linux/drivers/net/wireless/iwlwifi/mvm/rs.c
Johannes Berg 859d914c8f iwlwifi: prepare for higher API/CAPA bits
Currently, loading the firmware fails when it has higher API or CAPA
bits than the driver supports. That's an issue with integration.

At the same time, actually using api[0] and capa[0] will become
confusing when we also have api[1] and capa[1], and it's almost
certain that we'll mix up the bits and use the bits for api[1] with
api[0] by accident.

Avoid all this by translating the API/CAPA bits to the regular kernel
test_bit() format, and also providing wrapper functions. Also use the
__bitwise__ facility of sparse to check that we're testing the right
one.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2015-06-03 09:45:37 +03:00

3758 lines
105 KiB
C

/******************************************************************************
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <net/mac80211.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include "rs.h"
#include "fw-api.h"
#include "sta.h"
#include "iwl-op-mode.h"
#include "mvm.h"
#include "debugfs.h"
#define RS_NAME "iwl-mvm-rs"
#define IWL_RATE_MAX_WINDOW 62 /* # tx in history window */
/* Calculations of success ratio are done in fixed point where 12800 is 100%.
* Use this macro when dealing with thresholds consts set as a percentage
*/
#define RS_PERCENT(x) (128 * x)
static u8 rs_ht_to_legacy[] = {
[IWL_RATE_MCS_0_INDEX] = IWL_RATE_6M_INDEX,
[IWL_RATE_MCS_1_INDEX] = IWL_RATE_9M_INDEX,
[IWL_RATE_MCS_2_INDEX] = IWL_RATE_12M_INDEX,
[IWL_RATE_MCS_3_INDEX] = IWL_RATE_18M_INDEX,
[IWL_RATE_MCS_4_INDEX] = IWL_RATE_24M_INDEX,
[IWL_RATE_MCS_5_INDEX] = IWL_RATE_36M_INDEX,
[IWL_RATE_MCS_6_INDEX] = IWL_RATE_48M_INDEX,
[IWL_RATE_MCS_7_INDEX] = IWL_RATE_54M_INDEX,
[IWL_RATE_MCS_8_INDEX] = IWL_RATE_54M_INDEX,
[IWL_RATE_MCS_9_INDEX] = IWL_RATE_54M_INDEX,
};
static const u8 ant_toggle_lookup[] = {
[ANT_NONE] = ANT_NONE,
[ANT_A] = ANT_B,
[ANT_B] = ANT_C,
[ANT_AB] = ANT_BC,
[ANT_C] = ANT_A,
[ANT_AC] = ANT_AB,
[ANT_BC] = ANT_AC,
[ANT_ABC] = ANT_ABC,
};
#define IWL_DECLARE_RATE_INFO(r, s, rp, rn) \
[IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \
IWL_RATE_HT_SISO_MCS_##s##_PLCP, \
IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \
IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \
IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP,\
IWL_RATE_##rp##M_INDEX, \
IWL_RATE_##rn##M_INDEX }
#define IWL_DECLARE_MCS_RATE(s) \
[IWL_RATE_MCS_##s##_INDEX] = { IWL_RATE_INVM_PLCP, \
IWL_RATE_HT_SISO_MCS_##s##_PLCP, \
IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \
IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \
IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP, \
IWL_RATE_INVM_INDEX, \
IWL_RATE_INVM_INDEX }
/*
* Parameter order:
* rate, ht rate, prev rate, next rate
*
* If there isn't a valid next or previous rate then INV is used which
* maps to IWL_RATE_INVALID
*
*/
static const struct iwl_rs_rate_info iwl_rates[IWL_RATE_COUNT] = {
IWL_DECLARE_RATE_INFO(1, INV, INV, 2), /* 1mbps */
IWL_DECLARE_RATE_INFO(2, INV, 1, 5), /* 2mbps */
IWL_DECLARE_RATE_INFO(5, INV, 2, 11), /*5.5mbps */
IWL_DECLARE_RATE_INFO(11, INV, 9, 12), /* 11mbps */
IWL_DECLARE_RATE_INFO(6, 0, 5, 11), /* 6mbps ; MCS 0 */
IWL_DECLARE_RATE_INFO(9, INV, 6, 11), /* 9mbps */
IWL_DECLARE_RATE_INFO(12, 1, 11, 18), /* 12mbps ; MCS 1 */
IWL_DECLARE_RATE_INFO(18, 2, 12, 24), /* 18mbps ; MCS 2 */
IWL_DECLARE_RATE_INFO(24, 3, 18, 36), /* 24mbps ; MCS 3 */
IWL_DECLARE_RATE_INFO(36, 4, 24, 48), /* 36mbps ; MCS 4 */
IWL_DECLARE_RATE_INFO(48, 5, 36, 54), /* 48mbps ; MCS 5 */
IWL_DECLARE_RATE_INFO(54, 6, 48, INV), /* 54mbps ; MCS 6 */
IWL_DECLARE_MCS_RATE(7), /* MCS 7 */
IWL_DECLARE_MCS_RATE(8), /* MCS 8 */
IWL_DECLARE_MCS_RATE(9), /* MCS 9 */
};
enum rs_action {
RS_ACTION_STAY = 0,
RS_ACTION_DOWNSCALE = -1,
RS_ACTION_UPSCALE = 1,
};
enum rs_column_mode {
RS_INVALID = 0,
RS_LEGACY,
RS_SISO,
RS_MIMO2,
};
#define MAX_NEXT_COLUMNS 7
#define MAX_COLUMN_CHECKS 3
struct rs_tx_column;
typedef bool (*allow_column_func_t) (struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct rs_rate *rate,
const struct rs_tx_column *next_col);
struct rs_tx_column {
enum rs_column_mode mode;
u8 ant;
bool sgi;
enum rs_column next_columns[MAX_NEXT_COLUMNS];
allow_column_func_t checks[MAX_COLUMN_CHECKS];
};
static bool rs_ant_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct rs_rate *rate,
const struct rs_tx_column *next_col)
{
return iwl_mvm_bt_coex_is_ant_avail(mvm, next_col->ant);
}
static bool rs_mimo_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct rs_rate *rate,
const struct rs_tx_column *next_col)
{
struct iwl_mvm_sta *mvmsta;
struct iwl_mvm_vif *mvmvif;
if (!sta->ht_cap.ht_supported)
return false;
if (sta->smps_mode == IEEE80211_SMPS_STATIC)
return false;
if (num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) < 2)
return false;
if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta))
return false;
mvmsta = iwl_mvm_sta_from_mac80211(sta);
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
if (iwl_mvm_vif_low_latency(mvmvif) && mvmsta->vif->p2p)
return false;
if (mvm->nvm_data->sku_cap_mimo_disabled)
return false;
return true;
}
static bool rs_siso_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct rs_rate *rate,
const struct rs_tx_column *next_col)
{
if (!sta->ht_cap.ht_supported)
return false;
return true;
}
static bool rs_sgi_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct rs_rate *rate,
const struct rs_tx_column *next_col)
{
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
if (is_ht20(rate) && (ht_cap->cap &
IEEE80211_HT_CAP_SGI_20))
return true;
if (is_ht40(rate) && (ht_cap->cap &
IEEE80211_HT_CAP_SGI_40))
return true;
if (is_ht80(rate) && (vht_cap->cap &
IEEE80211_VHT_CAP_SHORT_GI_80))
return true;
return false;
}
static const struct rs_tx_column rs_tx_columns[] = {
[RS_COLUMN_LEGACY_ANT_A] = {
.mode = RS_LEGACY,
.ant = ANT_A,
.next_columns = {
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_MIMO2,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_ant_allow,
},
},
[RS_COLUMN_LEGACY_ANT_B] = {
.mode = RS_LEGACY,
.ant = ANT_B,
.next_columns = {
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_SISO_ANT_B,
RS_COLUMN_MIMO2,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_ant_allow,
},
},
[RS_COLUMN_SISO_ANT_A] = {
.mode = RS_SISO,
.ant = ANT_A,
.next_columns = {
RS_COLUMN_SISO_ANT_B,
RS_COLUMN_MIMO2,
RS_COLUMN_SISO_ANT_A_SGI,
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
rs_ant_allow,
},
},
[RS_COLUMN_SISO_ANT_B] = {
.mode = RS_SISO,
.ant = ANT_B,
.next_columns = {
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_MIMO2,
RS_COLUMN_SISO_ANT_B_SGI,
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
rs_ant_allow,
},
},
[RS_COLUMN_SISO_ANT_A_SGI] = {
.mode = RS_SISO,
.ant = ANT_A,
.sgi = true,
.next_columns = {
RS_COLUMN_SISO_ANT_B_SGI,
RS_COLUMN_MIMO2_SGI,
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
rs_ant_allow,
rs_sgi_allow,
},
},
[RS_COLUMN_SISO_ANT_B_SGI] = {
.mode = RS_SISO,
.ant = ANT_B,
.sgi = true,
.next_columns = {
RS_COLUMN_SISO_ANT_A_SGI,
RS_COLUMN_MIMO2_SGI,
RS_COLUMN_SISO_ANT_B,
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_siso_allow,
rs_ant_allow,
rs_sgi_allow,
},
},
[RS_COLUMN_MIMO2] = {
.mode = RS_MIMO2,
.ant = ANT_AB,
.next_columns = {
RS_COLUMN_SISO_ANT_A,
RS_COLUMN_MIMO2_SGI,
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_mimo_allow,
},
},
[RS_COLUMN_MIMO2_SGI] = {
.mode = RS_MIMO2,
.ant = ANT_AB,
.sgi = true,
.next_columns = {
RS_COLUMN_SISO_ANT_A_SGI,
RS_COLUMN_MIMO2,
RS_COLUMN_LEGACY_ANT_A,
RS_COLUMN_LEGACY_ANT_B,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
RS_COLUMN_INVALID,
},
.checks = {
rs_mimo_allow,
rs_sgi_allow,
},
},
};
static inline u8 rs_extract_rate(u32 rate_n_flags)
{
/* also works for HT because bits 7:6 are zero there */
return (u8)(rate_n_flags & RATE_LEGACY_RATE_MSK);
}
static int iwl_hwrate_to_plcp_idx(u32 rate_n_flags)
{
int idx = 0;
if (rate_n_flags & RATE_MCS_HT_MSK) {
idx = rate_n_flags & RATE_HT_MCS_RATE_CODE_MSK;
idx += IWL_RATE_MCS_0_INDEX;
/* skip 9M not supported in HT*/
if (idx >= IWL_RATE_9M_INDEX)
idx += 1;
if ((idx >= IWL_FIRST_HT_RATE) && (idx <= IWL_LAST_HT_RATE))
return idx;
} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
idx += IWL_RATE_MCS_0_INDEX;
/* skip 9M not supported in VHT*/
if (idx >= IWL_RATE_9M_INDEX)
idx++;
if ((idx >= IWL_FIRST_VHT_RATE) && (idx <= IWL_LAST_VHT_RATE))
return idx;
} else {
/* legacy rate format, search for match in table */
u8 legacy_rate = rs_extract_rate(rate_n_flags);
for (idx = 0; idx < ARRAY_SIZE(iwl_rates); idx++)
if (iwl_rates[idx].plcp == legacy_rate)
return idx;
}
return IWL_RATE_INVALID;
}
static void rs_rate_scale_perform(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
int tid);
static void rs_fill_lq_cmd(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
const struct rs_rate *initial_rate);
static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search);
/**
* The following tables contain the expected throughput metrics for all rates
*
* 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54, 60 MBits
*
* where invalid entries are zeros.
*
* CCK rates are only valid in legacy table and will only be used in G
* (2.4 GHz) band.
