6fc2e83077
This patches fixes the LBR kernel crashes on Intel Atom.
The kernel was assuming that if the CPU supports 64-bit format
LBR, then it has an LBR_SELECT MSR. Atom uses 64-bit LBR format
but does not have LBR_SELECT. That was causing NULL pointer
dereferences in a couple of places.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Fixes: 96f3eda67f
("perf/x86/intel: Fix static checker warning in lbr enable")
Link: http://lkml.kernel.org/r/1449182000-31524-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1049 lines
26 KiB
C
1049 lines
26 KiB
C
#include <linux/perf_event.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/perf_event.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/insn.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
enum {
|
|
LBR_FORMAT_32 = 0x00,
|
|
LBR_FORMAT_LIP = 0x01,
|
|
LBR_FORMAT_EIP = 0x02,
|
|
LBR_FORMAT_EIP_FLAGS = 0x03,
|
|
LBR_FORMAT_EIP_FLAGS2 = 0x04,
|
|
LBR_FORMAT_INFO = 0x05,
|
|
LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO,
|
|
};
|
|
|
|
static enum {
|
|
LBR_EIP_FLAGS = 1,
|
|
LBR_TSX = 2,
|
|
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
|
|
[LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
|
|
[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
|
|
};
|
|
|
|
/*
|
|
* Intel LBR_SELECT bits
|
|
* Intel Vol3a, April 2011, Section 16.7 Table 16-10
|
|
*
|
|
* Hardware branch filter (not available on all CPUs)
|
|
*/
|
|
#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
|
|
#define LBR_USER_BIT 1 /* do not capture at ring > 0 */
|
|
#define LBR_JCC_BIT 2 /* do not capture conditional branches */
|
|
#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
|
|
#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
|
|
#define LBR_RETURN_BIT 5 /* do not capture near returns */
|
|
#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
|
|
#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
|
|
#define LBR_FAR_BIT 8 /* do not capture far branches */
|
|
#define LBR_CALL_STACK_BIT 9 /* enable call stack */
|
|
|
|
/*
|
|
* Following bit only exists in Linux; we mask it out before writing it to
|
|
* the actual MSR. But it helps the constraint perf code to understand
|
|
* that this is a separate configuration.
|
|
*/
|
|
#define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
|
|
|
|
#define LBR_KERNEL (1 << LBR_KERNEL_BIT)
|
|
#define LBR_USER (1 << LBR_USER_BIT)
|
|
#define LBR_JCC (1 << LBR_JCC_BIT)
|
|
#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
|
|
#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
|
|
#define LBR_RETURN (1 << LBR_RETURN_BIT)
|
|
#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
|
|
#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
|
|
#define LBR_FAR (1 << LBR_FAR_BIT)
|
|
#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
|
|
#define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
|
|
|
|
#define LBR_PLM (LBR_KERNEL | LBR_USER)
|
|
|
|
#define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */
|
|
#define LBR_NOT_SUPP -1 /* LBR filter not supported */
|
|
#define LBR_IGN 0 /* ignored */
|
|
|
|
#define LBR_ANY \
