include "gvt.h"
#include "i915_pvinfo.h"
#include "trace.h"
#define INVALID_OP (~0U)
#define OP_LEN_MI 9
#define OP_LEN_2D 10
#define OP_LEN_3D_MEDIA 16
#define OP_LEN_MFX_VC 16
#define OP_LEN_VEBOX 16
#define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
struct sub_op_bits {
int hi;
int low;
};
struct decode_info {
char *name;
int op_len;
int nr_sub_op;
struct sub_op_bits *sub_op;
};
#define MAX_CMD_BUDGET 0x7fffffff
#define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
#define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
#define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
#define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
#define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
#define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
/* Render Command Map */
/* MI_* command Opcode (28:23) */
#define OP_MI_NOOP 0x0
#define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
#define OP_MI_USER_INTERRUPT 0x2
#define OP_MI_WAIT_FOR_EVENT 0x3
#define OP_MI_FLUSH 0x4
#define OP_MI_ARB_CHECK 0x5
#define OP_MI_RS_CONTROL 0x6 /* HSW+ */
#define OP_MI_REPORT_HEAD 0x7
#define OP_MI_ARB_ON_OFF 0x8
#define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
#define OP_MI_BATCH_BUFFER_END 0xA
#define OP_MI_SUSPEND_FLUSH 0xB
#define OP_MI_PREDICATE 0xC /* IVB+ */
#define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
#define OP_MI_SET_APPID 0xE /* IVB+ */
#define OP_MI_RS_CONTEXT 0xF /* HSW+ */
#define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
#define OP_MI_DISPLAY_FLIP 0x14
#define OP_MI_SEMAPHORE_MBOX 0x16
#define OP_MI_SET_CONTEXT 0x18
#define OP_MI_MATH 0x1A
#define OP_MI_URB_CLEAR 0x19
#define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
#define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
#define OP_MI_STORE_DATA_IMM 0x20
#define OP_MI_STORE_DATA_INDEX 0x21
#define OP_MI_LOAD_REGISTER_IMM 0x22
#define OP_MI_UPDATE_GTT 0x23
#define OP_MI_STORE_REGISTER_MEM 0x24
#define OP_MI_FLUSH_DW 0x26
#define OP_MI_CLFLUSH 0x27
#define OP_MI_REPORT_PERF_COUNT 0x28
#define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
#define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
#define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
#define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
#define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
#define OP_MI_2E 0x2E /* BDW+ */
#define OP_MI_2F 0x2F /* BDW+ */
#define OP_MI_BATCH_BUFFER_START 0x31
/* Bit definition for dword 0 */
#define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
#define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
#define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
#define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
#define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
#define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
/* 2D command: Opcode (28:22) */
#define OP_2D(x) ((2<<7) | x)
#define OP_XY_SETUP_BLT OP_2D(0x1)
#define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
#define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
#define OP_XY_PIXEL_BLT OP_2D(0x24)
#define OP_XY_SCANLINES_BLT OP_2D(0x25)
#define OP_XY_TEXT_BLT OP_2D(0x26)
#define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
#define OP_XY_COLOR_BLT OP_2D(0x50)
#define OP_XY_PAT_BLT OP_2D(0x51)
#define OP_XY_MONO_PAT_BLT OP_2D(0x52)
#define OP_XY_SRC_COPY_BLT OP_2D(0x53)
#define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
#define OP_XY_FULL_BLT OP_2D(0x55)
#define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
#define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
#define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
#define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
#define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
#define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
#define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
#define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
#define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
#define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
#define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
/* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
#define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
#define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
#define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
#define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
#define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
#define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
#define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
#define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
#define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
#define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
#define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
#define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
#define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
#define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
#define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
#define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
#define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
#define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
#define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
#define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
#define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
#define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
#define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
#define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
#define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
#define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
#define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
#define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
#define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
#define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
#define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
#define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
#define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
#define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
#define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
#define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
#define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
#define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
#define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
#define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
#define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
#define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
#define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
#define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
#define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
#define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
#define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
#define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
#define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
#define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
#define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
#define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
#define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
#define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
#define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
#define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
#define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
#define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
#define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
#define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
#define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
#define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
#define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
#define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
#define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
#define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
#define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
#define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
#define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
#define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
#define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
#define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
#define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
#define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
#define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
#define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
#define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
#define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
#define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
#define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
#define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
#define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
#define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
#define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
#define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
#define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
#define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
#define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
/* VCCP Command Parser */
/*
* Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
* git://anongit.freedesktop.org/vaapi/intel-driver
* src/i965_defines.h
*
*/
#define OP_MFX(pipeline, op, sub_opa, sub_opb) \
(3 << 13 | \
(pipeline) << 11 | \
(op) << 8 | \
(sub_opa) << 5 | \
(sub_opb))
#define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
#define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
#define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
#define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
#define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
#define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
#define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
#define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
#define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
#define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
#define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
#define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
#define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
#define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
#define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
#define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
#define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
#define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
#define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
#define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
#define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
#define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
#define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
#define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
#define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
#define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
#define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
#define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
#define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
#define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
#define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
#define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
#define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
#define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
#define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
#define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
#define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
#define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
#define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
#define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
#define OP_VEB(pipeline, op, sub_opa, sub_opb) \
(3 << 13 | \
(pipeline) << 11 | \
(op) << 8 | \
(sub_opa) << 5 | \
(sub_opb))
#define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
#define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
#define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
struct parser_exec_state;
typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
#define GVT_CMD_HASH_BITS 7
/* which DWords need address fix */
#define ADDR_FIX_1(x1) (1 << (x1))
#define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
#define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
#define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
#define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
struct cmd_info {
char *name;
u32 opcode;
#define F_LEN_MASK (1U<<0)
#define F_LEN_CONST 1U
#define F_LEN_VAR 0U
/*
* command has its own ip advance logic
* e.g. MI_BATCH_START, MI_BATCH_END
*/
#define F_IP_ADVANCE_CUSTOM (1<<1)
#define F_POST_HANDLE (1<<2)
u32 flag;
#define R_RCS (1 << RCS)
#define R_VCS1 (1 << VCS)
#define R_VCS2 (1 << VCS2)
#define R_VCS (R_VCS1 | R_VCS2)
#define R_BCS (1 << BCS)
#define R_VECS (1 << VECS)
#define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
/* rings that support this cmd: BLT/RCS/VCS/VECS */
uint16_t rings;
/* devices that support this cmd: SNB/IVB/HSW/... */
uint16_t devices;
/* which DWords are address that need fix up.