*/
static const u16 expected_tpt_legacy[IWL_RATE_COUNT] = {
7, 13, 35, 58, 40, 57, 72, 98, 121, 154, 177, 186, 0, 0, 0
};
/* Expected TpT tables. 4 indexes:
* 0 - NGI, 1 - SGI, 2 - AGG+NGI, 3 - AGG+SGI
*/
static const u16 expected_tpt_siso_20MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 42, 0, 76, 102, 124, 159, 183, 193, 202, 216, 0},
{0, 0, 0, 0, 46, 0, 82, 110, 132, 168, 192, 202, 210, 225, 0},
{0, 0, 0, 0, 49, 0, 97, 145, 192, 285, 375, 420, 464, 551, 0},
{0, 0, 0, 0, 54, 0, 108, 160, 213, 315, 415, 465, 513, 608, 0},
};
static const u16 expected_tpt_siso_40MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 77, 0, 127, 160, 184, 220, 242, 250, 257, 269, 275},
{0, 0, 0, 0, 83, 0, 135, 169, 193, 229, 250, 257, 264, 275, 280},
{0, 0, 0, 0, 101, 0, 199, 295, 389, 570, 744, 828, 911, 1070, 1173},
{0, 0, 0, 0, 112, 0, 220, 326, 429, 629, 819, 912, 1000, 1173, 1284},
};
static const u16 expected_tpt_siso_80MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 130, 0, 191, 223, 244, 273, 288, 294, 298, 305, 308},
{0, 0, 0, 0, 138, 0, 200, 231, 251, 279, 293, 298, 302, 308, 312},
{0, 0, 0, 0, 217, 0, 429, 634, 834, 1220, 1585, 1760, 1931, 2258, 2466},
{0, 0, 0, 0, 241, 0, 475, 701, 921, 1343, 1741, 1931, 2117, 2468, 2691},
};
static const u16 expected_tpt_mimo2_20MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 74, 0, 123, 155, 179, 213, 235, 243, 250, 261, 0},
{0, 0, 0, 0, 81, 0, 131, 164, 187, 221, 242, 250, 256, 267, 0},
{0, 0, 0, 0, 98, 0, 193, 286, 375, 550, 718, 799, 878, 1032, 0},
{0, 0, 0, 0, 109, 0, 214, 316, 414, 607, 790, 879, 965, 1132, 0},
};
static const u16 expected_tpt_mimo2_40MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 123, 0, 182, 214, 235, 264, 279, 285, 289, 296, 300},
{0, 0, 0, 0, 131, 0, 191, 222, 242, 270, 284, 289, 293, 300, 303},
{0, 0, 0, 0, 200, 0, 390, 571, 741, 1067, 1365, 1505, 1640, 1894, 2053},
{0, 0, 0, 0, 221, 0, 430, 630, 816, 1169, 1490, 1641, 1784, 2053, 2221},
};
static const u16 expected_tpt_mimo2_80MHz[4][IWL_RATE_COUNT] = {
{0, 0, 0, 0, 182, 0, 240, 264, 278, 299, 308, 311, 313, 317, 319},
{0, 0, 0, 0, 190, 0, 247, 269, 282, 302, 310, 313, 315, 319, 320},
{0, 0, 0, 0, 428, 0, 833, 1215, 1577, 2254, 2863, 3147, 3418, 3913, 4219},
{0, 0, 0, 0, 474, 0, 920, 1338, 1732, 2464, 3116, 3418, 3705, 4225, 4545},
};
/* mbps, mcs */
static const struct iwl_rate_mcs_info iwl_rate_mcs[IWL_RATE_COUNT] = {
{ "1", "BPSK DSSS"},
{ "2", "QPSK DSSS"},
{"5.5", "BPSK CCK"},
{ "11", "QPSK CCK"},
{ "6", "BPSK 1/2"},
{ "9", "BPSK 1/2"},
{ "12", "QPSK 1/2"},
{ "18", "QPSK 3/4"},
{ "24", "16QAM 1/2"},
{ "36", "16QAM 3/4"},
{ "48", "64QAM 2/3"},
{ "54", "64QAM 3/4"},
{ "60", "64QAM 5/6"},
};
#define MCS_INDEX_PER_STREAM (8)
static const char *rs_pretty_ant(u8 ant)
{
static const char * const ant_name[] = {
[ANT_NONE] = "None",
[ANT_A] = "A",
[ANT_B] = "B",
[ANT_AB] = "AB",
[ANT_C] = "C",
[ANT_AC] = "AC",
[ANT_BC] = "BC",
[ANT_ABC] = "ABC",
};
if (ant > ANT_ABC)
return "UNKNOWN";
return ant_name[ant];
}
static const char *rs_pretty_lq_type(enum iwl_table_type type)
{
static const char * const lq_types[] = {
[LQ_NONE] = "NONE",
[LQ_LEGACY_A] = "LEGACY_A",
[LQ_LEGACY_G] = "LEGACY_G",
[LQ_HT_SISO] = "HT SISO",
[LQ_HT_MIMO2] = "HT MIMO",
[LQ_VHT_SISO] = "VHT SISO",
[LQ_VHT_MIMO2] = "VHT MIMO",
};
if (type < LQ_NONE || type >= LQ_MAX)
return "UNKNOWN";
return lq_types[type];
}
static inline void rs_dump_rate(struct iwl_mvm *mvm, const struct rs_rate *rate,
const char *prefix)
{
IWL_DEBUG_RATE(mvm,
"%s: (%s: %d) ANT: %s BW: %d SGI: %d LDPC: %d STBC: %d\n",
prefix, rs_pretty_lq_type(rate->type),
rate->index, rs_pretty_ant(rate->ant),
rate->bw, rate->sgi, rate->ldpc, rate->stbc);
}
static void rs_rate_scale_clear_window(struct iwl_rate_scale_data *window)
{
window->data = 0;
window->success_counter = 0;
window->success_ratio = IWL_INVALID_VALUE;
window->counter = 0;
window->average_tpt = IWL_INVALID_VALUE;
}
static void rs_rate_scale_clear_tbl_windows(struct iwl_mvm *mvm,
struct iwl_scale_tbl_info *tbl)
{
int i;
IWL_DEBUG_RATE(mvm, "Clearing up window stats\n");
for (i = 0; i < IWL_RATE_COUNT; i++)
rs_rate_scale_clear_window(&tbl->win[i]);
for (i = 0; i < ARRAY_SIZE(tbl->tpc_win); i++)
rs_rate_scale_clear_window(&tbl->tpc_win[i]);
}
static inline u8 rs_is_valid_ant(u8 valid_antenna, u8 ant_type)
{
return (ant_type & valid_antenna) == ant_type;
}
static int rs_tl_turn_on_agg_for_tid(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_data, u8 tid,
struct ieee80211_sta *sta)
{
int ret = -EAGAIN;
IWL_DEBUG_HT(mvm, "Starting Tx agg: STA: %pM tid: %d\n",
sta->addr, tid);
ret = ieee80211_start_tx_ba_session(sta, tid, 5000);
if (ret == -EAGAIN) {
/*
* driver and mac80211 is out of sync
* this might be cause by reloading firmware
* stop the tx ba session here
*/
IWL_ERR(mvm, "Fail start Tx agg on tid: %d\n",
tid);
ieee80211_stop_tx_ba_session(sta, tid);
}
return ret;
}
static void rs_tl_turn_on_agg(struct iwl_mvm *mvm, u8 tid,
struct iwl_lq_sta *lq_data,
struct ieee80211_sta *sta)
{
if (tid < IWL_MAX_TID_COUNT)
rs_tl_turn_on_agg_for_tid(mvm, lq_data, tid, sta);
else
IWL_ERR(mvm, "tid exceeds max TID count: %d/%d\n",
tid, IWL_MAX_TID_COUNT);
}
static inline int get_num_of_ant_from_rate(u32 rate_n_flags)
{
return !!(rate_n_flags & RATE_MCS_ANT_A_MSK) +
!!(rate_n_flags & RATE_MCS_ANT_B_MSK) +
!!(rate_n_flags & RATE_MCS_ANT_C_MSK);
}
/*
* Static function to get the expected throughput from an iwl_scale_tbl_info
* that wraps a NULL pointer check
*/
static s32 get_expected_tpt(struct iwl_scale_tbl_info *tbl, int rs_index)
{
if (tbl->expected_tpt)
return tbl->expected_tpt[rs_index];
return 0;
}
/**
* rs_collect_tx_data - Update the success/failure sliding window
*
* We keep a sliding window of the last 62 packets transmitted
* at this rate. window->data contains the bitmask of successful
* packets.
*/
static int _rs_collect_tx_data(struct iwl_mvm *mvm,
struct iwl_scale_tbl_info *tbl,
int scale_index, int attempts, int successes,
struct iwl_rate_scale_data *window)
{
static const u64 mask = (((u64)1) << (IWL_RATE_MAX_WINDOW - 1));
s32 fail_count, tpt;
/* Get expected throughput */
tpt = get_expected_tpt(tbl, scale_index);
/*
* Keep track of only the latest 62 tx frame attempts in this rate's
* history window; anything older isn't really relevant any more.
* If we have filled up the sliding window, drop the oldest attempt;
* if the oldest attempt (highest bit in bitmap) shows "success",
* subtract "1" from the success counter (this is the main reason
* we keep these bitmaps!).
*/
while (attempts > 0) {
if (window->counter >= IWL_RATE_MAX_WINDOW) {
/* remove earliest */
window->counter = IWL_RATE_MAX_WINDOW - 1;
if (window->data & mask) {
window->data &= ~mask;
window->success_counter--;
}
}
/* Increment frames-attempted counter */
window->counter++;
/* Shift bitmap by one frame to throw away oldest history */
window->data <<= 1;
/* Mark the most recent #successes attempts as successful */
if (successes > 0) {
window->success_counter++;
window->data |= 0x1;
successes--;
}
attempts--;
}
/* Calculate current success ratio, avoid divide-by-0! */
if (window->counter > 0)
window->success_ratio = 128 * (100 * window->success_counter)
/ window->counter;
else
window->success_ratio = IWL_INVALID_VALUE;
fail_count = window->counter - window->success_counter;
/* Calculate average throughput, if we have enough history. */
if ((fail_count >= IWL_MVM_RS_RATE_MIN_FAILURE_TH) ||
(window->success_counter >= IWL_MVM_RS_RATE_MIN_SUCCESS_TH))
window->average_tpt = (window->success_ratio * tpt + 64) / 128;
else
window->average_tpt = IWL_INVALID_VALUE;
return 0;
}
static int rs_collect_tx_data(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl,
int scale_index, int attempts, int successes,
u8 reduced_txp)
{
struct iwl_rate_scale_data *window = NULL;
int ret;
if (scale_index < 0 || scale_index >= IWL_RATE_COUNT)
return -EINVAL;
if (tbl->column != RS_COLUMN_INVALID) {
struct lq_sta_pers *pers = &lq_sta->pers;
pers->tx_stats[tbl->column][scale_index].total += attempts;
pers->tx_stats[tbl->column][scale_index].success += successes;
}
/* Select window for current tx bit rate */
window = &(tbl->win[scale_index]);
ret = _rs_collect_tx_data(mvm, tbl, scale_index, attempts, successes,
window);
if (ret)
return ret;
if (WARN_ON_ONCE(reduced_txp > TPC_MAX_REDUCTION))
return -EINVAL;
window = &tbl->tpc_win[reduced_txp];
return _rs_collect_tx_data(mvm, tbl, scale_index, attempts, successes,
window);
}
/* Convert rs_rate object into ucode rate bitmask */
static u32 ucode_rate_from_rs_rate(struct iwl_mvm *mvm,
struct rs_rate *rate)
{
u32 ucode_rate = 0;
int index = rate->index;
ucode_rate |= ((rate->ant << RATE_MCS_ANT_POS) &
RATE_MCS_ANT_ABC_MSK);
if (is_legacy(rate)) {
ucode_rate |= iwl_rates[index].plcp;
if (index >= IWL_FIRST_CCK_RATE && index <= IWL_LAST_CCK_RATE)
ucode_rate |= RATE_MCS_CCK_MSK;
return ucode_rate;
}
if (is_ht(rate)) {
if (index < IWL_FIRST_HT_RATE || index > IWL_LAST_HT_RATE) {
IWL_ERR(mvm, "Invalid HT rate index %d\n", index);
index = IWL_LAST_HT_RATE;
}
ucode_rate |= RATE_MCS_HT_MSK;
if (is_ht_siso(rate))
ucode_rate |= iwl_rates[index].plcp_ht_siso;
else if (is_ht_mimo2(rate))
ucode_rate |= iwl_rates[index].plcp_ht_mimo2;
else
WARN_ON_ONCE(1);
} else if (is_vht(rate)) {
if (index < IWL_FIRST_VHT_RATE || index > IWL_LAST_VHT_RATE) {
IWL_ERR(mvm, "Invalid VHT rate index %d\n", index);
index = IWL_LAST_VHT_RATE;
}
ucode_rate |= RATE_MCS_VHT_MSK;
if (is_vht_siso(rate))
ucode_rate |= iwl_rates[index].plcp_vht_siso;
else if (is_vht_mimo2(rate))
ucode_rate |= iwl_rates[index].plcp_vht_mimo2;
else
WARN_ON_ONCE(1);
} else {
IWL_ERR(mvm, "Invalid rate->type %d\n", rate->type);
}
if (is_siso(rate) && rate->stbc) {
/* To enable STBC we need to set both a flag and ANT_AB */
ucode_rate |= RATE_MCS_ANT_AB_MSK;
ucode_rate |= RATE_MCS_VHT_STBC_MSK;
}
ucode_rate |= rate->bw;
if (rate->sgi)
ucode_rate |= RATE_MCS_SGI_MSK;
if (rate->ldpc)
ucode_rate |= RATE_MCS_LDPC_MSK;
return ucode_rate;
}
/* Convert a ucode rate into an rs_rate object */