|
|
(LBR_JCC |\
|
|
LBR_REL_CALL |\
|
|
LBR_IND_CALL |\
|
|
LBR_RETURN |\
|
|
LBR_REL_JMP |\
|
|
LBR_IND_JMP |\
|
|
LBR_FAR)
|
|
|
|
#define LBR_FROM_FLAG_MISPRED (1ULL << 63)
|
|
#define LBR_FROM_FLAG_IN_TX (1ULL << 62)
|
|
#define LBR_FROM_FLAG_ABORT (1ULL << 61)
|
|
|
|
/*
|
|
* x86control flow change classification
|
|
* x86control flow changes include branches, interrupts, traps, faults
|
|
*/
|
|
enum {
|
|
X86_BR_NONE = 0, /* unknown */
|
|
|
|
X86_BR_USER = 1 << 0, /* branch target is user */
|
|
X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
|
|
|
|
X86_BR_CALL = 1 << 2, /* call */
|
|
X86_BR_RET = 1 << 3, /* return */
|
|
X86_BR_SYSCALL = 1 << 4, /* syscall */
|
|
X86_BR_SYSRET = 1 << 5, /* syscall return */
|
|
X86_BR_INT = 1 << 6, /* sw interrupt */
|
|
X86_BR_IRET = 1 << 7, /* return from interrupt */
|
|
X86_BR_JCC = 1 << 8, /* conditional */
|
|
X86_BR_JMP = 1 << 9, /* jump */
|
|
X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
|
|
X86_BR_IND_CALL = 1 << 11,/* indirect calls */
|
|
X86_BR_ABORT = 1 << 12,/* transaction abort */
|
|
X86_BR_IN_TX = 1 << 13,/* in transaction */
|
|
X86_BR_NO_TX = 1 << 14,/* not in transaction */
|
|
X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
|
|
X86_BR_CALL_STACK = 1 << 16,/* call stack */
|
|
X86_BR_IND_JMP = 1 << 17,/* indirect jump */
|
|
};
|
|
|
|
#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
|
|
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
|
|
|
|
#define X86_BR_ANY \
|
|
(X86_BR_CALL |\
|
|
X86_BR_RET |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_SYSRET |\
|
|
X86_BR_INT |\
|
|
X86_BR_IRET |\
|
|
X86_BR_JCC |\
|
|
X86_BR_JMP |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_ABORT |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_IND_JMP |\
|
|
X86_BR_ZERO_CALL)
|
|
|
|
#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
|
|
|
|
#define X86_BR_ANY_CALL \
|
|
(X86_BR_CALL |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_ZERO_CALL |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_INT)
|
|
|
|
static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
|
|
|
|
/*
|
|
* We only support LBR implementations that have FREEZE_LBRS_ON_PMI
|
|
* otherwise it becomes near impossible to get a reliable stack.
|
|
*/
|
|
|
|
static void __intel_pmu_lbr_enable(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
u64 debugctl, lbr_select = 0, orig_debugctl;
|
|
|
|
/*
|
|
* No need to unfreeze manually, as v4 can do that as part
|
|
* of the GLOBAL_STATUS ack.
|
|
*/
|
|
if (pmi && x86_pmu.version >= 4)
|
|
return;
|
|
|
|
/*
|
|
* No need to reprogram LBR_SELECT in a PMI, as it
|
|
* did not change.
|
|
*/
|
|
if (cpuc->lbr_sel)
|
|
lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
|
|
if (!pmi && cpuc->lbr_sel)
|
|
wrmsrl(MSR_LBR_SELECT, lbr_select);
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
orig_debugctl = debugctl;
|
|
debugctl |= DEBUGCTLMSR_LBR;
|
|
/*
|
|
* LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
|
|
* If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
|
|
* may cause superfluous increase/decrease of LBR_TOS.