* bit 0 means a 32-bit non address operand in command
* bit 1 means address operand, which could be 32-bit
* or 64-bit depending on different architectures.(
* defined by "gmadr_bytes_in_cmd" in intel_gvt.
* No matter the address length, each address only takes
* one bit in the bitmap.
*/
uint16_t addr_bitmap;
/* flag == F_LEN_CONST : command length
* flag == F_LEN_VAR : length bias bits
* Note: length is in DWord
*/
uint8_t len;
parser_cmd_handler handler;
};
struct cmd_entry {
struct hlist_node hlist;
struct cmd_info *info;
};
enum {
RING_BUFFER_INSTRUCTION,
BATCH_BUFFER_INSTRUCTION,
BATCH_BUFFER_2ND_LEVEL,
};
enum {
GTT_BUFFER,
PPGTT_BUFFER
};
struct parser_exec_state {
struct intel_vgpu *vgpu;
int ring_id;
int buf_type;
/* batch buffer address type */
int buf_addr_type;
/* graphics memory address of ring buffer start */
unsigned long ring_start;
unsigned long ring_size;
unsigned long ring_head;
unsigned long ring_tail;
/* instruction graphics memory address */
unsigned long ip_gma;
/* mapped va of the instr_gma */
void *ip_va;
void *rb_va;
void *ret_bb_va;
/* next instruction when return from batch buffer to ring buffer */
unsigned long ret_ip_gma_ring;
/* next instruction when return from 2nd batch buffer to batch buffer */
unsigned long ret_ip_gma_bb;
/* batch buffer address type (GTT or PPGTT)
* used when ret from 2nd level batch buffer
*/
int saved_buf_addr_type;
struct cmd_info *info;
struct intel_vgpu_workload *workload;
};
#define gmadr_dw_number(s) \
(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
static unsigned long bypass_scan_mask = 0;
static bool bypass_batch_buffer_scan = true;
/* ring ALL, type = 0 */
static struct sub_op_bits sub_op_mi[] = {
{31, 29},
{28, 23},
};
static struct decode_info decode_info_mi = {
"MI",
OP_LEN_MI,
ARRAY_SIZE(sub_op_mi),
sub_op_mi,
};
/* ring RCS, command type 2 */
static struct sub_op_bits sub_op_2d[] = {
{31, 29},
{28, 22},
};
static struct decode_info decode_info_2d = {
"2D",
OP_LEN_2D,
ARRAY_SIZE(sub_op_2d),
sub_op_2d,
};
/* ring RCS, command type 3 */
static struct sub_op_bits sub_op_3d_media[] = {
{31, 29},
{28, 27},
{26, 24},
{23, 16},
};
static struct decode_info decode_info_3d_media = {
"3D_Media",
OP_LEN_3D_MEDIA,
ARRAY_SIZE(sub_op_3d_media),
sub_op_3d_media,
};
/* ring VCS, command type 3 */
static struct sub_op_bits sub_op_mfx_vc[] = {
{31, 29},
{28, 27},
{26, 24},
{23, 21},
{20, 16},
};
static struct decode_info decode_info_mfx_vc = {
"MFX_VC",
OP_LEN_MFX_VC,
ARRAY_SIZE(sub_op_mfx_vc),
sub_op_mfx_vc,
};
/* ring VECS, command type 3 */
static struct sub_op_bits sub_op_vebox[] = {
{31, 29},
{28, 27},
{26, 24},
{23, 21},
{20, 16},
};
static struct decode_info decode_info_vebox = {
"VEBOX",
OP_LEN_VEBOX,
ARRAY_SIZE(sub_op_vebox),
sub_op_vebox,
};
static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
[RCS] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_3d_media,
NULL,
NULL,
NULL,
NULL,
},
[VCS] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_mfx_vc,
NULL,
NULL,
NULL,
NULL,
},
[BCS] = {
&decode_info_mi,
NULL,
&decode_info_2d,
NULL,
NULL,
NULL,
NULL,
NULL,
},
[VECS] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_vebox,
NULL,
NULL,
NULL,
NULL,
},
[VCS2] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_mfx_vc,
NULL,
NULL,
NULL,
NULL,
},
};
static inline u32 get_opcode(u32 cmd, int ring_id)
{
struct decode_info *d_info;
if (ring_id >= I915_NUM_ENGINES)
return INVALID_OP;
d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
if (d_info == NULL)
return INVALID_OP;
return cmd >> (32 - d_info->op_len);
}
static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
unsigned int opcode, int ring_id)
{
struct cmd_entry *e;
hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
if ((opcode == e->info->opcode) &&
(e->info->rings & (1 << ring_id)))
return e->info;
}
return NULL;
}
static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
u32 cmd, int ring_id)
{
u32 opcode;
opcode = get_opcode(cmd, ring_id);
if (opcode == INVALID_OP)
return NULL;
return find_cmd_entry(gvt, opcode, ring_id);
}
static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
{
return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
}
static inline void print_opcode(u32 cmd, int ring_id)
{
struct decode_info *d_info;
int i;
if (ring_id >= I915_NUM_ENGINES)
return;
d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
if (d_info == NULL)
return;
gvt_err("opcode=0x%x %s sub_ops:",
cmd >> (32 - d_info->op_len), d_info->name);
for (i = 0; i < d_info->nr_sub_op; i++)
pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
d_info->sub_op[i].low));
pr_err("\n");
}
static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
{
return s->ip_va + (index << 2);
}
static inline u32 cmd_val(struct parser_exec_state *s, int index)
{
return *cmd_ptr(s, index);
}
static void parser_exec_state_dump(struct parser_exec_state *s)
{
int cnt = 0;
int i;
gvt_err(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
s->ring_id, s->ring_start, s->ring_start + s->ring_size,
s->ring_head, s->ring_tail);
gvt_err(" %s %s ip_gma(%08lx) ",
s->buf_type == RING_BUFFER_INSTRUCTION ?