static int rs_rate_from_ucode_rate(const u32 ucode_rate,
enum ieee80211_band band,
struct rs_rate *rate)
{
u32 ant_msk = ucode_rate & RATE_MCS_ANT_ABC_MSK;
u8 num_of_ant = get_num_of_ant_from_rate(ucode_rate);
u8 nss;
memset(rate, 0, sizeof(*rate));
rate->index = iwl_hwrate_to_plcp_idx(ucode_rate);
if (rate->index == IWL_RATE_INVALID)
return -EINVAL;
rate->ant = (ant_msk >> RATE_MCS_ANT_POS);
/* Legacy */
if (!(ucode_rate & RATE_MCS_HT_MSK) &&
!(ucode_rate & RATE_MCS_VHT_MSK)) {
if (num_of_ant == 1) {
if (band == IEEE80211_BAND_5GHZ)
rate->type = LQ_LEGACY_A;
else
rate->type = LQ_LEGACY_G;
}
return 0;
}
/* HT or VHT */
if (ucode_rate & RATE_MCS_SGI_MSK)
rate->sgi = true;
if (ucode_rate & RATE_MCS_LDPC_MSK)
rate->ldpc = true;
if (ucode_rate & RATE_MCS_VHT_STBC_MSK)
rate->stbc = true;
if (ucode_rate & RATE_MCS_BF_MSK)
rate->bfer = true;
rate->bw = ucode_rate & RATE_MCS_CHAN_WIDTH_MSK;
if (ucode_rate & RATE_MCS_HT_MSK) {
nss = ((ucode_rate & RATE_HT_MCS_NSS_MSK) >>
RATE_HT_MCS_NSS_POS) + 1;
if (nss == 1) {
rate->type = LQ_HT_SISO;
WARN_ONCE(!rate->stbc && !rate->bfer && num_of_ant != 1,
"stbc %d bfer %d",
rate->stbc, rate->bfer);
} else if (nss == 2) {
rate->type = LQ_HT_MIMO2;
WARN_ON_ONCE(num_of_ant != 2);
} else {
WARN_ON_ONCE(1);
}
} else if (ucode_rate & RATE_MCS_VHT_MSK) {
nss = ((ucode_rate & RATE_VHT_MCS_NSS_MSK) >>
RATE_VHT_MCS_NSS_POS) + 1;
if (nss == 1) {
rate->type = LQ_VHT_SISO;
WARN_ONCE(!rate->stbc && !rate->bfer && num_of_ant != 1,
"stbc %d bfer %d",
rate->stbc, rate->bfer);
} else if (nss == 2) {
rate->type = LQ_VHT_MIMO2;
WARN_ON_ONCE(num_of_ant != 2);
} else {
WARN_ON_ONCE(1);
}
}
WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_160);
WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_80 &&
!is_vht(rate));
return 0;
}
/* switch to another antenna/antennas and return 1 */
/* if no other valid antenna found, return 0 */
static int rs_toggle_antenna(u32 valid_ant, struct rs_rate *rate)
{
u8 new_ant_type;
if (!rate->ant || rate->ant > ANT_ABC)
return 0;
if (!rs_is_valid_ant(valid_ant, rate->ant))
return 0;
new_ant_type = ant_toggle_lookup[rate->ant];
while ((new_ant_type != rate->ant) &&
!rs_is_valid_ant(valid_ant, new_ant_type))
new_ant_type = ant_toggle_lookup[new_ant_type];
if (new_ant_type == rate->ant)
return 0;
rate->ant = new_ant_type;
return 1;
}
static u16 rs_get_supported_rates(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
if (is_legacy(rate))
return lq_sta->active_legacy_rate;
else if (is_siso(rate))
return lq_sta->active_siso_rate;
else if (is_mimo2(rate))
return lq_sta->active_mimo2_rate;
WARN_ON_ONCE(1);
return 0;
}
static u16 rs_get_adjacent_rate(struct iwl_mvm *mvm, u8 index, u16 rate_mask,
int rate_type)
{
u8 high = IWL_RATE_INVALID;
u8 low = IWL_RATE_INVALID;
/* 802.11A or ht walks to the next literal adjacent rate in
* the rate table */
if (is_type_a_band(rate_type) || !is_type_legacy(rate_type)) {
int i;
u32 mask;
/* Find the previous rate that is in the rate mask */
i = index - 1;
for (mask = (1 << i); i >= 0; i--, mask >>= 1) {
if (rate_mask & mask) {
low = i;
break;
}
}
/* Find the next rate that is in the rate mask */
i = index + 1;
for (mask = (1 << i); i < IWL_RATE_COUNT; i++, mask <<= 1) {
if (rate_mask & mask) {
high = i;
break;
}
}
return (high << 8) | low;
}
low = index;
while (low != IWL_RATE_INVALID) {
low = iwl_rates[low].prev_rs;
if (low == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << low))
break;
}
high = index;
while (high != IWL_RATE_INVALID) {
high = iwl_rates[high].next_rs;
if (high == IWL_RATE_INVALID)
break;
if (rate_mask & (1 << high))
break;
}
return (high << 8) | low;
}
static inline bool rs_rate_supported(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
return BIT(rate->index) & rs_get_supported_rates(lq_sta, rate);
}
/* Get the next supported lower rate in the current column.
* Return true if bottom rate in the current column was reached
*/
static bool rs_get_lower_rate_in_column(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
u8 low;
u16 high_low;
u16 rate_mask;
struct iwl_mvm *mvm = lq_sta->pers.drv;
rate_mask = rs_get_supported_rates(lq_sta, rate);
high_low = rs_get_adjacent_rate(mvm, rate->index, rate_mask,
rate->type);
low = high_low & 0xff;
/* Bottom rate of column reached */
if (low == IWL_RATE_INVALID)
return true;
rate->index = low;
return false;
}
/* Get the next rate to use following a column downgrade */
static void rs_get_lower_rate_down_column(struct iwl_lq_sta *lq_sta,
struct rs_rate *rate)
{
struct iwl_mvm *mvm = lq_sta->pers.drv;
if (is_legacy(rate)) {
/* No column to downgrade from Legacy */
return;
} else if (is_siso(rate)) {
/* Downgrade to Legacy if we were in SISO */
if (lq_sta->band == IEEE80211_BAND_5GHZ)
rate->type = LQ_LEGACY_A;
else
rate->type = LQ_LEGACY_G;
rate->bw = RATE_MCS_CHAN_WIDTH_20;
WARN_ON_ONCE(rate->index < IWL_RATE_MCS_0_INDEX ||
rate->index > IWL_RATE_MCS_9_INDEX);
rate->index = rs_ht_to_legacy[rate->index];
rate->ldpc = false;
} else {
/* Downgrade to SISO with same MCS if in MIMO */
rate->type = is_vht_mimo2(rate) ?
LQ_VHT_SISO : LQ_HT_SISO;
}
if (num_of_ant(rate->ant) > 1)
rate->ant = first_antenna(iwl_mvm_get_valid_tx_ant(mvm));
/* Relevant in both switching to SISO or Legacy */
rate->sgi = false;
if (!rs_rate_supported(lq_sta, rate))
rs_get_lower_rate_in_column(lq_sta, rate);
}
/* Check if both rates are identical
* allow_ant_mismatch enables matching a SISO rate on ANT_A or ANT_B
* with a rate indicating STBC/BFER and ANT_AB.
*/
static inline bool rs_rate_equal(struct rs_rate *a,
struct rs_rate *b,
bool allow_ant_mismatch)
{
bool ant_match = (a->ant == b->ant) && (a->stbc == b->stbc) &&
(a->bfer == b->bfer);
if (allow_ant_mismatch) {
if (a->stbc || a->bfer) {
WARN_ONCE(a->ant != ANT_AB, "stbc %d bfer %d ant %d",
a->stbc, a->bfer, a->ant);
ant_match |= (b->ant == ANT_A || b->ant == ANT_B);
} else if (b->stbc || b->bfer) {
WARN_ONCE(b->ant != ANT_AB, "stbc %d bfer %d ant %d",
b->stbc, b->bfer, b->ant);
ant_match |= (a->ant == ANT_A || a->ant == ANT_B);
}
}
return (a->type == b->type) && (a->bw == b->bw) && (a->sgi == b->sgi) &&
(a->ldpc == b->ldpc) && (a->index == b->index) && ant_match;
}
/* Check if both rates share the same column */
static inline bool rs_rate_column_match(struct rs_rate *a,
struct rs_rate *b)
{
bool ant_match;
if (a->stbc || a->bfer)
ant_match = (b->ant == ANT_A || b->ant == ANT_B);
else
ant_match = (a->ant == b->ant);
return (a->type == b->type) && (a->bw == b->bw) && (a->sgi == b->sgi)
&& ant_match;
}
static inline enum rs_column rs_get_column_from_rate(struct rs_rate *rate)
{
if (is_legacy(rate)) {
if (rate->ant == ANT_A)
return RS_COLUMN_LEGACY_ANT_A;
if (rate->ant == ANT_B)
return RS_COLUMN_LEGACY_ANT_B;
goto err;
}
if (is_siso(rate)) {
if (rate->ant == ANT_A || rate->stbc || rate->bfer)
return rate->sgi ? RS_COLUMN_SISO_ANT_A_SGI :
RS_COLUMN_SISO_ANT_A;
if (rate->ant == ANT_B)
return rate->sgi ? RS_COLUMN_SISO_ANT_B_SGI :
RS_COLUMN_SISO_ANT_B;
goto err;
}
if (is_mimo(rate))
return rate->sgi ? RS_COLUMN_MIMO2_SGI : RS_COLUMN_MIMO2;
err:
return RS_COLUMN_INVALID;
}
static u8 rs_get_tid(struct ieee80211_hdr *hdr)
{
u8 tid = IWL_MAX_TID_COUNT;
if (ieee80211_is_data_qos(hdr->frame_control)) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
}
if (unlikely(tid > IWL_MAX_TID_COUNT))
tid = IWL_MAX_TID_COUNT;
return tid;
}
void iwl_mvm_rs_tx_status(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
int tid, struct ieee80211_tx_info *info)
{
int legacy_success;
int retries;
int i;
struct iwl_lq_cmd *table;
u32 lq_hwrate;
struct rs_rate lq_rate, tx_resp_rate;
struct iwl_scale_tbl_info *curr_tbl, *other_tbl, *tmp_tbl;
u8 reduced_txp = (uintptr_t)info->status.status_driver_data[0];
u32 tx_resp_hwrate = (uintptr_t)info->status.status_driver_data[1];
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct iwl_lq_sta *lq_sta = &mvmsta->lq_sta;
bool allow_ant_mismatch = fw_has_api(&mvm->fw->ucode_capa,
IWL_UCODE_TLV_API_LQ_SS_PARAMS);
/* Treat uninitialized rate scaling data same as non-existing. */
if (!lq_sta) {
IWL_DEBUG_RATE(mvm, "Station rate scaling not created yet.\n");
return;
} else if (!lq_sta->pers.drv) {
IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n");
return;
}
/* This packet was aggregated but doesn't carry status info */
if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
!(info->flags & IEEE80211_TX_STAT_AMPDU))
return;
rs_rate_from_ucode_rate(tx_resp_hwrate, info->band, &tx_resp_rate);
#ifdef CONFIG_MAC80211_DEBUGFS
/* Disable last tx check if we are debugging with fixed rate but
* update tx stats */
if (lq_sta->pers.dbg_fixed_rate) {
int index = tx_resp_rate.index;
enum rs_column column;
int attempts, success;
column = rs_get_column_from_rate(&tx_resp_rate);
if (WARN_ONCE(column == RS_COLUMN_INVALID,
"Can't map rate 0x%x to column",
tx_resp_hwrate))
return;
if (info->flags & IEEE80211_TX_STAT_AMPDU) {
attempts = info->status.ampdu_len;
success = info->status.ampdu_ack_len;
} else {
attempts = info->status.rates[0].count;
success = !!(info->flags & IEEE80211_TX_STAT_ACK);
}
lq_sta->pers.tx_stats[column][index].total += attempts;
lq_sta->pers.tx_stats[column][index].success += success;
IWL_DEBUG_RATE(mvm, "Fixed rate 0x%x success %d attempts %d\n",
tx_resp_hwrate, success, attempts);
return;
}
#endif
if (time_after(jiffies,
(unsigned long)(lq_sta->last_tx +
(IWL_MVM_RS_IDLE_TIMEOUT * HZ)))) {
int t;
IWL_DEBUG_RATE(mvm, "Tx idle for too long. reinit rs\n");
for (t = 0; t < IWL_MAX_TID_COUNT; t++)
ieee80211_stop_tx_ba_session(sta, t);
iwl_mvm_rs_rate_init(mvm, sta, info->band, false);
return;
}
lq_sta->last_tx = jiffies;
/* Ignore this Tx frame response if its initial rate doesn't match
* that of latest Link Quality command. There may be stragglers
* from a previous Link Quality command, but we're no longer interested
* in those; they're either from the "active" mode while we're trying
* to check "search" mode, or a prior "search" mode after we've moved
* to a new "search" mode (which might become the new "active" mode).