|
|
*/
|
|
if (!(lbr_select & LBR_CALL_STACK))
|
|
debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
|
|
if (orig_debugctl != debugctl)
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
static void __intel_pmu_lbr_disable(void)
|
|
{
|
|
u64 debugctl;
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
static void intel_pmu_lbr_reset_32(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++)
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
}
|
|
|
|
static void intel_pmu_lbr_reset_64(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
wrmsrl(x86_pmu.lbr_to + i, 0);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrmsrl(MSR_LBR_INFO_0 + i, 0);
|
|
}
|
|
}
|
|
|
|
void intel_pmu_lbr_reset(void)
|
|
{
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
|
intel_pmu_lbr_reset_32();
|
|
else
|
|
intel_pmu_lbr_reset_64();
|
|
}
|
|
|
|
/*
|
|
* TOS = most recently recorded branch
|
|
*/
|
|
static inline u64 intel_pmu_lbr_tos(void)
|
|
{
|
|
u64 tos;
|
|
|
|
rdmsrl(x86_pmu.lbr_tos, tos);
|
|
return tos;
|
|
}
|
|
|
|
enum {
|
|
LBR_NONE,
|
|
LBR_VALID,
|
|
};
|
|
|
|
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
|
|
{
|
|
int i;
|
|
unsigned lbr_idx, mask;
|
|
u64 tos;
|
|
|
|
if (task_ctx->lbr_callstack_users == 0 ||
|
|
task_ctx->lbr_stack_state == LBR_NONE) {
|
|
intel_pmu_lbr_reset();
|
|
return;
|
|
}
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
tos = task_ctx->tos;
|
|
for (i = 0; i < tos; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
|
|
wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
|
}
|
|
wrmsrl(x86_pmu.lbr_tos, tos);
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
}
|
|
|
|
static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
|
|
{
|
|
int i;
|
|
unsigned lbr_idx, mask;
|
|
u64 tos;
|
|
|
|
if (task_ctx->lbr_callstack_users == 0) {
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
return;
|
|
}
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
tos = intel_pmu_lbr_tos();
|
|
for (i = 0; i < tos; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
|
|
rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
|
}
|
|
task_ctx->tos = tos;
|
|
task_ctx->lbr_stack_state = LBR_VALID;
|
|
}
|
|
|
|
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
/*
|
|
* If LBR callstack feature is enabled and the stack was saved when
|
|
* the task was scheduled out, restore the stack. Otherwise flush
|
|
* the LBR stack.
|
|
*/
|
|
task_ctx = ctx ? ctx->task_ctx_data : NULL;
|
|
if (task_ctx) {
|
|
if (sched_in) {
|
|
__intel_pmu_lbr_restore(task_ctx);
|
|
cpuc->lbr_context = ctx;
|
|
} else {
|
|
__intel_pmu_lbr_save(task_ctx);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* When sampling the branck stack in system-wide, it may be
|
|
* necessary to flush the stack on context switch. This happens
|
|
* when the branch stack does not tag its entries with the pid
|
|
* of the current task. Otherwise it becomes impossible to
|
|
* associate a branch entry with a task. This ambiguity is more
|
|
* likely to appear when the branch stack supports priv level
|
|
* filtering and the user sets it to monitor only at the user
|
|
* level (which could be a useful measurement in system-wide
|
|
* mode). In that case, the risk is high of having a branch
|
|
* stack with branch from multiple tasks.
|
|
*/
|
|
if (sched_in) {
|
|
intel_pmu_lbr_reset();
|
|
cpuc->lbr_context = ctx;
|
|
}
|
|
}
|
|
|
|
static inline bool branch_user_callstack(unsigned br_sel)
|
|
{
|
|
return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
|
|
}
|
|
|
|
void intel_pmu_lbr_enable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
/*
|
|
* Reset the LBR stack if we changed task context to
|
|
* avoid data leaks.
|
|
*/
|
|
if (event->ctx->task && cpuc->lbr_context != event->ctx) {
|
|
intel_pmu_lbr_reset();
|
|
cpuc->lbr_context = event->ctx;
|
|
}
|
|
cpuc->br_sel = event->hw.branch_reg.reg;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
|
|
event->ctx->task_ctx_data) {
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
task_ctx->lbr_callstack_users++;
|
|
}
|
|
|
|
cpuc->lbr_users++;
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
|
}
|
|
|
|
void intel_pmu_lbr_disable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
|
|
event->ctx->task_ctx_data) {
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
task_ctx->lbr_callstack_users--;
|
|
}
|
|
|
|
cpuc->lbr_users--;
|
|
WARN_ON_ONCE(cpuc->lbr_users < 0);
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
|
|
if (cpuc->enabled && !cpuc->lbr_users) {
|
|
__intel_pmu_lbr_disable();
|
|
/* avoid stale pointer */
|
|
cpuc->lbr_context = NULL;
|
|
}
|
|
}
|
|
|
|
void intel_pmu_lbr_enable_all(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users)
|
|
__intel_pmu_lbr_enable(pmi);
|
|
}
|
|
|
|
void intel_pmu_lbr_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users)
|
|
__intel_pmu_lbr_disable();
|
|
}
|
|
|
|
static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
|
|
{
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
union {
|
|
struct {
|
|
u32 from;
|
|
u32 to;
|
|
};
|
|
u64 lbr;
|
|
} msr_lastbranch;
|
|
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
|
|
|
|
cpuc->lbr_entries[i].from = msr_lastbranch.from;
|
|
cpuc->lbr_entries[i].to = msr_lastbranch.to;
|
|
cpuc->lbr_entries[i].mispred = 0;
|
|
cpuc->lbr_entries[i].predicted = 0;
|
|
cpuc->lbr_entries[i].reserved = 0;
|
|
}
|
|
cpuc->lbr_stack.nr = i;
|
|
}
|
|
|
|
/*
|
|
* Due to lack of segmentation in Linux the effective address (offset)
|
|
* is the same as the linear address, allowing us to merge the LIP and EIP
|
|
* LBR formats.
