Pull trivial tree updates from Jiri Kosina: "Usual earth-shaking, news-breaking, rocket science pile from trivial.git" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits) doc: usb: Fix typo in Documentation/usb/gadget_configs.txt doc: add missing files to timers/00-INDEX timekeeping: Fix some trivial typos in comments mm: Fix some trivial typos in comments irq: Fix some trivial typos in comments NUMA: fix typos in Kconfig help text mm: update 00-INDEX doc: Documentation/DMA-attributes.txt fix typo DRM: comment: `halve' -> `half' Docs: Kconfig: `devlopers' -> `developers' doc: typo on word accounting in kprobes.c in mutliple architectures treewide: fix "usefull" typo treewide: fix "distingush" typo mm/Kconfig: Grammar s/an/a/ kexec: Typo s/the/then/ Documentation/kvm: Update cpuid documentation for steal time and pv eoi treewide: Fix common typo in "identify" __page_to_pfn: Fix typo in comment Correct some typos for word frequency clk: fixed-factor: Fix a trivial typo ...
		
			
				
	
	
		
			524 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			524 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/current.h>
 | |
| #include <asm/disasm.h>
 | |
| 
 | |
| #define MIN_STACK_SIZE(addr)	min((unsigned long)MAX_STACK_SIZE, \
 | |
| 		(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	/* Attempt to probe at unaligned address */
 | |
| 	if ((unsigned long)p->addr & 0x01)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Address should not be in exception handling code */
 | |
| 
 | |
| 	p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
 | |
| 	p->opcode = *p->addr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = UNIMP_S_INSTRUCTION;
 | |
| 
 | |
| 	flush_icache_range((unsigned long)p->addr,
 | |
| 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = p->opcode;
 | |
| 
 | |
| 	flush_icache_range((unsigned long)p->addr,
 | |
| 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	arch_disarm_kprobe(p);
 | |
| 
 | |
| 	/* Can we remove the kprobe in the middle of kprobe handling? */
 | |
| 	if (p->ainsn.t1_addr) {
 | |
| 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
 | |
| 
 | |
| 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
 | |
| 				   (unsigned long)p->ainsn.t1_addr +
 | |
| 				   sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 		p->ainsn.t1_addr = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (p->ainsn.t2_addr) {
 | |
| 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
 | |
| 
 | |
| 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
 | |
| 				   (unsigned long)p->ainsn.t2_addr +
 | |
| 				   sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 		p->ainsn.t2_addr = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| }
 | |
| 
 | |
| static inline void __kprobes set_current_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	__this_cpu_write(current_kprobe, p);
 | |
| }
 | |
| 
 | |
| static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
 | |
| 				       struct pt_regs *regs)
 | |
| {
 | |
| 	/* Remove the trap instructions inserted for single step and
 | |
| 	 * restore the original instructions
 | |
| 	 */
 | |
| 	if (p->ainsn.t1_addr) {
 | |
| 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
 | |
| 
 | |
| 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
 | |
| 				   (unsigned long)p->ainsn.t1_addr +
 | |
| 				   sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 		p->ainsn.t1_addr = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (p->ainsn.t2_addr) {
 | |
| 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
 | |
| 
 | |
| 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
 | |
| 				   (unsigned long)p->ainsn.t2_addr +
 | |
| 				   sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 		p->ainsn.t2_addr = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long next_pc;
 | |
| 	unsigned long tgt_if_br = 0;
 | |
| 	int is_branch;
 | |
| 	unsigned long bta;
 | |
| 
 | |
| 	/* Copy the opcode back to the kprobe location and execute the
 | |
| 	 * instruction. Because of this we will not be able to get into the
 | |
| 	 * same kprobe until this kprobe is done
 | |
| 	 */
 | |
| 	*(p->addr) = p->opcode;
 | |
| 
 | |
| 	flush_icache_range((unsigned long)p->addr,
 | |
| 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 	/* Now we insert the trap at the next location after this instruction to
 | |
| 	 * single step. If it is a branch we insert the trap at possible branch
 | |
| 	 * targets
 | |
| 	 */
 | |
| 
 | |
| 	bta = regs->bta;
 | |
| 
 | |
| 	if (regs->status32 & 0x40) {
 | |
| 		/* We are in a delay slot with the branch taken */
 | |
| 
 | |
| 		next_pc = bta & ~0x01;
 | |
| 
 | |
| 		if (!p->ainsn.is_short) {
 | |
| 			if (bta & 0x01)
 | |
| 				regs->blink += 2;
 | |
| 			else {
 | |
| 				/* Branch not taken */
 | |
| 				next_pc += 2;
 | |
| 
 | |
| 				/* next pc is taken from bta after executing the
 | |
| 				 * delay slot instruction
 | |
| 				 */
 | |
| 				regs->bta += 2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		is_branch = 0;
 | |
| 	} else
 | |
| 		is_branch =
 | |
| 		    disasm_next_pc((unsigned long)p->addr, regs,
 | |
| 			(struct callee_regs *) current->thread.callee_reg,
 | |
| 			&next_pc, &tgt_if_br);
 | |
| 
 | |
| 	p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
 | |
| 	p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
 | |
| 	*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
 | |
| 
 | |
| 	flush_icache_range((unsigned long)p->ainsn.t1_addr,
 | |
| 			   (unsigned long)p->ainsn.t1_addr +
 | |
| 			   sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 	if (is_branch) {
 | |
| 		p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
 | |
| 		p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
 | |
| 		*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
 | |
| 
 | |
| 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
 | |