*/
table = &lq_sta->lq;
lq_hwrate = le32_to_cpu(table->rs_table[0]);
rs_rate_from_ucode_rate(lq_hwrate, info->band, &lq_rate);
/* Here we actually compare this rate to the latest LQ command */
if (!rs_rate_equal(&tx_resp_rate, &lq_rate, allow_ant_mismatch)) {
IWL_DEBUG_RATE(mvm,
"initial tx resp rate 0x%x does not match 0x%x\n",
tx_resp_hwrate, lq_hwrate);
/*
* Since rates mis-match, the last LQ command may have failed.
* After IWL_MISSED_RATE_MAX mis-matches, resync the uCode with
* ... driver.
*/
lq_sta->missed_rate_counter++;
if (lq_sta->missed_rate_counter > IWL_MVM_RS_MISSED_RATE_MAX) {
lq_sta->missed_rate_counter = 0;
IWL_DEBUG_RATE(mvm,
"Too many rates mismatch. Send sync LQ. rs_state %d\n",
lq_sta->rs_state);
iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false);
}
/* Regardless, ignore this status info for outdated rate */
return;
} else
/* Rate did match, so reset the missed_rate_counter */
lq_sta->missed_rate_counter = 0;
if (!lq_sta->search_better_tbl) {
curr_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
other_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
} else {
curr_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
other_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
}
if (WARN_ON_ONCE(!rs_rate_column_match(&lq_rate, &curr_tbl->rate))) {
IWL_DEBUG_RATE(mvm,
"Neither active nor search matches tx rate\n");
tmp_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
rs_dump_rate(mvm, &tmp_tbl->rate, "ACTIVE");
tmp_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]);
rs_dump_rate(mvm, &tmp_tbl->rate, "SEARCH");
rs_dump_rate(mvm, &lq_rate, "ACTUAL");
/*
* no matching table found, let's by-pass the data collection
* and continue to perform rate scale to find the rate table
*/
rs_stay_in_table(lq_sta, true);
goto done;
}
/*
* Updating the frame history depends on whether packets were
* aggregated.
*
* For aggregation, all packets were transmitted at the same rate, the
* first index into rate scale table.
*/
if (info->flags & IEEE80211_TX_STAT_AMPDU) {
/* ampdu_ack_len = 0 marks no BA was received. In this case
* treat it as a single frame loss as we don't want the success
* ratio to dip too quickly because a BA wasn't received
*/
if (info->status.ampdu_ack_len == 0)
info->status.ampdu_len = 1;
rs_collect_tx_data(mvm, lq_sta, curr_tbl, lq_rate.index,
info->status.ampdu_len,
info->status.ampdu_ack_len,
reduced_txp);
/* Update success/fail counts if not searching for new mode */
if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) {
lq_sta->total_success += info->status.ampdu_ack_len;
lq_sta->total_failed += (info->status.ampdu_len -
info->status.ampdu_ack_len);
}
} else {
/* For legacy, update frame history with for each Tx retry. */
retries = info->status.rates[0].count - 1;
/* HW doesn't send more than 15 retries */
retries = min(retries, 15);
/* The last transmission may have been successful */
legacy_success = !!(info->flags & IEEE80211_TX_STAT_ACK);
/* Collect data for each rate used during failed TX attempts */
for (i = 0; i <= retries; ++i) {
lq_hwrate = le32_to_cpu(table->rs_table[i]);
rs_rate_from_ucode_rate(lq_hwrate, info->band,
&lq_rate);
/*
* Only collect stats if retried rate is in the same RS
* table as active/search.
*/
if (rs_rate_column_match(&lq_rate, &curr_tbl->rate))
tmp_tbl = curr_tbl;
else if (rs_rate_column_match(&lq_rate,
&other_tbl->rate))
tmp_tbl = other_tbl;
else
continue;
rs_collect_tx_data(mvm, lq_sta, tmp_tbl, lq_rate.index,
1, i < retries ? 0 : legacy_success,
reduced_txp);
}
/* Update success/fail counts if not searching for new mode */
if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) {
lq_sta->total_success += legacy_success;
lq_sta->total_failed += retries + (1 - legacy_success);
}
}
/* The last TX rate is cached in lq_sta; it's set in if/else above */
lq_sta->last_rate_n_flags = lq_hwrate;
IWL_DEBUG_RATE(mvm, "reduced txpower: %d\n", reduced_txp);
done:
/* See if there's a better rate or modulation mode to try. */
if (sta->supp_rates[info->band])
rs_rate_scale_perform(mvm, sta, lq_sta, tid);
}
/*
* mac80211 sends us Tx status
*/
static void rs_mac80211_tx_status(void *mvm_r,
struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_r;
struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (!iwl_mvm_sta_from_mac80211(sta)->vif)
return;
if (!ieee80211_is_data(hdr->frame_control) ||
info->flags & IEEE80211_TX_CTL_NO_ACK)
return;
iwl_mvm_rs_tx_status(mvm, sta, rs_get_tid(hdr), info);
}
/*
* Begin a period of staying with a selected modulation mode.
* Set "stay_in_tbl" flag to prevent any mode switches.
* Set frame tx success limits according to legacy vs. high-throughput,
* and reset overall (spanning all rates) tx success history statistics.
* These control how long we stay using same modulation mode before
* searching for a new mode.
*/
static void rs_set_stay_in_table(struct iwl_mvm *mvm, u8 is_legacy,
struct iwl_lq_sta *lq_sta)
{
IWL_DEBUG_RATE(mvm, "Moving to RS_STATE_STAY_IN_COLUMN\n");
lq_sta->rs_state = RS_STATE_STAY_IN_COLUMN;
if (is_legacy) {
lq_sta->table_count_limit = IWL_MVM_RS_LEGACY_TABLE_COUNT;
lq_sta->max_failure_limit = IWL_MVM_RS_LEGACY_FAILURE_LIMIT;
lq_sta->max_success_limit = IWL_MVM_RS_LEGACY_SUCCESS_LIMIT;
} else {
lq_sta->table_count_limit = IWL_MVM_RS_NON_LEGACY_TABLE_COUNT;
lq_sta->max_failure_limit = IWL_MVM_RS_NON_LEGACY_FAILURE_LIMIT;
lq_sta->max_success_limit = IWL_MVM_RS_NON_LEGACY_SUCCESS_LIMIT;
}
lq_sta->table_count = 0;
lq_sta->total_failed = 0;
lq_sta->total_success = 0;
lq_sta->flush_timer = jiffies;
lq_sta->visited_columns = 0;
}
static inline int rs_get_max_rate_from_mask(unsigned long rate_mask)
{
if (rate_mask)
return find_last_bit(&rate_mask, BITS_PER_LONG);
return IWL_RATE_INVALID;
}
static int rs_get_max_allowed_rate(struct iwl_lq_sta *lq_sta,
const struct rs_tx_column *column)
{
switch (column->mode) {
case RS_LEGACY:
return lq_sta->max_legacy_rate_idx;
case RS_SISO:
return lq_sta->max_siso_rate_idx;
case RS_MIMO2:
return lq_sta->max_mimo2_rate_idx;
default:
WARN_ON_ONCE(1);
}
return lq_sta->max_legacy_rate_idx;
}
static const u16 *rs_get_expected_tpt_table(struct iwl_lq_sta *lq_sta,
const struct rs_tx_column *column,
u32 bw)
{
/* Used to choose among HT tables */
const u16 (*ht_tbl_pointer)[IWL_RATE_COUNT];
if (WARN_ON_ONCE(column->mode != RS_LEGACY &&
column->mode != RS_SISO &&
column->mode != RS_MIMO2))
return expected_tpt_legacy;
/* Legacy rates have only one table */
if (column->mode == RS_LEGACY)
return expected_tpt_legacy;
ht_tbl_pointer = expected_tpt_mimo2_20MHz;
/* Choose among many HT tables depending on number of streams
* (SISO/MIMO2), channel width (20/40/80), SGI, and aggregation
* status */
if (column->mode == RS_SISO) {
switch (bw) {
case RATE_MCS_CHAN_WIDTH_20:
ht_tbl_pointer = expected_tpt_siso_20MHz;
break;
case RATE_MCS_CHAN_WIDTH_40:
ht_tbl_pointer = expected_tpt_siso_40MHz;
break;
case RATE_MCS_CHAN_WIDTH_80:
ht_tbl_pointer = expected_tpt_siso_80MHz;
break;
default:
WARN_ON_ONCE(1);
}
} else if (column->mode == RS_MIMO2) {
switch (bw) {
case RATE_MCS_CHAN_WIDTH_20:
ht_tbl_pointer = expected_tpt_mimo2_20MHz;
break;
case RATE_MCS_CHAN_WIDTH_40:
ht_tbl_pointer = expected_tpt_mimo2_40MHz;
break;
case RATE_MCS_CHAN_WIDTH_80:
ht_tbl_pointer = expected_tpt_mimo2_80MHz;
break;
default:
WARN_ON_ONCE(1);
}
} else {
WARN_ON_ONCE(1);
}
if (!column->sgi && !lq_sta->is_agg) /* Normal */
return ht_tbl_pointer[0];
else if (column->sgi && !lq_sta->is_agg) /* SGI */
return ht_tbl_pointer[1];
else if (!column->sgi && lq_sta->is_agg) /* AGG */
return ht_tbl_pointer[2];
else /* AGG+SGI */
return ht_tbl_pointer[3];
}
static void rs_set_expected_tpt_table(struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl)
{
struct rs_rate *rate = &tbl->rate;
const struct rs_tx_column *column = &rs_tx_columns[tbl->column];
tbl->expected_tpt = rs_get_expected_tpt_table(lq_sta, column, rate->bw);
}
static s32 rs_get_best_rate(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl, /* "search" */
unsigned long rate_mask, s8 index)
{
struct iwl_scale_tbl_info *active_tbl =
&(lq_sta->lq_info[lq_sta->active_tbl]);
s32 success_ratio = active_tbl->win[index].success_ratio;
u16 expected_current_tpt = active_tbl->expected_tpt[index];
const u16 *tpt_tbl = tbl->expected_tpt;
u16 high_low;
u32 target_tpt;
int rate_idx;
if (success_ratio > IWL_MVM_RS_SR_NO_DECREASE) {
target_tpt = 100 * expected_current_tpt;
IWL_DEBUG_RATE(mvm,
"SR %d high. Find rate exceeding EXPECTED_CURRENT %d\n",
success_ratio, target_tpt);
} else {
target_tpt = lq_sta->last_tpt;
IWL_DEBUG_RATE(mvm,
"SR %d not thag good. Find rate exceeding ACTUAL_TPT %d\n",
success_ratio, target_tpt);
}
rate_idx = find_first_bit(&rate_mask, BITS_PER_LONG);
while (rate_idx != IWL_RATE_INVALID) {
if (target_tpt < (100 * tpt_tbl[rate_idx]))
break;
high_low = rs_get_adjacent_rate(mvm, rate_idx, rate_mask,
tbl->rate.type);
rate_idx = (high_low >> 8) & 0xff;
}
IWL_DEBUG_RATE(mvm, "Best rate found %d target_tp %d expected_new %d\n",
rate_idx, target_tpt,
rate_idx != IWL_RATE_INVALID ?