|
|
*/
|
|
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
|
|
{
|
|
bool need_info = false;
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
int out = 0;
|
|
int num = x86_pmu.lbr_nr;
|
|
|
|
if (cpuc->lbr_sel) {
|
|
need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
|
|
if (cpuc->lbr_sel->config & LBR_CALL_STACK)
|
|
num = tos;
|
|
}
|
|
|
|
for (i = 0; i < num; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
|
|
int skip = 0;
|
|
u16 cycles = 0;
|
|
int lbr_flags = lbr_desc[lbr_format];
|
|
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
|
|
rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
|
|
|
|
if (lbr_format == LBR_FORMAT_INFO && need_info) {
|
|
u64 info;
|
|
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
|
|
mis = !!(info & LBR_INFO_MISPRED);
|
|
pred = !mis;
|
|
in_tx = !!(info & LBR_INFO_IN_TX);
|
|
abort = !!(info & LBR_INFO_ABORT);
|
|
cycles = (info & LBR_INFO_CYCLES);
|
|
}
|
|
if (lbr_flags & LBR_EIP_FLAGS) {
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
pred = !mis;
|
|
skip = 1;
|
|
}
|
|
if (lbr_flags & LBR_TSX) {
|
|
in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
|
|
abort = !!(from & LBR_FROM_FLAG_ABORT);
|
|
skip = 3;
|
|
}
|
|
from = (u64)((((s64)from) << skip) >> skip);
|
|
|
|
/*
|
|
* Some CPUs report duplicated abort records,
|
|
* with the second entry not having an abort bit set.
|
|
* Skip them here. This loop runs backwards,
|
|
* so we need to undo the previous record.
|
|
* If the abort just happened outside the window
|
|
* the extra entry cannot be removed.
|
|
*/
|
|
if (abort && x86_pmu.lbr_double_abort && out > 0)
|
|
out--;
|
|
|
|
cpuc->lbr_entries[out].from = from;
|
|
cpuc->lbr_entries[out].to = to;
|
|
cpuc->lbr_entries[out].mispred = mis;
|
|
cpuc->lbr_entries[out].predicted = pred;
|
|
cpuc->lbr_entries[out].in_tx = in_tx;
|
|
cpuc->lbr_entries[out].abort = abort;
|
|
cpuc->lbr_entries[out].cycles = cycles;
|
|
cpuc->lbr_entries[out].reserved = 0;
|
|
out++;
|
|
}
|
|
cpuc->lbr_stack.nr = out;
|
|
}
|
|
|
|
void intel_pmu_lbr_read(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!cpuc->lbr_users)
|
|
return;
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
|
intel_pmu_lbr_read_32(cpuc);
|
|
else
|
|
intel_pmu_lbr_read_64(cpuc);
|
|
|
|
intel_pmu_lbr_filter(cpuc);
|
|
}
|
|
|
|
/*
|
|
* SW filter is used:
|
|
* - in case there is no HW filter
|
|
* - in case the HW filter has errata or limitations
|
|
*/
|
|
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
|
|
{
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
int mask = 0;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_USER)
|
|
mask |= X86_BR_USER;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
|
|
mask |= X86_BR_KERNEL;
|
|
|
|
/* we ignore BRANCH_HV here */
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY)
|
|
mask |= X86_BR_ANY;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
|
|
mask |= X86_BR_ANY_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
|
|
mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
|
|
mask |= X86_BR_IND_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
|
|
mask |= X86_BR_ABORT;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
|
|
mask |= X86_BR_IN_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
|
|
mask |= X86_BR_NO_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_COND)
|
|