| 				   (unsigned long)p->ainsn.t2_addr +
 | |
| 				   sizeof(kprobe_opcode_t));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 	p = get_kprobe((unsigned long *)addr);
 | |
| 
 | |
| 	if (p) {
 | |
| 		/*
 | |
| 		 * We have reentered the kprobe_handler, since another kprobe
 | |
| 		 * was hit while within the handler, we save the original
 | |
| 		 * kprobes and single step on the instruction of the new probe
 | |
| 		 * without calling any user handlers to avoid recursive
 | |
| 		 * kprobes.
 | |
| 		 */
 | |
| 		if (kprobe_running()) {
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p);
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			setup_singlestep(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		set_current_kprobe(p);
 | |
| 		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 
 | |
| 		/* If we have no pre-handler or it returned 0, we continue with
 | |
| 		 * normal processing. If we have a pre-handler and it returned
 | |
| 		 * non-zero - which is expected from setjmp_pre_handler for
 | |
| 		 * jprobe, we return without single stepping and leave that to
 | |
| 		 * the break-handler which is invoked by a kprobe from
 | |
| 		 * jprobe_return
 | |
| 		 */
 | |
| 		if (!p->pre_handler || !p->pre_handler(p, regs)) {
 | |
| 			setup_singlestep(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 		}
 | |
| 
 | |
| 		return 1;
 | |
| 	} else if (kprobe_running()) {
 | |
| 		p = __this_cpu_read(current_kprobe);
 | |
| 		if (p->break_handler && p->break_handler(p, regs)) {
 | |
| 			setup_singlestep(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* no_kprobe: */
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __kprobes arc_post_kprobe_handler(unsigned long addr,
 | |
| 					 struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	resume_execution(cur, addr, regs);
 | |
| 
 | |
| 	/* Rearm the kprobe */
 | |
| 	arch_arm_kprobe(cur);
 | |
| 
 | |
| 	/*
 | |
| 	 * When we return from trap instruction we go to the next instruction
 | |
| 	 * We restored the actual instruction in resume_exectuiont and we to
 | |
| 	 * return to the same address and execute it
 | |
| 	 */
 | |
| 	regs->ret = addr;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fault can be for the instruction being single stepped or for the
 | |
|  * pre/post handlers in the module.
 | |
|  * This is applicable for applications like user probes, where we have the
 | |
|  * probe in user space and the handlers in the kernel
 | |
|  */
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	switch (kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single stepped
 | |
| 		 * caused the fault. We reset the current kprobe and allow the
 | |
| 		 * exception handler as if it is regular exception. In our
 | |
| 		 * case it doesn't matter because the system will be halted
 | |
| 		 */
 | |
| 		resume_execution(cur, (unsigned long)cur->addr, regs);
 | |
| 
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER)
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		else
 | |
| 			reset_current_kprobe();
 | |
| 
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We are here because the instructions in the pre/post handler
 | |
| 		 * caused the fault.
 | |
| 		 */
 | |
| 
 | |
| 		/* We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accounting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned zero,
 | |
| 		 * try to fix up.
 | |
| 		 */
 | |
| 		if (fixup_exception(regs))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup_exception() could not handle it,
 | |
| 		 * Let do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = data;
 | |
| 	unsigned long addr = args->err;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_IERR:
 | |
| 		if (arc_kprobe_handler(addr, args->regs))
 | |
| 			return NOTIFY_STOP;
 | |
| 		break;
 | |
| 
 | |
| 	case DIE_TRAP:
 | |
| 		if (arc_post_kprobe_handler(addr, args->regs))
 | |
| 			return NOTIFY_STOP;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long sp_addr = regs->sp;
 | |
| 
 | |
| 	kcb->jprobe_saved_regs = *regs;
 | |
| 	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
 | |
| 	regs->ret = (unsigned long)(jp->entry);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	__asm__ __volatile__("unimp_s");
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long sp_addr;
 | |
| 
 | |
| 	*regs = kcb->jprobe_saved_regs;
 | |
| 	sp_addr = regs->sp;
 | |
| 	memcpy((void *)sp_addr, kcb->jprobes_stack, MIN_STACK_SIZE(sp_addr));
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void __used kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	__asm__ __volatile__(".global kretprobe_trampoline\n"
 | |
| 			     "kretprobe_trampoline:\n" "nop\n");
 | |
| }
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 
 | |
| 	ri->ret_addr = (kprobe_opcode_t *) regs->blink;
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->blink = (unsigned long)&kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| static int __kprobes trampoline_probe_handler(struct kprobe *p,
 | |
| 					      struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *       function, the first instance's ret_addr will point to the
 | |
| 	 *       real return address, and all the rest will point to
 | |
| 	 *       kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler)
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address) {
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 	regs->ret = orig_ret_address;
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 
 | |
| 	/* By returning a non zero value, we are telling the kprobe handler
 | |
| 	 * that we don't want the post_handler to run
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	/* Registering the trampoline code for the kret probe */
 | |
| 	return register_kprobe(&trampoline_p);
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
 | |
| {
 | |
| 	notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
 | |
| }
 |