"RING_BUFFER" : "BATCH_BUFFER",
s->buf_addr_type == GTT_BUFFER ?
"GTT" : "PPGTT", s->ip_gma);
if (s->ip_va == NULL) {
gvt_err(" ip_va(NULL)");
return;
}
gvt_err(" ip_va=%p: %08x %08x %08x %08x\n",
s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
cmd_val(s, 2), cmd_val(s, 3));
print_opcode(cmd_val(s, 0), s->ring_id);
/* print the whole page to trace */
pr_err(" ip_va=%p: %08x %08x %08x %08x\n",
s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
cmd_val(s, 2), cmd_val(s, 3));
s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
while (cnt < 1024) {
pr_err("ip_va=%p: ", s->ip_va);
for (i = 0; i < 8; i++)
pr_err("%08x ", cmd_val(s, i));
pr_err("\n");
s->ip_va += 8 * sizeof(u32);
cnt += 8;
}
}
static inline void update_ip_va(struct parser_exec_state *s)
{
unsigned long len = 0;
if (WARN_ON(s->ring_head == s->ring_tail))
return;
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
unsigned long ring_top = s->ring_start + s->ring_size;
if (s->ring_head > s->ring_tail) {
if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
len = (s->ip_gma - s->ring_head);
else if (s->ip_gma >= s->ring_start &&
s->ip_gma <= s->ring_tail)
len = (ring_top - s->ring_head) +
(s->ip_gma - s->ring_start);
} else
len = (s->ip_gma - s->ring_head);
s->ip_va = s->rb_va + len;
} else {/* shadow batch buffer */
s->ip_va = s->ret_bb_va;
}
}
static inline int ip_gma_set(struct parser_exec_state *s,
unsigned long ip_gma)
{
WARN_ON(!IS_ALIGNED(ip_gma, 4));
s->ip_gma = ip_gma;
update_ip_va(s);
return 0;
}
static inline int ip_gma_advance(struct parser_exec_state *s,
unsigned int dw_len)
{
s->ip_gma += (dw_len << 2);
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
if (s->ip_gma >= s->ring_start + s->ring_size)
s->ip_gma -= s->ring_size;
update_ip_va(s);
} else {
s->ip_va += (dw_len << 2);
}
return 0;
}
static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
{
if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
return info->len;
else
return (cmd & ((1U << info->len) - 1)) + 2;
return 0;
}
static inline int cmd_length(struct parser_exec_state *s)
{
return get_cmd_length(s->info, cmd_val(s, 0));
}
/* do not remove this, some platform may need clflush here */
#define patch_value(s, addr, val) do { \
*addr = val; \
} while (0)
static bool is_shadowed_mmio(unsigned int offset)
{
bool ret = false;
if ((offset == 0x2168) || /*BB current head register UDW */
(offset == 0x2140) || /*BB current header register */
(offset == 0x211c) || /*second BB header register UDW */
(offset == 0x2114)) { /*second BB header register UDW */
ret = true;
}
return ret;
}
static int cmd_reg_handler(struct parser_exec_state *s,
unsigned int offset, unsigned int index, char *cmd)
{
struct intel_vgpu *vgpu = s->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
if (offset + 4 > gvt->device_info.mmio_size) {
gvt_err("%s access to (%x) outside of MMIO range\n",
cmd, offset);
return -EINVAL;
}
if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
gvt_err("vgpu%d: %s access to non-render register (%x)\n",
s->vgpu->id, cmd, offset);
return 0;
}
if (is_shadowed_mmio(offset)) {
gvt_err("vgpu%d: found access of shadowed MMIO %x\n",
s->vgpu->id, offset);
return 0;
}
if (offset == i915_mmio_reg_offset(DERRMR) ||
offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
}
/* TODO: Update the global mask if this MMIO is a masked-MMIO */
intel_gvt_mmio_set_cmd_accessed(gvt, offset);
return 0;
}
#define cmd_reg(s, i) \
(cmd_val(s, i) & GENMASK(22, 2))
#define cmd_reg_inhibit(s, i) \
(cmd_val(s, i) & GENMASK(22, 18))
#define cmd_gma(s, i) \
(cmd_val(s, i) & GENMASK(31, 2))
#define cmd_gma_hi(s, i) \
(cmd_val(s, i) & GENMASK(15, 0))
static int cmd_handler_lri(struct parser_exec_state *s)
{
int i, ret = 0;
int cmd_len = cmd_length(s);
struct intel_gvt *gvt = s->vgpu->gvt;
for (i = 1; i < cmd_len; i += 2) {
if (IS_BROADWELL(gvt->dev_priv) &&
(s->ring_id != RCS)) {
if (s->ring_id == BCS &&
cmd_reg(s, i) ==
i915_mmio_reg_offset(DERRMR))
ret |= 0;
else
ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
}
if (ret)
break;
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
}
return ret;
}
static int cmd_handler_lrr(struct parser_exec_state *s)
{
int i, ret = 0;
int cmd_len = cmd_length(s);
for (i = 1; i < cmd_len; i += 2) {
if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
ret |= ((cmd_reg_inhibit(s, i) ||
(cmd_reg_inhibit(s, i + 1)))) ?