mask |= X86_BR_JCC;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
|
|
if (!x86_pmu_has_lbr_callstack())
|
|
return -EOPNOTSUPP;
|
|
if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
|
|
return -EINVAL;
|
|
mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
|
|
X86_BR_CALL_STACK;
|
|
}
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
|
|
mask |= X86_BR_IND_JMP;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL)
|
|
mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
|
|
/*
|
|
* stash actual user request into reg, it may
|
|
* be used by fixup code for some CPU
|
|
*/
|
|
event->hw.branch_reg.reg = mask;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* setup the HW LBR filter
|
|
* Used only when available, may not be enough to disambiguate
|
|
* all branches, may need the help of the SW filter
|
|
*/
|
|
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
u64 mask = 0, v;
|
|
int i;
|
|
|
|
for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
|
|
if (!(br_type & (1ULL << i)))
|
|
continue;
|
|
|
|
v = x86_pmu.lbr_sel_map[i];
|
|
if (v == LBR_NOT_SUPP)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (v != LBR_IGN)
|
|
mask |= v;
|
|
}
|
|
|
|
reg = &event->hw.branch_reg;
|
|
reg->idx = EXTRA_REG_LBR;
|
|
|
|
/*
|
|
* The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
|
|
* in suppress mode. So LBR_SELECT should be set to
|
|
* (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
|
|
*/
|
|
reg->config = mask ^ x86_pmu.lbr_sel_mask;
|
|
|
|
if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
|
|
(br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
|
|
(x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
|
|
reg->config |= LBR_NO_INFO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_pmu_setup_lbr_filter(struct perf_event *event)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* no LBR on this PMU
|
|
*/
|
|
if (!x86_pmu.lbr_nr)
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* setup SW LBR filter
|
|
*/
|
|
ret = intel_pmu_setup_sw_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* setup HW LBR filter, if any
|
|
*/
|
|
if (x86_pmu.lbr_sel_map)
|
|
ret = intel_pmu_setup_hw_lbr_filter(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return the type of control flow change at address "from"
|
|
* intruction is not necessarily a branch (in case of interrupt).
|
|
*
|
|
* The branch type returned also includes the priv level of the
|
|
* target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
|
|
*
|
|
* If a branch type is unknown OR the instruction cannot be
|
|
* decoded (e.g., text page not present), then X86_BR_NONE is
|
|
* returned.
|
|
*/
|
|
static int branch_type(unsigned long from, unsigned long to, int abort)
|
|
{
|
|
struct insn insn;
|
|
void *addr;
|
|
int bytes_read, bytes_left;
|
|
int ret = X86_BR_NONE;
|
|
int ext, to_plm, from_plm;
|
|
u8 buf[MAX_INSN_SIZE];
|
|
int is64 = 0;
|
|
|
|
to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
|
|
from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
|
|
|
|
/*
|
|
* maybe zero if lbr did not fill up after a reset by the time
|
|
* we get a PMU interrupt
|
|
*/
|
|
if (from == 0 || to == 0)
|
|
return X86_BR_NONE;
|
|
|
|
if (abort)
|
|
return X86_BR_ABORT | to_plm;
|
|
|
|
if (from_plm == X86_BR_USER) {
|
|
/*
|
|
* can happen if measuring at the user level only
|
|
* and we interrupt in a kernel thread, e.g., idle.