100 * tpt_tbl[rate_idx] : IWL_INVALID_VALUE);
return rate_idx;
}
static u32 rs_bw_from_sta_bw(struct ieee80211_sta *sta)
{
if (sta->bandwidth >= IEEE80211_STA_RX_BW_80)
return RATE_MCS_CHAN_WIDTH_80;
else if (sta->bandwidth >= IEEE80211_STA_RX_BW_40)
return RATE_MCS_CHAN_WIDTH_40;
return RATE_MCS_CHAN_WIDTH_20;
}
/*
* Check whether we should continue using same modulation mode, or
* begin search for a new mode, based on:
* 1) # tx successes or failures while using this mode
* 2) # times calling this function
* 3) elapsed time in this mode (not used, for now)
*/
static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search)
{
struct iwl_scale_tbl_info *tbl;
int active_tbl;
int flush_interval_passed = 0;
struct iwl_mvm *mvm;
mvm = lq_sta->pers.drv;
active_tbl = lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
/* If we've been disallowing search, see if we should now allow it */
if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) {
/* Elapsed time using current modulation mode */
if (lq_sta->flush_timer)
flush_interval_passed =
time_after(jiffies,
(unsigned long)(lq_sta->flush_timer +
(IWL_MVM_RS_STAY_IN_COLUMN_TIMEOUT * HZ)));
/*
* Check if we should allow search for new modulation mode.
* If many frames have failed or succeeded, or we've used
* this same modulation for a long time, allow search, and
* reset history stats that keep track of whether we should
* allow a new search. Also (below) reset all bitmaps and
* stats in active history.
*/
if (force_search ||
(lq_sta->total_failed > lq_sta->max_failure_limit) ||
(lq_sta->total_success > lq_sta->max_success_limit) ||
((!lq_sta->search_better_tbl) &&
(lq_sta->flush_timer) && (flush_interval_passed))) {
IWL_DEBUG_RATE(mvm,
"LQ: stay is expired %d %d %d\n",
lq_sta->total_failed,
lq_sta->total_success,
flush_interval_passed);
/* Allow search for new mode */
lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_STARTED;
IWL_DEBUG_RATE(mvm,
"Moving to RS_STATE_SEARCH_CYCLE_STARTED\n");
lq_sta->total_failed = 0;
lq_sta->total_success = 0;
lq_sta->flush_timer = 0;
/* mark the current column as visited */
lq_sta->visited_columns = BIT(tbl->column);
/*
* Else if we've used this modulation mode enough repetitions
* (regardless of elapsed time or success/failure), reset
* history bitmaps and rate-specific stats for all rates in
* active table.
*/
} else {
lq_sta->table_count++;
if (lq_sta->table_count >=
lq_sta->table_count_limit) {
lq_sta->table_count = 0;
IWL_DEBUG_RATE(mvm,
"LQ: stay in table clear win\n");
rs_rate_scale_clear_tbl_windows(mvm, tbl);
}
}
/* If transitioning to allow "search", reset all history
* bitmaps and stats in active table (this will become the new
* "search" table). */
if (lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED) {
rs_rate_scale_clear_tbl_windows(mvm, tbl);
}
}
}
/*
* setup rate table in uCode
*/
static void rs_update_rate_tbl(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl)
{
rs_fill_lq_cmd(mvm, sta, lq_sta, &tbl->rate);
iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false);
}
static enum rs_column rs_get_next_column(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct ieee80211_sta *sta,
struct iwl_scale_tbl_info *tbl)
{
int i, j, max_rate;
enum rs_column next_col_id;
const struct rs_tx_column *curr_col = &rs_tx_columns[tbl->column];
const struct rs_tx_column *next_col;
allow_column_func_t allow_func;
u8 valid_ants = iwl_mvm_get_valid_tx_ant(mvm);
const u16 *expected_tpt_tbl;
u16 tpt, max_expected_tpt;
for (i = 0; i < MAX_NEXT_COLUMNS; i++) {
next_col_id = curr_col->next_columns[i];
if (next_col_id == RS_COLUMN_INVALID)
continue;
if (lq_sta->visited_columns & BIT(next_col_id)) {
IWL_DEBUG_RATE(mvm, "Skip already visited column %d\n",
next_col_id);
continue;
}
next_col = &rs_tx_columns[next_col_id];
if (!rs_is_valid_ant(valid_ants, next_col->ant)) {
IWL_DEBUG_RATE(mvm,
"Skip column %d as ANT config isn't supported by chip. valid_ants 0x%x column ant 0x%x\n",
next_col_id, valid_ants, next_col->ant);
continue;
}
for (j = 0; j < MAX_COLUMN_CHECKS; j++) {
allow_func = next_col->checks[j];
if (allow_func && !allow_func(mvm, sta, &tbl->rate,
next_col))
break;
}
if (j != MAX_COLUMN_CHECKS) {
IWL_DEBUG_RATE(mvm,
"Skip column %d: not allowed (check %d failed)\n",
next_col_id, j);
continue;
}
tpt = lq_sta->last_tpt / 100;
expected_tpt_tbl = rs_get_expected_tpt_table(lq_sta, next_col,
rs_bw_from_sta_bw(sta));
if (WARN_ON_ONCE(!expected_tpt_tbl))
continue;
max_rate = rs_get_max_allowed_rate(lq_sta, next_col);
if (max_rate == IWL_RATE_INVALID) {
IWL_DEBUG_RATE(mvm,
"Skip column %d: no rate is allowed in this column\n",
next_col_id);
continue;
}
max_expected_tpt = expected_tpt_tbl[max_rate];
if (tpt >= max_expected_tpt) {
IWL_DEBUG_RATE(mvm,
"Skip column %d: can't beat current TPT. Max expected %d current %d\n",
next_col_id, max_expected_tpt, tpt);
continue;
}
IWL_DEBUG_RATE(mvm,
"Found potential column %d. Max expected %d current %d\n",
next_col_id, max_expected_tpt, tpt);
break;
}
if (i == MAX_NEXT_COLUMNS)
return RS_COLUMN_INVALID;
return next_col_id;
}
static int rs_switch_to_column(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct ieee80211_sta *sta,
enum rs_column col_id)
{
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct iwl_scale_tbl_info *search_tbl =
&(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
struct rs_rate *rate = &search_tbl->rate;
const struct rs_tx_column *column = &rs_tx_columns[col_id];
const struct rs_tx_column *curr_column = &rs_tx_columns[tbl->column];
u32 sz = (sizeof(struct iwl_scale_tbl_info) -
(sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT));
unsigned long rate_mask = 0;
u32 rate_idx = 0;
memcpy(search_tbl, tbl, sz);
rate->sgi = column->sgi;
rate->ant = column->ant;
if (column->mode == RS_LEGACY) {
if (lq_sta->band == IEEE80211_BAND_5GHZ)
rate->type = LQ_LEGACY_A;
else
rate->type = LQ_LEGACY_G;
rate->bw = RATE_MCS_CHAN_WIDTH_20;
rate->ldpc = false;
rate_mask = lq_sta->active_legacy_rate;
} else if (column->mode == RS_SISO) {
rate->type = lq_sta->is_vht ? LQ_VHT_SISO : LQ_HT_SISO;
rate_mask = lq_sta->active_siso_rate;
} else if (column->mode == RS_MIMO2) {
rate->type = lq_sta->is_vht ? LQ_VHT_MIMO2 : LQ_HT_MIMO2;
rate_mask = lq_sta->active_mimo2_rate;
} else {
WARN_ON_ONCE("Bad column mode");
}
if (column->mode != RS_LEGACY) {
rate->bw = rs_bw_from_sta_bw(sta);
rate->ldpc = lq_sta->ldpc;
}
search_tbl->column = col_id;
rs_set_expected_tpt_table(lq_sta, search_tbl);
lq_sta->visited_columns |= BIT(col_id);
/* Get the best matching rate if we're changing modes. e.g.
* SISO->MIMO, LEGACY->SISO, MIMO->SISO
*/
if (curr_column->mode != column->mode) {
rate_idx = rs_get_best_rate(mvm, lq_sta, search_tbl,
rate_mask, rate->index);
if ((rate_idx == IWL_RATE_INVALID) ||
!(BIT(rate_idx) & rate_mask)) {
IWL_DEBUG_RATE(mvm,
"can not switch with index %d"
" rate mask %lx\n",
rate_idx, rate_mask);
goto err;
}
rate->index = rate_idx;
}
IWL_DEBUG_RATE(mvm, "Switched to column %d: Index %d\n",
col_id, rate->index);
return 0;
err:
rate->type = LQ_NONE;
return -1;
}
static enum rs_action rs_get_rate_action(struct iwl_mvm *mvm,
struct iwl_scale_tbl_info *tbl,
s32 sr, int low, int high,
int current_tpt,
int low_tpt, int high_tpt)
{
enum rs_action action = RS_ACTION_STAY;
if ((sr <= RS_PERCENT(IWL_MVM_RS_SR_FORCE_DECREASE)) ||
(current_tpt == 0)) {
IWL_DEBUG_RATE(mvm,
"Decrease rate because of low SR\n");
return RS_ACTION_DOWNSCALE;
}
if ((low_tpt == IWL_INVALID_VALUE) &&
(high_tpt == IWL_INVALID_VALUE) &&
(high != IWL_RATE_INVALID)) {
IWL_DEBUG_RATE(mvm,
"No data about high/low rates. Increase rate\n");
return RS_ACTION_UPSCALE;
}
if ((high_tpt == IWL_INVALID_VALUE) &&
(high != IWL_RATE_INVALID) &&
(low_tpt != IWL_INVALID_VALUE) &&
(low_tpt < current_tpt)) {
IWL_DEBUG_RATE(mvm,
"No data about high rate and low rate is worse. Increase rate\n");
return RS_ACTION_UPSCALE;
}
if ((high_tpt != IWL_INVALID_VALUE) &&
(high_tpt > current_tpt)) {
IWL_DEBUG_RATE(mvm,
"Higher rate is better. Increate rate\n");
return RS_ACTION_UPSCALE;
}
if ((low_tpt != IWL_INVALID_VALUE) &&
(high_tpt != IWL_INVALID_VALUE) &&
(low_tpt < current_tpt) &&
(high_tpt < current_tpt)) {
IWL_DEBUG_RATE(mvm,
"Both high and low are worse. Maintain rate\n");
return RS_ACTION_STAY;
}
if ((low_tpt != IWL_INVALID_VALUE) &&
(low_tpt > current_tpt)) {
IWL_DEBUG_RATE(mvm,
"Lower rate is better\n");
action = RS_ACTION_DOWNSCALE;
goto out;
}
if ((low_tpt == IWL_INVALID_VALUE) &&
(low != IWL_RATE_INVALID)) {
IWL_DEBUG_RATE(mvm,
"No data about lower rate\n");
action = RS_ACTION_DOWNSCALE;
goto out;
}
IWL_DEBUG_RATE(mvm, "Maintain rate\n");
out:
if ((action == RS_ACTION_DOWNSCALE) && (low != IWL_RATE_INVALID)) {
if (sr >= RS_PERCENT(IWL_MVM_RS_SR_NO_DECREASE)) {
IWL_DEBUG_RATE(mvm,
"SR is above NO DECREASE. Avoid downscale\n");
action = RS_ACTION_STAY;
} else if (current_tpt > (100 * tbl->expected_tpt[low])) {
IWL_DEBUG_RATE(mvm,
"Current TPT is higher than max expected in low rate. Avoid downscale\n");
action = RS_ACTION_STAY;
} else {
IWL_DEBUG_RATE(mvm, "Decrease rate\n");
}
}
return action;
}
static bool rs_stbc_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta)
{
/* Our chip supports Tx STBC and the peer is an HT/VHT STA which
* supports STBC of at least 1*SS
*/
if (!lq_sta->stbc_capable)
return false;
if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta))
return false;
return true;
}
static void rs_get_adjacent_txp(struct iwl_mvm *mvm, int index,
int *weaker, int *stronger)
{
*weaker = index + IWL_MVM_RS_TPC_TX_POWER_STEP;
if (*weaker > TPC_MAX_REDUCTION)
*weaker = TPC_INVALID;
*stronger = index - IWL_MVM_RS_TPC_TX_POWER_STEP;
if (*stronger < 0)
*stronger = TPC_INVALID;
}
static bool rs_tpc_allowed(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
struct rs_rate *rate, enum ieee80211_band band)
{
int index = rate->index;
bool cam = (iwlmvm_mod_params.power_scheme == IWL_POWER_SCHEME_CAM);
bool sta_ps_disabled = (vif->type == NL80211_IFTYPE_STATION &&
!vif->bss_conf.ps);
IWL_DEBUG_RATE(mvm, "cam: %d sta_ps_disabled %d\n",
cam, sta_ps_disabled);
/*
* allow tpc only if power management is enabled, or bt coex
* activity grade allows it and we are on 2.4Ghz.