-EINVAL : 0;
if (ret)
break;
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
}
return ret;
}
static inline int cmd_address_audit(struct parser_exec_state *s,
unsigned long guest_gma, int op_size, bool index_mode);
static int cmd_handler_lrm(struct parser_exec_state *s)
{
struct intel_gvt *gvt = s->vgpu->gvt;
int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
int i, ret = 0;
int cmd_len = cmd_length(s);
for (i = 1; i < cmd_len;) {
if (IS_BROADWELL(gvt->dev_priv))
ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
if (ret)
break;
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
if (cmd_val(s, 0) & (1 << 22)) {
gma = cmd_gma(s, i + 1);
if (gmadr_bytes == 8)
gma |= (cmd_gma_hi(s, i + 2)) << 32;
ret |= cmd_address_audit(s, gma, sizeof(u32), false);
}
i += gmadr_dw_number(s) + 1;
}
return ret;
}
static int cmd_handler_srm(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
int i, ret = 0;
int cmd_len = cmd_length(s);
for (i = 1; i < cmd_len;) {
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
if (cmd_val(s, 0) & (1 << 22)) {
gma = cmd_gma(s, i + 1);
if (gmadr_bytes == 8)
gma |= (cmd_gma_hi(s, i + 2)) << 32;
ret |= cmd_address_audit(s, gma, sizeof(u32), false);
}
i += gmadr_dw_number(s) + 1;
}
return ret;
}
struct cmd_interrupt_event {
int pipe_control_notify;
int mi_flush_dw;
int mi_user_interrupt;
};
static struct cmd_interrupt_event cmd_interrupt_events[] = {
[RCS] = {
.pipe_control_notify = RCS_PIPE_CONTROL,
.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
},
[BCS] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = BCS_MI_FLUSH_DW,
.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
},
[VCS] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = VCS_MI_FLUSH_DW,
.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
},
[VCS2] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = VCS2_MI_FLUSH_DW,
.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
},
[VECS] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = VECS_MI_FLUSH_DW,
.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
},
};
static int cmd_handler_pipe_control(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
bool index_mode = false;
unsigned int post_sync;
int ret = 0;
post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
/* LRI post sync */
if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
/* post sync */
else if (post_sync) {
if (post_sync == 2)
ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
else if (post_sync == 3)
ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
else if (post_sync == 1) {
/* check ggtt*/
if ((cmd_val(s, 2) & (1 << 2))) {
gma = cmd_val(s, 2) & GENMASK(31, 3);
if (gmadr_bytes == 8)
gma |= (cmd_gma_hi(s, 3)) << 32;
/* Store Data Index */
if (cmd_val(s, 1) & (1 << 21))
index_mode = true;
ret |= cmd_address_audit(s, gma, sizeof(u64),
index_mode);
}
}
}
if (ret)
return ret;
if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
s->workload->pending_events);
return 0;
}
static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
{
set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
s->workload->pending_events);
return 0;
}
static int cmd_advance_default(struct parser_exec_state *s)
{
return ip_gma_advance(s, cmd_length(s));
}
static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
{
int ret;
if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
s->buf_type = BATCH_BUFFER_INSTRUCTION;
ret = ip_gma_set(s, s->ret_ip_gma_bb);
s->buf_addr_type = s->saved_buf_addr_type;
} else {
s->buf_type = RING_BUFFER_INSTRUCTION;
s->buf_addr_type = GTT_BUFFER;
if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
s->ret_ip_gma_ring -= s->ring_size;
ret = ip_gma_set(s, s->ret_ip_gma_ring);
}
return ret;
}
struct mi_display_flip_command_info {
int pipe;
int plane;
int event;
i915_reg_t stride_reg;
i915_reg_t ctrl_reg;
i915_reg_t surf_reg;
u64 stride_val;
u64 tile_val;
u64 surf_val;
bool async_flip;
};
struct plane_code_mapping {
int pipe;
int plane;
int event;
};
static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
struct plane_code_mapping gen8_plane_code[] = {
[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
};
u32 dword0, dword1, dword2;
u32 v;
dword0 = cmd_val(s, 0);
dword1 = cmd_val(s, 1);
dword2 = cmd_val(s, 2);
v = (dword0 & GENMASK(21, 19)) >> 19;
if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
return -EINVAL;
info->pipe = gen8_plane_code[v].pipe;
info->plane = gen8_plane_code[v].plane;
info->event = gen8_plane_code[v].event;
info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
info->tile_val = (dword1 & 0x1);
info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
if (info->plane == PLANE_A) {
info->ctrl_reg = DSPCNTR(info->pipe);
info->stride_reg = DSPSTRIDE(info->pipe);
info->surf_reg = DSPSURF(info->pipe);
} else if (info->plane == PLANE_B) {
info->ctrl_reg = SPRCTL(info->pipe);
info->stride_reg = SPRSTRIDE(info->pipe);
info->surf_reg = SPRSURF(info->pipe);
} else {
WARN_ON(1);
return -EINVAL;
}
return 0;
}
static int skl_decode_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
u32 dword0 = cmd_val(s, 0);
u32 dword1 = cmd_val(s, 1);
u32 dword2 = cmd_val(s, 2);
u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
switch (plane) {
case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
info->pipe = PIPE_A;
info->event = PRIMARY_A_FLIP_DONE;
break;
case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
info->pipe = PIPE_B;
info->event = PRIMARY_B_FLIP_DONE;
break;
case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
info->pipe = PIPE_C;
info->event = PRIMARY_C_FLIP_DONE;
break;
default:
gvt_err("unknown plane code %d\n", plane);
return -EINVAL;
}
info->pipe = PRIMARY_PLANE;
info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
info->tile_val = (dword1 & GENMASK(2, 0));
info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
info->ctrl_reg = DSPCNTR(info->pipe);
info->stride_reg = DSPSTRIDE(info->pipe);
info->surf_reg = DSPSURF(info->pipe);
return 0;
}
static int gen8_check_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
u32 stride, tile;
if (!info->async_flip)
return 0;
if (IS_SKYLAKE(dev_priv)) {
stride = vgpu_vreg(s->vgpu, info->stride_reg) & GENMASK(9, 0);
tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) &
GENMASK(12, 10)) >> 10;
} else {
stride = (vgpu_vreg(s->vgpu, info->stride_reg) &
GENMASK(15, 6)) >> 6;
tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
}
if (stride != info->stride_val)
gvt_dbg_cmd("cannot change stride during async flip\n");