|
|
*/
|
|
if (!current->mm)
|
|
return X86_BR_NONE;
|
|
|
|
/* may fail if text not present */
|
|
bytes_left = copy_from_user_nmi(buf, (void __user *)from,
|
|
MAX_INSN_SIZE);
|
|
bytes_read = MAX_INSN_SIZE - bytes_left;
|
|
if (!bytes_read)
|
|
return X86_BR_NONE;
|
|
|
|
addr = buf;
|
|
} else {
|
|
/*
|
|
* The LBR logs any address in the IP, even if the IP just
|
|
* faulted. This means userspace can control the from address.
|
|
* Ensure we don't blindy read any address by validating it is
|
|
* a known text address.
|
|
*/
|
|
if (kernel_text_address(from)) {
|
|
addr = (void *)from;
|
|
/*
|
|
* Assume we can get the maximum possible size
|
|
* when grabbing kernel data. This is not
|
|
* _strictly_ true since we could possibly be
|
|
* executing up next to a memory hole, but
|
|
* it is very unlikely to be a problem.
|
|
*/
|
|
bytes_read = MAX_INSN_SIZE;
|
|
} else {
|
|
return X86_BR_NONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decoder needs to know the ABI especially
|
|
* on 64-bit systems running 32-bit apps
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
|
|
#endif
|
|
insn_init(&insn, addr, bytes_read, is64);
|
|
insn_get_opcode(&insn);
|
|
if (!insn.opcode.got)
|
|
return X86_BR_ABORT;
|
|
|
|
switch (insn.opcode.bytes[0]) {
|
|
case 0xf:
|
|
switch (insn.opcode.bytes[1]) {
|
|
case 0x05: /* syscall */
|
|
case 0x34: /* sysenter */
|
|
ret = X86_BR_SYSCALL;
|
|
break;
|
|
case 0x07: /* sysret */
|
|
case 0x35: /* sysexit */
|
|
ret = X86_BR_SYSRET;
|
|
break;
|
|
case 0x80 ... 0x8f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
break;
|
|
case 0x70 ... 0x7f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xc2: /* near ret */
|
|
case 0xc3: /* near ret */
|
|
case 0xca: /* far ret */
|
|
case 0xcb: /* far ret */
|
|
ret = X86_BR_RET;
|
|
break;
|
|
case 0xcf: /* iret */
|
|
ret = X86_BR_IRET;
|
|
break;
|
|
case 0xcc ... 0xce: /* int */
|
|
ret = X86_BR_INT;
|
|
break;
|
|
case 0xe8: /* call near rel */
|
|
insn_get_immediate(&insn);
|
|
if (insn.immediate1.value == 0) {
|
|
/* zero length call */
|
|
ret = X86_BR_ZERO_CALL;
|
|
break;
|
|
}
|
|
case 0x9a: /* call far absolute */
|
|
ret = X86_BR_CALL;
|
|
break;
|
|
case 0xe0 ... 0xe3: /* loop jmp */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xe9 ... 0xeb: /* jmp */
|
|
ret = X86_BR_JMP;
|
|
break;
|
|
case 0xff: /* call near absolute, call far absolute ind */
|
|
insn_get_modrm(&insn);
|
|
ext = (insn.modrm.bytes[0] >> 3) & 0x7;
|
|
switch (ext) {
|
|
case 2: /* near ind call */
|
|
case 3: /* far ind call */
|
|
ret = X86_BR_IND_CALL;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
ret = X86_BR_IND_JMP;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
/*
|
|
* interrupts, traps, faults (and thus ring transition) may
|
|
* occur on any instructions. Thus, to classify them correctly,
|
|
* we need to first look at the from and to priv levels. If they
|
|
* are different and to is in the kernel, then it indicates
|
|
* a ring transition. If the from instruction is not a ring
|
|
* transition instr (syscall, systenter, int), then it means
|
|
* it was a irq, trap or fault.
|
|
*
|
|
* we have no way of detecting kernel to kernel faults.