*/
if ((cam || sta_ps_disabled) &&
!iwl_mvm_bt_coex_is_tpc_allowed(mvm, band))
return false;
IWL_DEBUG_RATE(mvm, "check rate, table type: %d\n", rate->type);
if (is_legacy(rate))
return index == IWL_RATE_54M_INDEX;
if (is_ht(rate))
return index == IWL_RATE_MCS_7_INDEX;
if (is_vht(rate))
return index == IWL_RATE_MCS_7_INDEX ||
index == IWL_RATE_MCS_8_INDEX ||
index == IWL_RATE_MCS_9_INDEX;
WARN_ON_ONCE(1);
return false;
}
enum tpc_action {
TPC_ACTION_STAY,
TPC_ACTION_DECREASE,
TPC_ACTION_INCREASE,
TPC_ACTION_NO_RESTIRCTION,
};
static enum tpc_action rs_get_tpc_action(struct iwl_mvm *mvm,
s32 sr, int weak, int strong,
int current_tpt,
int weak_tpt, int strong_tpt)
{
/* stay until we have valid tpt */
if (current_tpt == IWL_INVALID_VALUE) {
IWL_DEBUG_RATE(mvm, "no current tpt. stay.\n");
return TPC_ACTION_STAY;
}
/* Too many failures, increase txp */
if (sr <= RS_PERCENT(IWL_MVM_RS_TPC_SR_FORCE_INCREASE) ||
current_tpt == 0) {
IWL_DEBUG_RATE(mvm, "increase txp because of weak SR\n");
return TPC_ACTION_NO_RESTIRCTION;
}
/* try decreasing first if applicable */
if (weak != TPC_INVALID) {
if (weak_tpt == IWL_INVALID_VALUE &&
(strong_tpt == IWL_INVALID_VALUE ||
current_tpt >= strong_tpt)) {
IWL_DEBUG_RATE(mvm,
"no weak txp measurement. decrease txp\n");
return TPC_ACTION_DECREASE;
}
if (weak_tpt > current_tpt) {
IWL_DEBUG_RATE(mvm,
"lower txp has better tpt. decrease txp\n");
return TPC_ACTION_DECREASE;
}
}
/* next, increase if needed */
if (sr < RS_PERCENT(IWL_MVM_RS_TPC_SR_NO_INCREASE) &&
strong != TPC_INVALID) {
if (weak_tpt == IWL_INVALID_VALUE &&
strong_tpt != IWL_INVALID_VALUE &&
current_tpt < strong_tpt) {
IWL_DEBUG_RATE(mvm,
"higher txp has better tpt. increase txp\n");
return TPC_ACTION_INCREASE;
}
if (weak_tpt < current_tpt &&
(strong_tpt == IWL_INVALID_VALUE ||
strong_tpt > current_tpt)) {
IWL_DEBUG_RATE(mvm,
"lower txp has worse tpt. increase txp\n");
return TPC_ACTION_INCREASE;
}
}
IWL_DEBUG_RATE(mvm, "no need to increase or decrease txp - stay\n");
return TPC_ACTION_STAY;
}
static bool rs_tpc_perform(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
struct iwl_scale_tbl_info *tbl)
{
struct iwl_mvm_sta *mvm_sta = iwl_mvm_sta_from_mac80211(sta);
struct ieee80211_vif *vif = mvm_sta->vif;
struct ieee80211_chanctx_conf *chanctx_conf;
enum ieee80211_band band;
struct iwl_rate_scale_data *window;
struct rs_rate *rate = &tbl->rate;
enum tpc_action action;
s32 sr;
u8 cur = lq_sta->lq.reduced_tpc;
int current_tpt;
int weak, strong;
int weak_tpt = IWL_INVALID_VALUE, strong_tpt = IWL_INVALID_VALUE;
#ifdef CONFIG_MAC80211_DEBUGFS
if (lq_sta->pers.dbg_fixed_txp_reduction <= TPC_MAX_REDUCTION) {
IWL_DEBUG_RATE(mvm, "fixed tpc: %d\n",
lq_sta->pers.dbg_fixed_txp_reduction);
lq_sta->lq.reduced_tpc = lq_sta->pers.dbg_fixed_txp_reduction;
return cur != lq_sta->pers.dbg_fixed_txp_reduction;
}
#endif
rcu_read_lock();
chanctx_conf = rcu_dereference(vif->chanctx_conf);
if (WARN_ON(!chanctx_conf))
band = IEEE80211_NUM_BANDS;
else
band = chanctx_conf->def.chan->band;
rcu_read_unlock();
if (!rs_tpc_allowed(mvm, vif, rate, band)) {
IWL_DEBUG_RATE(mvm,
"tpc is not allowed. remove txp restrictions\n");
lq_sta->lq.reduced_tpc = TPC_NO_REDUCTION;
return cur != TPC_NO_REDUCTION;
}
rs_get_adjacent_txp(mvm, cur, &weak, &strong);
/* Collect measured throughputs for current and adjacent rates */
window = tbl->tpc_win;
sr = window[cur].success_ratio;
current_tpt = window[cur].average_tpt;
if (weak != TPC_INVALID)
weak_tpt = window[weak].average_tpt;
if (strong != TPC_INVALID)
strong_tpt = window[strong].average_tpt;
IWL_DEBUG_RATE(mvm,
"(TPC: %d): cur_tpt %d SR %d weak %d strong %d weak_tpt %d strong_tpt %d\n",
cur, current_tpt, sr, weak, strong,
weak_tpt, strong_tpt);
action = rs_get_tpc_action(mvm, sr, weak, strong,
current_tpt, weak_tpt, strong_tpt);
/* override actions if we are on the edge */
if (weak == TPC_INVALID && action == TPC_ACTION_DECREASE) {
IWL_DEBUG_RATE(mvm, "already in lowest txp, stay\n");
action = TPC_ACTION_STAY;
} else if (strong == TPC_INVALID &&
(action == TPC_ACTION_INCREASE ||
action == TPC_ACTION_NO_RESTIRCTION)) {
IWL_DEBUG_RATE(mvm, "already in highest txp, stay\n");
action = TPC_ACTION_STAY;
}
switch (action) {
case TPC_ACTION_DECREASE:
lq_sta->lq.reduced_tpc = weak;
return true;
case TPC_ACTION_INCREASE:
lq_sta->lq.reduced_tpc = strong;
return true;
case TPC_ACTION_NO_RESTIRCTION:
lq_sta->lq.reduced_tpc = TPC_NO_REDUCTION;
return true;
case TPC_ACTION_STAY:
/* do nothing */
break;
}
return false;
}
/*
* Do rate scaling and search for new modulation mode.
*/
static void rs_rate_scale_perform(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
int tid)
{
int low = IWL_RATE_INVALID;
int high = IWL_RATE_INVALID;
int index;
struct iwl_rate_scale_data *window = NULL;
int current_tpt = IWL_INVALID_VALUE;
int low_tpt = IWL_INVALID_VALUE;
int high_tpt = IWL_INVALID_VALUE;
u32 fail_count;
enum rs_action scale_action = RS_ACTION_STAY;
u16 rate_mask;
u8 update_lq = 0;
struct iwl_scale_tbl_info *tbl, *tbl1;
u8 active_tbl = 0;
u8 done_search = 0;
u16 high_low;
s32 sr;
u8 prev_agg = lq_sta->is_agg;
struct iwl_mvm_sta *sta_priv = iwl_mvm_sta_from_mac80211(sta);
struct iwl_mvm_tid_data *tid_data;
struct rs_rate *rate;
lq_sta->is_agg = !!sta_priv->agg_tids;
/*
* Select rate-scale / modulation-mode table to work with in
* the rest of this function: "search" if searching for better
* modulation mode, or "active" if doing rate scaling within a mode.
*/
if (!lq_sta->search_better_tbl)
active_tbl = lq_sta->active_tbl;
else
active_tbl = 1 - lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
rate = &tbl->rate;
if (prev_agg != lq_sta->is_agg) {
IWL_DEBUG_RATE(mvm,
"Aggregation changed: prev %d current %d. Update expected TPT table\n",
prev_agg, lq_sta->is_agg);
rs_set_expected_tpt_table(lq_sta, tbl);
rs_rate_scale_clear_tbl_windows(mvm, tbl);
}
/* current tx rate */
index = rate->index;
/* rates available for this association, and for modulation mode */
rate_mask = rs_get_supported_rates(lq_sta, rate);
if (!(BIT(index) & rate_mask)) {
IWL_ERR(mvm, "Current Rate is not valid\n");
if (lq_sta->search_better_tbl) {
/* revert to active table if search table is not valid*/
rate->type = LQ_NONE;
lq_sta->search_better_tbl = 0;
tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
rs_update_rate_tbl(mvm, sta, lq_sta, tbl);
}
return;
}
/* Get expected throughput table and history window for current rate */
if (!tbl->expected_tpt) {
IWL_ERR(mvm, "tbl->expected_tpt is NULL\n");
return;
}
/* TODO: handle rate_idx_mask and rate_idx_mcs_mask */
window = &(tbl->win[index]);
/*
* If there is not enough history to calculate actual average
* throughput, keep analyzing results of more tx frames, without
* changing rate or mode (bypass most of the rest of this function).
* Set up new rate table in uCode only if old rate is not supported
* in current association (use new rate found above).