if (tile != info->tile_val)
gvt_dbg_cmd("cannot change tile during async flip\n");
return 0;
}
static int gen8_update_plane_mmio_from_mi_display_flip(
struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
struct intel_vgpu *vgpu = s->vgpu;
set_mask_bits(&vgpu_vreg(vgpu, info->surf_reg), GENMASK(31, 12),
info->surf_val << 12);
if (IS_SKYLAKE(dev_priv)) {
set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(9, 0),
info->stride_val);
set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(12, 10),
info->tile_val << 10);
} else {
set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(15, 6),
info->stride_val << 6);
set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(10, 10),
info->tile_val << 10);
}
vgpu_vreg(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
intel_vgpu_trigger_virtual_event(vgpu, info->event);
return 0;
}
static int decode_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
if (IS_BROADWELL(dev_priv))
return gen8_decode_mi_display_flip(s, info);
if (IS_SKYLAKE(dev_priv))
return skl_decode_mi_display_flip(s, info);
return -ENODEV;
}
static int check_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
return gen8_check_mi_display_flip(s, info);
return -ENODEV;
}
static int update_plane_mmio_from_mi_display_flip(
struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
return gen8_update_plane_mmio_from_mi_display_flip(s, info);
return -ENODEV;
}
static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
{
struct mi_display_flip_command_info info;
int ret;
int i;
int len = cmd_length(s);
ret = decode_mi_display_flip(s, &info);
if (ret) {
gvt_err("fail to decode MI display flip command\n");
return ret;
}
ret = check_mi_display_flip(s, &info);
if (ret) {
gvt_err("invalid MI display flip command\n");
return ret;
}
ret = update_plane_mmio_from_mi_display_flip(s, &info);
if (ret) {
gvt_err("fail to update plane mmio\n");
return ret;
}
for (i = 0; i < len; i++)
patch_value(s, cmd_ptr(s, i), MI_NOOP);
return 0;
}
static bool is_wait_for_flip_pending(u32 cmd)
{
return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
}
static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
{
u32 cmd = cmd_val(s, 0);
if (!is_wait_for_flip_pending(cmd))
return 0;
patch_value(s, cmd_ptr(s, 0), MI_NOOP);
return 0;
}
static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
{
unsigned long addr;
unsigned long gma_high, gma_low;
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8))
return INTEL_GVT_INVALID_ADDR;
gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
if (gmadr_bytes == 4) {
addr = gma_low;
} else {
gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
addr = (((unsigned long)gma_high) << 32) | gma_low;
}
return addr;
}
static inline int cmd_address_audit(struct parser_exec_state *s,
unsigned long guest_gma, int op_size, bool index_mode)
{
struct intel_vgpu *vgpu = s->vgpu;
u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
int i;
int ret;
if (op_size > max_surface_size) {
gvt_err("command address audit fail name %s\n", s->info->name);
return -EINVAL;
}
if (index_mode) {
if (guest_gma >= GTT_PAGE_SIZE / sizeof(u64)) {
ret = -EINVAL;
goto err;
}
} else if ((!vgpu_gmadr_is_valid(s->vgpu, guest_gma)) ||
(!vgpu_gmadr_is_valid(s->vgpu,
guest_gma + op_size - 1))) {
ret = -EINVAL;
goto err;
}
return 0;
err:
gvt_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
s->info->name, guest_gma, op_size);
pr_err("cmd dump: ");
for (i = 0; i < cmd_length(s); i++) {
if (!(i % 4))
pr_err("\n%08x ", cmd_val(s, i));
else
pr_err("%08x ", cmd_val(s, i));
}
pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
vgpu->id,
vgpu_aperture_gmadr_base(vgpu),
vgpu_aperture_gmadr_end(vgpu),
vgpu_hidden_gmadr_base(vgpu),
vgpu_hidden_gmadr_end(vgpu));
return ret;
}
static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
int op_size = (cmd_length(s) - 3) * sizeof(u32);
int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
unsigned long gma, gma_low, gma_high;
int ret = 0;
/* check ppggt */
if (!(cmd_val(s, 0) & (1 << 22)))
return 0;
gma = cmd_val(s, 2) & GENMASK(31, 2);
if (gmadr_bytes == 8) {
gma_low = cmd_val(s, 1) & GENMASK(31, 2);
gma_high = cmd_val(s, 2) & GENMASK(15, 0);
gma = (gma_high << 32) | gma_low;
core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
}
ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
return ret;
}
static inline int unexpected_cmd(struct parser_exec_state *s)
{
gvt_err("vgpu%d: Unexpected %s in command buffer!\n",
s->vgpu->id, s->info->name);
return -EINVAL;
}
static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
sizeof(u32);
unsigned long gma, gma_high;
int ret = 0;
if (!(cmd_val(s, 0) & (1 << 22)))
return ret;
gma = cmd_val(s, 1) & GENMASK(31, 2);
if (gmadr_bytes == 8) {
gma_high = cmd_val(s, 2) & GENMASK(15, 0);
gma = (gma_high << 32) | gma;
}
ret = cmd_address_audit(s, gma, op_size, false);
return ret;
}
static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_clflush(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_conditional_batch_buffer_end(
struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
bool index_mode = false;
int ret = 0;
/* Check post-sync and ppgtt bit */
if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
gma = cmd_val(s, 1) & GENMASK(31, 3);
if (gmadr_bytes == 8)
gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
/* Store Data Index */
if (cmd_val(s, 0) & (1 << 21))
index_mode = true;
ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
}
/* Check notify bit */
if ((cmd_val(s, 0) & (1 << 8)))
set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
s->workload->pending_events);
return ret;
}
static void addr_type_update_snb(struct parser_exec_state *s)
{
if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
s->buf_addr_type = PPGTT_BUFFER;
}
}
static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
unsigned long gma, unsigned long end_gma, void *va)
{
unsigned long copy_len, offset;
unsigned long len = 0;
unsigned long gpa;
while (gma != end_gma) {
gpa = intel_vgpu_gma_to_gpa(mm, gma);
if (gpa == INTEL_GVT_INVALID_ADDR) {
gvt_err("invalid gma address: %lx\n", gma);
return -EFAULT;
}
offset = gma & (GTT_PAGE_SIZE - 1);
copy_len = (end_gma - gma) >= (GTT_PAGE_SIZE - offset) ?
GTT_PAGE_SIZE - offset : end_gma - gma;
intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
len += copy_len;
gma += copy_len;
}
return len;
}
/*
* Check whether a batch buffer needs to be scanned. Currently
* the only criteria is based on privilege.