|
|
*/
|
|
if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
|
|
&& ret != X86_BR_SYSCALL && ret != X86_BR_INT)
|
|
ret = X86_BR_IRQ;
|
|
|
|
/*
|
|
* branch priv level determined by target as
|
|
* is done by HW when LBR_SELECT is implemented
|
|
*/
|
|
if (ret != X86_BR_NONE)
|
|
ret |= to_plm;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* implement actual branch filter based on user demand.
|
|
* Hardware may not exactly satisfy that request, thus
|
|
* we need to inspect opcodes. Mismatched branches are
|
|
* discarded. Therefore, the number of branches returned
|
|
* in PERF_SAMPLE_BRANCH_STACK sample may vary.
|
|
*/
|
|
static void
|
|
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
|
|
{
|
|
u64 from, to;
|
|
int br_sel = cpuc->br_sel;
|
|
int i, j, type;
|
|
bool compress = false;
|
|
|
|
/* if sampling all branches, then nothing to filter */
|
|
if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
|
|
return;
|
|
|
|
for (i = 0; i < cpuc->lbr_stack.nr; i++) {
|
|
|
|
from = cpuc->lbr_entries[i].from;
|
|
to = cpuc->lbr_entries[i].to;
|
|
|
|
type = branch_type(from, to, cpuc->lbr_entries[i].abort);
|
|
if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
|
|
if (cpuc->lbr_entries[i].in_tx)
|
|
type |= X86_BR_IN_TX;
|
|
else
|
|
type |= X86_BR_NO_TX;
|
|
}
|
|
|
|
/* if type does not correspond, then discard */
|
|
if (type == X86_BR_NONE || (br_sel & type) != type) {
|
|
cpuc->lbr_entries[i].from = 0;
|
|
compress = true;
|
|
}
|
|
}
|
|
|
|
if (!compress)
|
|
return;
|
|
|
|
/* remove all entries with from=0 */
|
|
for (i = 0; i < cpuc->lbr_stack.nr; ) {
|
|
if (!cpuc->lbr_entries[i].from) {
|
|
j = i;
|
|
while (++j < cpuc->lbr_stack.nr)
|
|
cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
|
|
cpuc->lbr_stack.nr--;
|
|
if (!cpuc->lbr_entries[i].from)
|
|
continue;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map interface branch filters onto LBR filters
|
|
*/
|
|
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
|
|
| LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
|
|
LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include IND_JMP to capture IND_CALL
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
};
|
|
|
|
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
|
};
|
|
|
|
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_RETURN | LBR_CALL_STACK,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
|
};
|
|
|
|
/* core */
|
|
void __init intel_pmu_lbr_init_core(void)
|
|
{
|
|
x86_pmu.lbr_nr = 4;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
pr_cont("4-deep LBR, ");
|
|
}
|
|
|
|
/* nehalem/westmere */
|
|
void __init intel_pmu_lbr_init_nhm(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - workaround LBR_SEL errata (see above)
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
pr_cont("16-deep LBR, ");
|
|
}
|
|
|
|
/* sandy bridge */
|
|
void __init intel_pmu_lbr_init_snb(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
pr_cont("16-deep LBR, ");
|
|
}
|
|
|
|
/* haswell */
|
|
void intel_pmu_lbr_init_hsw(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
pr_cont("16-deep LBR, ");
|
|
}
|
|
|
|
/* skylake */
|
|
__init void intel_pmu_lbr_init_skl(void)
|
|
{
|
|
x86_pmu.lbr_nr = 32;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
pr_cont("32-deep LBR, ");
|
|
}
|
|
|
|
/* atom */
|
|
void __init intel_pmu_lbr_init_atom(void)
|
|
{
|
|
/*
|
|
* only models starting at stepping 10 seems
|
|
* to have an operational LBR which can freeze
|
|
* on PMU interrupt
|
|
*/
|
|
if (boot_cpu_data.x86_model == 28
|
|
&& boot_cpu_data.x86_mask < 10) {
|
|
pr_cont("LBR disabled due to erratum");
|
|
return;
|
|
}
|
|
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
pr_cont("8-deep LBR, ");
|
|
}
|