*/
fail_count = window->counter - window->success_counter;
if ((fail_count < IWL_MVM_RS_RATE_MIN_FAILURE_TH) &&
(window->success_counter < IWL_MVM_RS_RATE_MIN_SUCCESS_TH)) {
IWL_DEBUG_RATE(mvm,
"(%s: %d): Test Window: succ %d total %d\n",
rs_pretty_lq_type(rate->type),
index, window->success_counter, window->counter);
/* Can't calculate this yet; not enough history */
window->average_tpt = IWL_INVALID_VALUE;
/* Should we stay with this modulation mode,
* or search for a new one? */
rs_stay_in_table(lq_sta, false);
return;
}
/* If we are searching for better modulation mode, check success. */
if (lq_sta->search_better_tbl) {
/* If good success, continue using the "search" mode;
* no need to send new link quality command, since we're
* continuing to use the setup that we've been trying. */
if (window->average_tpt > lq_sta->last_tpt) {
IWL_DEBUG_RATE(mvm,
"SWITCHING TO NEW TABLE SR: %d "
"cur-tpt %d old-tpt %d\n",
window->success_ratio,
window->average_tpt,
lq_sta->last_tpt);
/* Swap tables; "search" becomes "active" */
lq_sta->active_tbl = active_tbl;
current_tpt = window->average_tpt;
/* Else poor success; go back to mode in "active" table */
} else {
IWL_DEBUG_RATE(mvm,
"GOING BACK TO THE OLD TABLE: SR %d "
"cur-tpt %d old-tpt %d\n",
window->success_ratio,
window->average_tpt,
lq_sta->last_tpt);
/* Nullify "search" table */
rate->type = LQ_NONE;
/* Revert to "active" table */
active_tbl = lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
/* Revert to "active" rate and throughput info */
index = tbl->rate.index;
current_tpt = lq_sta->last_tpt;
/* Need to set up a new rate table in uCode */
update_lq = 1;
}
/* Either way, we've made a decision; modulation mode
* search is done, allow rate adjustment next time. */
lq_sta->search_better_tbl = 0;
done_search = 1; /* Don't switch modes below! */
goto lq_update;
}
/* (Else) not in search of better modulation mode, try for better
* starting rate, while staying in this mode. */
high_low = rs_get_adjacent_rate(mvm, index, rate_mask, rate->type);
low = high_low & 0xff;
high = (high_low >> 8) & 0xff;
/* TODO: handle rate_idx_mask and rate_idx_mcs_mask */
sr = window->success_ratio;
/* Collect measured throughputs for current and adjacent rates */
current_tpt = window->average_tpt;
if (low != IWL_RATE_INVALID)
low_tpt = tbl->win[low].average_tpt;
if (high != IWL_RATE_INVALID)
high_tpt = tbl->win[high].average_tpt;
IWL_DEBUG_RATE(mvm,
"(%s: %d): cur_tpt %d SR %d low %d high %d low_tpt %d high_tpt %d\n",
rs_pretty_lq_type(rate->type), index, current_tpt, sr,
low, high, low_tpt, high_tpt);
scale_action = rs_get_rate_action(mvm, tbl, sr, low, high,
current_tpt, low_tpt, high_tpt);
/* Force a search in case BT doesn't like us being in MIMO */
if (is_mimo(rate) &&
!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) {
IWL_DEBUG_RATE(mvm,
"BT Coex forbids MIMO. Search for new config\n");
rs_stay_in_table(lq_sta, true);
goto lq_update;
}
switch (scale_action) {
case RS_ACTION_DOWNSCALE:
/* Decrease starting rate, update uCode's rate table */
if (low != IWL_RATE_INVALID) {
update_lq = 1;
index = low;
} else {
IWL_DEBUG_RATE(mvm,
"At the bottom rate. Can't decrease\n");
}
break;
case RS_ACTION_UPSCALE:
/* Increase starting rate, update uCode's rate table */
if (high != IWL_RATE_INVALID) {
update_lq = 1;
index = high;
} else {
IWL_DEBUG_RATE(mvm,
"At the top rate. Can't increase\n");
}
break;
case RS_ACTION_STAY:
/* No change */
if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN)
update_lq = rs_tpc_perform(mvm, sta, lq_sta, tbl);
break;
default:
break;
}
lq_update:
/* Replace uCode's rate table for the destination station. */
if (update_lq) {
tbl->rate.index = index;
rs_update_rate_tbl(mvm, sta, lq_sta, tbl);
}
rs_stay_in_table(lq_sta, false);
/*
* Search for new modulation mode if we're:
* 1) Not changing rates right now
* 2) Not just finishing up a search
* 3) Allowing a new search
*/
if (!update_lq && !done_search &&
lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED
&& window->counter) {
enum rs_column next_column;
/* Save current throughput to compare with "search" throughput*/
lq_sta->last_tpt = current_tpt;
IWL_DEBUG_RATE(mvm,
"Start Search: update_lq %d done_search %d rs_state %d win->counter %d\n",
update_lq, done_search, lq_sta->rs_state,
window->counter);
next_column = rs_get_next_column(mvm, lq_sta, sta, tbl);
if (next_column != RS_COLUMN_INVALID) {
int ret = rs_switch_to_column(mvm, lq_sta, sta,
next_column);
if (!ret)
lq_sta->search_better_tbl = 1;
} else {
IWL_DEBUG_RATE(mvm,
"No more columns to explore in search cycle. Go to RS_STATE_SEARCH_CYCLE_ENDED\n");
lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_ENDED;
}
/* If new "search" mode was selected, set up in uCode table */
if (lq_sta->search_better_tbl) {
/* Access the "search" table, clear its history. */
tbl = &(lq_sta->lq_info[(1 - lq_sta->active_tbl)]);
rs_rate_scale_clear_tbl_windows(mvm, tbl);
/* Use new "search" start rate */
index = tbl->rate.index;
rs_dump_rate(mvm, &tbl->rate,
"Switch to SEARCH TABLE:");
rs_update_rate_tbl(mvm, sta, lq_sta, tbl);
} else {
done_search = 1;
}
}
if (done_search && lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_ENDED) {
/* If the "active" (non-search) mode was legacy,
* and we've tried switching antennas,
* but we haven't been able to try HT modes (not available),
* stay with best antenna legacy modulation for a while
* before next round of mode comparisons. */
tbl1 = &(lq_sta->lq_info[lq_sta->active_tbl]);
if (is_legacy(&tbl1->rate)) {
IWL_DEBUG_RATE(mvm, "LQ: STAY in legacy table\n");
if (tid != IWL_MAX_TID_COUNT) {
tid_data = &sta_priv->tid_data[tid];
if (tid_data->state != IWL_AGG_OFF) {
IWL_DEBUG_RATE(mvm,
"Stop aggregation on tid %d\n",
tid);
ieee80211_stop_tx_ba_session(sta, tid);
}
}
rs_set_stay_in_table(mvm, 1, lq_sta);
} else {
/* If we're in an HT mode, and all 3 mode switch actions
* have been tried and compared, stay in this best modulation
* mode for a while before next round of mode comparisons. */
if ((lq_sta->last_tpt > IWL_AGG_TPT_THREHOLD) &&
(lq_sta->tx_agg_tid_en & (1 << tid)) &&
(tid != IWL_MAX_TID_COUNT)) {
tid_data = &sta_priv->tid_data[tid];
if (tid_data->state == IWL_AGG_OFF) {
IWL_DEBUG_RATE(mvm,
"try to aggregate tid %d\n",
tid);
rs_tl_turn_on_agg(mvm, tid,
lq_sta, sta);
}
}
rs_set_stay_in_table(mvm, 0, lq_sta);
}
}
}
struct rs_init_rate_info {
s8 rssi;
u8 rate_idx;
};
static const struct rs_init_rate_info rs_init_rates_24ghz[] = {
{ -60, IWL_RATE_54M_INDEX },
{ -64, IWL_RATE_48M_INDEX },
{ -68, IWL_RATE_36M_INDEX },
{ -80, IWL_RATE_24M_INDEX },
{ -84, IWL_RATE_18M_INDEX },
{ -85, IWL_RATE_12M_INDEX },
{ -86, IWL_RATE_11M_INDEX },
{ -88, IWL_RATE_5M_INDEX },
{ -90, IWL_RATE_2M_INDEX },
{ S8_MIN, IWL_RATE_1M_INDEX },
};
static const struct rs_init_rate_info rs_init_rates_5ghz[] = {
{ -60, IWL_RATE_54M_INDEX },
{ -64, IWL_RATE_48M_INDEX },
{ -72, IWL_RATE_36M_INDEX },
{ -80, IWL_RATE_24M_INDEX },
{ -84, IWL_RATE_18M_INDEX },
{ -85, IWL_RATE_12M_INDEX },
{ -87, IWL_RATE_9M_INDEX },
{ S8_MIN, IWL_RATE_6M_INDEX },
};
/* Choose an initial legacy rate and antenna to use based on the RSSI
* of last Rx
*/
static void rs_get_initial_rate(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
enum ieee80211_band band,
struct rs_rate *rate)
{
int i, nentries;
s8 best_rssi = S8_MIN;
u8 best_ant = ANT_NONE;
u8 valid_tx_ant = iwl_mvm_get_valid_tx_ant(mvm);
const struct rs_init_rate_info *initial_rates;
for (i = 0; i < ARRAY_SIZE(lq_sta->pers.chain_signal); i++) {
if (!(lq_sta->pers.chains & BIT(i)))
continue;
if (lq_sta->pers.chain_signal[i] > best_rssi) {
best_rssi = lq_sta->pers.chain_signal[i];
best_ant = BIT(i);
}
}
IWL_DEBUG_RATE(mvm, "Best ANT: %s Best RSSI: %d\n",
rs_pretty_ant(best_ant), best_rssi);
if (best_ant != ANT_A && best_ant != ANT_B)
rate->ant = first_antenna(valid_tx_ant);
else
rate->ant = best_ant;
rate->sgi = false;
rate->ldpc = false;
rate->bw = RATE_MCS_CHAN_WIDTH_20;
rate->index = find_first_bit(&lq_sta->active_legacy_rate,
BITS_PER_LONG);
if (band == IEEE80211_BAND_5GHZ) {
rate->type = LQ_LEGACY_A;
initial_rates = rs_init_rates_5ghz;
nentries = ARRAY_SIZE(rs_init_rates_5ghz);
} else {
rate->type = LQ_LEGACY_G;
initial_rates = rs_init_rates_24ghz;
nentries = ARRAY_SIZE(rs_init_rates_24ghz);
}
if (IWL_MVM_RS_RSSI_BASED_INIT_RATE) {
for (i = 0; i < nentries; i++) {
int rate_idx = initial_rates[i].rate_idx;
if ((best_rssi >= initial_rates[i].rssi) &&
(BIT(rate_idx) & lq_sta->active_legacy_rate)) {
rate->index = rate_idx;
break;
}
}
}
IWL_DEBUG_RATE(mvm, "rate_idx %d ANT %s\n", rate->index,
rs_pretty_ant(rate->ant));
}
/* Save info about RSSI of last Rx */
void rs_update_last_rssi(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct ieee80211_rx_status *rx_status)
{
lq_sta->pers.chains = rx_status->chains;
lq_sta->pers.chain_signal[0] = rx_status->chain_signal[0];
lq_sta->pers.chain_signal[1] = rx_status->chain_signal[1];
lq_sta->pers.chain_signal[2] = rx_status->chain_signal[2];
}
/**
* rs_initialize_lq - Initialize a station's hardware rate table
*
* The uCode's station table contains a table of fallback rates
* for automatic fallback during transmission.
*
* NOTE: This sets up a default set of values. These will be replaced later
* if the driver's iwl-agn-rs rate scaling algorithm is used, instead of
* rc80211_simple.
*
* NOTE: Run REPLY_ADD_STA command to set up station table entry, before
* calling this function (which runs REPLY_TX_LINK_QUALITY_CMD,
* which requires station table entry to exist).