*/
static int batch_buffer_needs_scan(struct parser_exec_state *s)
{
struct intel_gvt *gvt = s->vgpu->gvt;
if (bypass_batch_buffer_scan)
return 0;
if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
/* BDW decides privilege based on address space */
if (cmd_val(s, 0) & (1 << 8))
return 0;
}
return 1;
}
static uint32_t find_bb_size(struct parser_exec_state *s)
{
unsigned long gma = 0;
struct cmd_info *info;
uint32_t bb_size = 0;
uint32_t cmd_len = 0;
bool met_bb_end = false;
u32 cmd;
/* get the start gm address of the batch buffer */
gma = get_gma_bb_from_cmd(s, 1);
cmd = cmd_val(s, 0);
info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
if (info == NULL) {
gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
cmd, get_opcode(cmd, s->ring_id));
return -EINVAL;
}
do {
copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
gma, gma + 4, &cmd);
info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
if (info == NULL) {
gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
cmd, get_opcode(cmd, s->ring_id));
return -EINVAL;
}
if (info->opcode == OP_MI_BATCH_BUFFER_END) {
met_bb_end = true;
} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) {
/* chained batch buffer */
met_bb_end = true;
}
}
cmd_len = get_cmd_length(info, cmd) << 2;
bb_size += cmd_len;
gma += cmd_len;
} while (!met_bb_end);
return bb_size;
}
static int perform_bb_shadow(struct parser_exec_state *s)
{
struct intel_shadow_bb_entry *entry_obj;
unsigned long gma = 0;
uint32_t bb_size;
void *dst = NULL;
int ret = 0;
/* get the start gm address of the batch buffer */
gma = get_gma_bb_from_cmd(s, 1);
/* get the size of the batch buffer */
bb_size = find_bb_size(s);
/* allocate shadow batch buffer */
entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL);
if (entry_obj == NULL)
return -ENOMEM;
entry_obj->obj =
i915_gem_object_create(s->vgpu->gvt->dev_priv,
roundup(bb_size, PAGE_SIZE));
if (IS_ERR(entry_obj->obj)) {
ret = PTR_ERR(entry_obj->obj);
goto free_entry;
}
entry_obj->len = bb_size;
INIT_LIST_HEAD(&entry_obj->list);
dst = i915_gem_object_pin_map(entry_obj->obj, I915_MAP_WB);
if (IS_ERR(dst)) {
ret = PTR_ERR(dst);
goto put_obj;
}
ret = i915_gem_object_set_to_cpu_domain(entry_obj->obj, false);
if (ret) {
gvt_err("failed to set shadow batch to CPU\n");
goto unmap_src;
}
entry_obj->va = dst;
entry_obj->bb_start_cmd_va = s->ip_va;
/* copy batch buffer to shadow batch buffer*/
ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
gma, gma + bb_size,
dst);
if (ret < 0) {
gvt_err("fail to copy guest ring buffer\n");
goto unmap_src;
}
list_add(&entry_obj->list, &s->workload->shadow_bb);
/*
* ip_va saves the virtual address of the shadow batch buffer, while
* ip_gma saves the graphics address of the original batch buffer.
* As the shadow batch buffer is just a copy from the originial one,
* it should be right to use shadow batch buffer'va and original batch
* buffer's gma in pair. After all, we don't want to pin the shadow
* buffer here (too early).
*/
s->ip_va = dst;
s->ip_gma = gma;
return 0;
unmap_src:
i915_gem_object_unpin_map(entry_obj->obj);
put_obj:
i915_gem_object_put(entry_obj->obj);
free_entry:
kfree(entry_obj);
return ret;
}
static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
{
bool second_level;
int ret = 0;
if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
gvt_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
return -EINVAL;
}
second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
gvt_err("Jumping to 2nd level BB from RB is not allowed\n");
return -EINVAL;
}
s->saved_buf_addr_type = s->buf_addr_type;
addr_type_update_snb(s);
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
s->buf_type = BATCH_BUFFER_INSTRUCTION;
} else if (second_level) {
s->buf_type = BATCH_BUFFER_2ND_LEVEL;
s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
}
if (batch_buffer_needs_scan(s)) {
ret = perform_bb_shadow(s);
if (ret < 0)
gvt_err("invalid shadow batch buffer\n");
} else {
/* emulate a batch buffer end to do return right */
ret = cmd_handler_mi_batch_buffer_end(s);
if (ret < 0)
return ret;
}
return ret;
}
static struct cmd_info cmd_info[] = {
{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
0, 1, NULL},
{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
0, 1, cmd_handler_mi_user_interrupt},
{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
NULL},
{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
D_ALL, 0, 1, NULL},
{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
cmd_handler_mi_batch_buffer_end},
{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
0, 1, NULL},
{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
NULL},
{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
D_ALL, 0, 1, NULL},
{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
NULL},
{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
0, 8, NULL},
{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
D_BDW_PLUS, 0, 8, NULL},
{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
0, 8, cmd_handler_mi_store_data_index},
{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
D_ALL, 0, 8, cmd_handler_lri},
{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
cmd_handler_mi_update_gtt},
{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
cmd_handler_mi_flush_dw},
{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
10, cmd_handler_mi_clflush},
{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
D_ALL, 0, 8, cmd_handler_lrr},
{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(2), 8, NULL},
{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(2), 8, NULL},
{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
8, cmd_handler_mi_op_2e},
{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
8, cmd_handler_mi_op_2f},
{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
cmd_handler_mi_batch_buffer_start},
{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
cmd_handler_mi_conditional_batch_buffer_end},
{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
R_RCS | R_BCS, D_ALL, 0, 2, NULL},
{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 7), 8, NULL},
{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
0, 8, NULL},
{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
0, 8, NULL},
{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_1(3), 8, NULL},
{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
D_ALL, 0, 8, NULL},
{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_1(4), 8, NULL},
{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 5), 8, NULL},
{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_1(4), 8, NULL},
{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 7), 8, NULL},
{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 5), 8, NULL},
{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BLEND_STATE_POINTERS",
OP_3DSTATE_BLEND_STATE_POINTERS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_VS",
OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_HS",
OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_DS",
OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_GS",
OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_PS",
OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
8, NULL},
{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
R_RCS, D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
8, NULL},
{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
R_RCS, D_ALL, 0, 1, NULL},
{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
D_ALL, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
D_ALL, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
D_ALL, 0, 9, NULL},
{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
ADDR_FIX_2(2, 4), 8, NULL},
{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
1, NULL},
{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(1), 8, NULL},
{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
0, 8, NULL},
{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
D_SKL_PLUS, 0, 8, NULL},
{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
NULL},
{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
R_VCS, D_BDW_PLUS, 0, 12, NULL},
{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
R_VCS, D_ALL, 0, 6, NULL},
{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
0, 16, NULL},
{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
0, 12, NULL},
{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
0, 20, NULL},
};
static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
{
hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
}
#define GVT_MAX_CMD_LENGTH 20 /* In Dword */
static void trace_cs_command(struct parser_exec_state *s,
cycles_t cost_pre_cmd_handler, cycles_t cost_cmd_handler)
{
/* This buffer is used by ftrace to store all commands copied from
* guest gma space. Sometimes commands can cross pages, this should
* not be handled in ftrace logic. So this is just used as a
* 'bounce buffer'
*/
u32 cmd_trace_buf[GVT_MAX_CMD_LENGTH];
int i;
u32 cmd_len = cmd_length(s);
/* The chosen value of GVT_MAX_CMD_LENGTH are just based on
* following two considerations:
* 1) From observation, most common ring commands is not that long.
* But there are execeptions. So it indeed makes sence to observe
* longer commands.
* 2) From the performance and debugging point of view, dumping all
* contents of very commands is not necessary.
* We mgith shrink GVT_MAX_CMD_LENGTH or remove this trace event in
* future for performance considerations.
*/
if (unlikely(cmd_len > GVT_MAX_CMD_LENGTH)) {
gvt_dbg_cmd("cmd length exceed tracing limitation!\n");
cmd_len = GVT_MAX_CMD_LENGTH;
}
for (i = 0; i < cmd_len; i++)
cmd_trace_buf[i] = cmd_val(s, i);
trace_gvt_command(s->vgpu->id, s->ring_id, s->ip_gma, cmd_trace_buf,
cmd_len, s->buf_type == RING_BUFFER_INSTRUCTION,
cost_pre_cmd_handler, cost_cmd_handler);
}
/* call the cmd handler, and advance ip */
static int cmd_parser_exec(struct parser_exec_state *s)
{
struct cmd_info *info;
u32 cmd;
int ret = 0;
cycles_t t0, t1, t2;
struct parser_exec_state s_before_advance_custom;
t0 = get_cycles();
cmd = cmd_val(s, 0);
info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
if (info == NULL) {
gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
cmd, get_opcode(cmd, s->ring_id));
return -EINVAL;
}
gvt_dbg_cmd("%s\n", info->name);
s->info = info;
t1 = get_cycles();
memcpy(&s_before_advance_custom, s, sizeof(struct parser_exec_state));
if (info->handler) {
ret = info->handler(s);
if (ret < 0) {
gvt_err("%s handler error\n", info->name);
return ret;
}
}
t2 = get_cycles();
trace_cs_command(&s_before_advance_custom, t1 - t0, t2 - t1);
if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
ret = cmd_advance_default(s);
if (ret) {
gvt_err("%s IP advance error\n", info->name);
return ret;
}
}
return 0;
}
static inline bool gma_out_of_range(unsigned long gma,
unsigned long gma_head, unsigned int gma_tail)
{
if (gma_tail >= gma_head)
return (gma < gma_head) || (gma > gma_tail);
else
return (gma > gma_tail) && (gma < gma_head);
}
static int command_scan(struct parser_exec_state *s,
unsigned long rb_head, unsigned long rb_tail,
unsigned long rb_start, unsigned long rb_len)
{
unsigned long gma_head, gma_tail, gma_bottom;
int ret = 0;
gma_head = rb_start + rb_head;
gma_tail = rb_start + rb_tail;
gma_bottom = rb_start + rb_len;
gvt_dbg_cmd("scan_start: start=%lx end=%lx\n", gma_head, gma_tail);
while (s->ip_gma != gma_tail) {
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
if (!(s->ip_gma >= rb_start) ||
!(s->ip_gma < gma_bottom)) {
gvt_err("ip_gma %lx out of ring scope."
"(base:0x%lx, bottom: 0x%lx)\n",
s->ip_gma, rb_start,
gma_bottom);
parser_exec_state_dump(s);
return -EINVAL;
}
if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
gvt_err("ip_gma %lx out of range."
"base 0x%lx head 0x%lx tail 0x%lx\n",
s->ip_gma, rb_start,
rb_head, rb_tail);
parser_exec_state_dump(s);
break;
}
}
ret = cmd_parser_exec(s);
if (ret) {
gvt_err("cmd parser error\n");
parser_exec_state_dump(s);
break;
}
}
gvt_dbg_cmd("scan_end\n");
return ret;
}
static int scan_workload(struct intel_vgpu_workload *workload)
{
unsigned long gma_head, gma_tail, gma_bottom;
struct parser_exec_state s;
int ret = 0;
/* ring base is page aligned */
if (WARN_ON(!IS_ALIGNED(workload->rb_start, GTT_PAGE_SIZE)))
return -EINVAL;
gma_head = workload->rb_start + workload->rb_head;
gma_tail = workload->rb_start + workload->rb_tail;
gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
s.buf_type = RING_BUFFER_INSTRUCTION;
s.buf_addr_type = GTT_BUFFER;
s.vgpu = workload->vgpu;
s.ring_id = workload->ring_id;
s.ring_start = workload->rb_start;
s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
s.ring_head = gma_head;
s.ring_tail = gma_tail;
s.rb_va = workload->shadow_ring_buffer_va;
s.workload = workload;
if ((bypass_scan_mask & (1 << workload->ring_id)) ||
gma_head == gma_tail)
return 0;
ret = ip_gma_set(&s, gma_head);
if (ret)
goto out;
ret = command_scan(&s, workload->rb_head, workload->rb_tail,
workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
out:
return ret;
}
static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
struct parser_exec_state s;
int ret = 0;
/* ring base is page aligned */
if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, GTT_PAGE_SIZE)))
return -EINVAL;
ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
PAGE_SIZE);
gma_head = wa_ctx->indirect_ctx.guest_gma;
gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
s.buf_type = RING_BUFFER_INSTRUCTION;
s.buf_addr_type = GTT_BUFFER;
s.vgpu = wa_ctx->workload->vgpu;
s.ring_id = wa_ctx->workload->ring_id;
s.ring_start = wa_ctx->indirect_ctx.guest_gma;
s.ring_size = ring_size;
s.ring_head = gma_head;
s.ring_tail = gma_tail;
s.rb_va = wa_ctx->indirect_ctx.shadow_va;
s.workload = wa_ctx->workload;
ret = ip_gma_set(&s, gma_head);
if (ret)
goto out;
ret = command_scan(&s, 0, ring_tail,
wa_ctx->indirect_ctx.guest_gma, ring_size);
out:
return ret;
}
static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
u32 *cs;
int ret;
guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
/* calculate workload ring buffer size */
workload->rb_len = (workload->rb_tail + guest_rb_size -
workload->rb_head) % guest_rb_size;
gma_head = workload->rb_start + workload->rb_head;
gma_tail = workload->rb_start + workload->rb_tail;
gma_top = workload->rb_start + guest_rb_size;
/* allocate shadow ring buffer */
cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
if (IS_ERR(cs))
return PTR_ERR(cs);
/* get shadow ring buffer va */
workload->shadow_ring_buffer_va = cs;
/* head > tail --> copy head <-> top */
if (gma_head > gma_tail) {
ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
gma_head, gma_top, cs);
if (ret < 0) {
gvt_err("fail to copy guest ring buffer\n");
return ret;
}
cs += ret / sizeof(u32);
gma_head = workload->rb_start;
}
/* copy head or start <-> tail */
ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, cs);
if (ret < 0) {
gvt_err("fail to copy guest ring buffer\n");
return ret;
}
cs += ret / sizeof(u32);
intel_ring_advance(workload->req, cs);
return 0;
}
int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
{
int ret;
ret = shadow_workload_ring_buffer(workload);
if (ret) {
gvt_err("fail to shadow workload ring_buffer\n");
return ret;
}
ret = scan_workload(workload);
if (ret) {
gvt_err("scan workload error\n");
return ret;
}
return 0;
}
static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
int ctx_size = wa_ctx->indirect_ctx.size;
unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
struct drm_i915_gem_object *obj;
int ret = 0;
void *map;
obj = i915_gem_object_create(wa_ctx->workload->vgpu->gvt->dev_priv,
roundup(ctx_size + CACHELINE_BYTES,
PAGE_SIZE));
if (IS_ERR(obj))
return PTR_ERR(obj);
/* get the va of the shadow batch buffer */
map = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(map)) {
gvt_err("failed to vmap shadow indirect ctx\n");
ret = PTR_ERR(map);
goto put_obj;
}
ret = i915_gem_object_set_to_cpu_domain(obj, false);
if (ret) {
gvt_err("failed to set shadow indirect ctx to CPU\n");
goto unmap_src;
}
ret = copy_gma_to_hva(wa_ctx->workload->vgpu,
wa_ctx->workload->vgpu->gtt.ggtt_mm,
guest_gma, guest_gma + ctx_size,
map);
if (ret < 0) {
gvt_err("fail to copy guest indirect ctx\n");
goto unmap_src;
}
wa_ctx->indirect_ctx.obj = obj;
wa_ctx->indirect_ctx.shadow_va = map;
return 0;
unmap_src:
i915_gem_object_unpin_map(obj);
put_obj:
i915_gem_object_put(wa_ctx->indirect_ctx.obj);
return ret;
}
static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
unsigned char *bb_start_sva;
per_ctx_start[0] = 0x18800001;
per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
wa_ctx->indirect_ctx.size;
memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
return 0;
}
int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
int ret;
if (wa_ctx->indirect_ctx.size == 0)
return 0;
ret = shadow_indirect_ctx(wa_ctx);
if (ret) {
gvt_err("fail to shadow indirect ctx\n");
return ret;
}
combine_wa_ctx(wa_ctx);
ret = scan_wa_ctx(wa_ctx);
if (ret) {
gvt_err("scan wa ctx error\n");
return ret;
}
return 0;
}
static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
unsigned int opcode, int rings)
{
struct cmd_info *info = NULL;
unsigned int ring;
for_each_set_bit(ring, (unsigned long *)&rings, I915_NUM_ENGINES) {
info = find_cmd_entry(gvt, opcode, ring);
if (info)
break;
}
return info;
}
static int init_cmd_table(struct intel_gvt *gvt)
{
int i;
struct cmd_entry *e;
struct cmd_info *info;
unsigned int gen_type;
gen_type = intel_gvt_get_device_type(gvt);
for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
if (!(cmd_info[i].devices & gen_type))
continue;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (!e)
return -ENOMEM;
e->info = &cmd_info[i];
info = find_cmd_entry_any_ring(gvt,
e->info->opcode, e->info->rings);
if (info) {
gvt_err("%s %s duplicated\n", e->info->name,
info->name);
return -EEXIST;
}
INIT_HLIST_NODE(&e->hlist);
add_cmd_entry(gvt, e);
gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
e->info->name, e->info->opcode, e->info->flag,
e->info->devices, e->info->rings);
}
return 0;
}
static void clean_cmd_table(struct intel_gvt *gvt)
{
struct hlist_node *tmp;
struct cmd_entry *e;
int i;
hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
kfree(e);
hash_init(gvt->cmd_table);
}
void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
{
clean_cmd_table(gvt);
}
int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
{
int ret;
ret = init_cmd_table(gvt);
if (ret) {
intel_gvt_clean_cmd_parser(gvt);
return ret;
}
return 0;
}