*/
static void rs_initialize_lq(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
enum ieee80211_band band,
bool init)
{
struct iwl_scale_tbl_info *tbl;
struct rs_rate *rate;
u8 active_tbl = 0;
if (!sta || !lq_sta)
return;
if (!lq_sta->search_better_tbl)
active_tbl = lq_sta->active_tbl;
else
active_tbl = 1 - lq_sta->active_tbl;
tbl = &(lq_sta->lq_info[active_tbl]);
rate = &tbl->rate;
rs_get_initial_rate(mvm, lq_sta, band, rate);
WARN_ON_ONCE(rate->ant != ANT_A && rate->ant != ANT_B);
if (rate->ant == ANT_A)
tbl->column = RS_COLUMN_LEGACY_ANT_A;
else
tbl->column = RS_COLUMN_LEGACY_ANT_B;
rs_set_expected_tpt_table(lq_sta, tbl);
rs_fill_lq_cmd(mvm, sta, lq_sta, rate);
/* TODO restore station should remember the lq cmd */
iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, init);
}
static void rs_get_rate(void *mvm_r, struct ieee80211_sta *sta, void *mvm_sta,
struct ieee80211_tx_rate_control *txrc)
{
struct sk_buff *skb = txrc->skb;
struct iwl_op_mode *op_mode __maybe_unused =
(struct iwl_op_mode *)mvm_r;
struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct iwl_lq_sta *lq_sta = mvm_sta;
if (sta && !iwl_mvm_sta_from_mac80211(sta)->vif) {
/* if vif isn't initialized mvm doesn't know about
* this station, so don't do anything with the it
*/
sta = NULL;
mvm_sta = NULL;
}
/* TODO: handle rate_idx_mask and rate_idx_mcs_mask */
/* Treat uninitialized rate scaling data same as non-existing. */
if (lq_sta && !lq_sta->pers.drv) {
IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n");
mvm_sta = NULL;
}
/* Send management frames and NO_ACK data using lowest rate. */
if (rate_control_send_low(sta, mvm_sta, txrc))
return;
iwl_mvm_hwrate_to_tx_rate(lq_sta->last_rate_n_flags,
info->band, &info->control.rates[0]);
info->control.rates[0].count = 1;
}
static void *rs_alloc_sta(void *mvm_rate, struct ieee80211_sta *sta,
gfp_t gfp)
{
struct iwl_mvm_sta *sta_priv = iwl_mvm_sta_from_mac80211(sta);
struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_rate;
struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode);
struct iwl_lq_sta *lq_sta = &sta_priv->lq_sta;
IWL_DEBUG_RATE(mvm, "create station rate scale window\n");
lq_sta->pers.drv = mvm;
#ifdef CONFIG_MAC80211_DEBUGFS
lq_sta->pers.dbg_fixed_rate = 0;
lq_sta->pers.dbg_fixed_txp_reduction = TPC_INVALID;
lq_sta->pers.ss_force = RS_SS_FORCE_NONE;
#endif
lq_sta->pers.chains = 0;
memset(lq_sta->pers.chain_signal, 0, sizeof(lq_sta->pers.chain_signal));
return &sta_priv->lq_sta;
}
static int rs_vht_highest_rx_mcs_index(struct ieee80211_sta_vht_cap *vht_cap,
int nss)
{
u16 rx_mcs = le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) &
(0x3 << (2 * (nss - 1)));
rx_mcs >>= (2 * (nss - 1));
if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_7)
return IWL_RATE_MCS_7_INDEX;
else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_8)
return IWL_RATE_MCS_8_INDEX;
else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_9)
return IWL_RATE_MCS_9_INDEX;
WARN_ON_ONCE(rx_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED);
return -1;
}
static void rs_vht_set_enabled_rates(struct ieee80211_sta *sta,
struct ieee80211_sta_vht_cap *vht_cap,
struct iwl_lq_sta *lq_sta)
{
int i;
int highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 1);
if (highest_mcs >= IWL_RATE_MCS_0_INDEX) {
for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) {
if (i == IWL_RATE_9M_INDEX)
continue;
/* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */
if (i == IWL_RATE_MCS_9_INDEX &&
sta->bandwidth == IEEE80211_STA_RX_BW_20)
continue;
lq_sta->active_siso_rate |= BIT(i);
}
}
if (sta->rx_nss < 2)
return;
highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 2);
if (highest_mcs >= IWL_RATE_MCS_0_INDEX) {
for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) {
if (i == IWL_RATE_9M_INDEX)
continue;
/* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */
if (i == IWL_RATE_MCS_9_INDEX &&
sta->bandwidth == IEEE80211_STA_RX_BW_20)
continue;
lq_sta->active_mimo2_rate |= BIT(i);
}
}
}
static void rs_ht_init(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
struct ieee80211_sta_ht_cap *ht_cap)
{
/* active_siso_rate mask includes 9 MBits (bit 5),
* and CCK (bits 0-3), supp_rates[] does not;
* shift to convert format, force 9 MBits off.
*/
lq_sta->active_siso_rate = ht_cap->mcs.rx_mask[0] << 1;
lq_sta->active_siso_rate |= ht_cap->mcs.rx_mask[0] & 0x1;
lq_sta->active_siso_rate &= ~((u16)0x2);
lq_sta->active_siso_rate <<= IWL_FIRST_OFDM_RATE;
lq_sta->active_mimo2_rate = ht_cap->mcs.rx_mask[1] << 1;
lq_sta->active_mimo2_rate |= ht_cap->mcs.rx_mask[1] & 0x1;
lq_sta->active_mimo2_rate &= ~((u16)0x2);
lq_sta->active_mimo2_rate <<= IWL_FIRST_OFDM_RATE;
if (mvm->cfg->ht_params->ldpc &&
(ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING))
lq_sta->ldpc = true;
if (mvm->cfg->ht_params->stbc &&
(num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) > 1) &&
(ht_cap->cap & IEEE80211_HT_CAP_RX_STBC))
lq_sta->stbc_capable = true;
lq_sta->is_vht = false;
}
static void rs_vht_init(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
struct ieee80211_sta_vht_cap *vht_cap)
{
rs_vht_set_enabled_rates(sta, vht_cap, lq_sta);
if (mvm->cfg->ht_params->ldpc &&
(vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC))
lq_sta->ldpc = true;
if (mvm->cfg->ht_params->stbc &&
(num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) > 1) &&
(vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK))
lq_sta->stbc_capable = true;
if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_BEAMFORMER) &&
(num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) > 1) &&
(vht_cap->cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE))
lq_sta->bfer_capable = true;
lq_sta->is_vht = true;
}
#ifdef CONFIG_IWLWIFI_DEBUGFS
static void iwl_mvm_reset_frame_stats(struct iwl_mvm *mvm)
{
spin_lock_bh(&mvm->drv_stats_lock);
memset(&mvm->drv_rx_stats, 0, sizeof(mvm->drv_rx_stats));
spin_unlock_bh(&mvm->drv_stats_lock);
}
void iwl_mvm_update_frame_stats(struct iwl_mvm *mvm, u32 rate, bool agg)
{
u8 nss = 0, mcs = 0;
spin_lock(&mvm->drv_stats_lock);
if (agg)
mvm->drv_rx_stats.agg_frames++;
mvm->drv_rx_stats.success_frames++;
switch (rate & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
mvm->drv_rx_stats.bw_20_frames++;
break;
case RATE_MCS_CHAN_WIDTH_40:
mvm->drv_rx_stats.bw_40_frames++;
break;
case RATE_MCS_CHAN_WIDTH_80:
mvm->drv_rx_stats.bw_80_frames++;
break;
default:
WARN_ONCE(1, "bad BW. rate 0x%x", rate);
}
if (rate & RATE_MCS_HT_MSK) {
mvm->drv_rx_stats.ht_frames++;
mcs = rate & RATE_HT_MCS_RATE_CODE_MSK;
nss = ((rate & RATE_HT_MCS_NSS_MSK) >> RATE_HT_MCS_NSS_POS) + 1;
} else if (rate & RATE_MCS_VHT_MSK) {
mvm->drv_rx_stats.vht_frames++;
mcs = rate & RATE_VHT_MCS_RATE_CODE_MSK;
nss = ((rate & RATE_VHT_MCS_NSS_MSK) >>
RATE_VHT_MCS_NSS_POS) + 1;
} else {
mvm->drv_rx_stats.legacy_frames++;
}
if (nss == 1)
mvm->drv_rx_stats.siso_frames++;
else if (nss == 2)
mvm->drv_rx_stats.mimo2_frames++;
if (rate & RATE_MCS_SGI_MSK)
mvm->drv_rx_stats.sgi_frames++;
else
mvm->drv_rx_stats.ngi_frames++;
mvm->drv_rx_stats.last_rates[mvm->drv_rx_stats.last_frame_idx] = rate;
mvm->drv_rx_stats.last_frame_idx =
(mvm->drv_rx_stats.last_frame_idx + 1) %
ARRAY_SIZE(mvm->drv_rx_stats.last_rates);
spin_unlock(&mvm->drv_stats_lock);
}
#endif
/*
* Called after adding a new station to initialize rate scaling
*/
void iwl_mvm_rs_rate_init(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
enum ieee80211_band band, bool init)
{
int i, j;
struct ieee80211_hw *hw = mvm->hw;
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
struct iwl_mvm_sta *sta_priv = iwl_mvm_sta_from_mac80211(sta);
struct iwl_lq_sta *lq_sta = &sta_priv->lq_sta;
struct ieee80211_supported_band *sband;
unsigned long supp; /* must be unsigned long for for_each_set_bit */
/* clear all non-persistent lq data */
memset(lq_sta, 0, offsetof(typeof(*lq_sta), pers));
sband = hw->wiphy->bands[band];
lq_sta->lq.sta_id = sta_priv->sta_id;
for (j = 0; j < LQ_SIZE; j++)
rs_rate_scale_clear_tbl_windows(mvm, &lq_sta->lq_info[j]);
lq_sta->flush_timer = 0;
lq_sta->last_tx = jiffies;
IWL_DEBUG_RATE(mvm,
"LQ: *** rate scale station global init for station %d ***\n",
sta_priv->sta_id);
/* TODO: what is a good starting rate for STA? About middle? Maybe not
* the lowest or the highest rate.. Could consider using RSSI from
* previous packets? Need to have IEEE 802.1X auth succeed immediately
* after assoc.. */
lq_sta->missed_rate_counter = IWL_MVM_RS_MISSED_RATE_MAX;
lq_sta->band = sband->band;
/*
* active legacy rates as per supported rates bitmap
*/
supp = sta->supp_rates[sband->band];
lq_sta->active_legacy_rate = 0;
for_each_set_bit(i, &supp, BITS_PER_LONG)
lq_sta->active_legacy_rate |= BIT(sband->bitrates[i].hw_value);
/* TODO: should probably account for rx_highest for both HT/VHT */
if (!vht_cap || !vht_cap->vht_supported)
rs_ht_init(mvm, sta, lq_sta, ht_cap);
else
rs_vht_init(mvm, sta, lq_sta, vht_cap);
if (IWL_MVM_RS_DISABLE_P2P_MIMO && sta_priv->vif->p2p)
lq_sta->active_mimo2_rate = 0;
lq_sta->max_legacy_rate_idx =
rs_get_max_rate_from_mask(lq_sta->active_legacy_rate);
lq_sta->max_siso_rate_idx =
rs_get_max_rate_from_mask(lq_sta->active_siso_rate);
lq_sta->max_mimo2_rate_idx =
rs_get_max_rate_from_mask(lq_sta->active_mimo2_rate);
IWL_DEBUG_RATE(mvm,
"LEGACY=%lX SISO=%lX MIMO2=%lX VHT=%d LDPC=%d STBC=%d BFER=%d\n",
lq_sta->active_legacy_rate,
lq_sta->active_siso_rate,
lq_sta->active_mimo2_rate,
lq_sta->is_vht, lq_sta->ldpc, lq_sta->stbc_capable,
lq_sta->bfer_capable);
IWL_DEBUG_RATE(mvm, "MAX RATE: LEGACY=%d SISO=%d MIMO2=%d\n",
lq_sta->max_legacy_rate_idx,
lq_sta->max_siso_rate_idx,
lq_sta->max_mimo2_rate_idx);
/* These values will be overridden later */
lq_sta->lq.single_stream_ant_msk =
first_antenna(iwl_mvm_get_valid_tx_ant(mvm));
lq_sta->lq.dual_stream_ant_msk = ANT_AB;
/* as default allow aggregation for all tids */
lq_sta->tx_agg_tid_en = IWL_AGG_ALL_TID;
lq_sta->is_agg = 0;
#ifdef CONFIG_IWLWIFI_DEBUGFS
iwl_mvm_reset_frame_stats(mvm);
#endif
rs_initialize_lq(mvm, sta, lq_sta, band, init);
}
static void rs_rate_update(void *mvm_r,
struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *priv_sta,
u32 changed)
{
u8 tid;
struct iwl_op_mode *op_mode =
(struct iwl_op_mode *)mvm_r;
struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode);
if (!iwl_mvm_sta_from_mac80211(sta)->vif)
return;
/* Stop any ongoing aggregations as rs starts off assuming no agg */
for (tid = 0; tid < IWL_MAX_TID_COUNT; tid++)
ieee80211_stop_tx_ba_session(sta, tid);
iwl_mvm_rs_rate_init(mvm, sta, sband->band, false);
}
#ifdef CONFIG_MAC80211_DEBUGFS
static void rs_build_rates_table_from_fixed(struct iwl_mvm *mvm,
struct iwl_lq_cmd *lq_cmd,
enum ieee80211_band band,
u32 ucode_rate)
{
struct rs_rate rate;
int i;
int num_rates = ARRAY_SIZE(lq_cmd->rs_table);
__le32 ucode_rate_le32 = cpu_to_le32(ucode_rate);
u8 ant = (ucode_rate & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS;
for (i = 0; i < num_rates; i++)
lq_cmd->rs_table[i] = ucode_rate_le32;
rs_rate_from_ucode_rate(ucode_rate, band, &rate);
if (is_mimo(&rate))
lq_cmd->mimo_delim = num_rates - 1;
else
lq_cmd->mimo_delim = 0;
lq_cmd->reduced_tpc = 0;
if (num_of_ant(ant) == 1)
lq_cmd->single_stream_ant_msk = ant;
lq_cmd->agg_frame_cnt_limit = LINK_QUAL_AGG_FRAME_LIMIT_DEF;
}
#endif /* CONFIG_MAC80211_DEBUGFS */
static void rs_fill_rates_for_column(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta,
struct rs_rate *rate,
__le32 *rs_table, int *rs_table_index,
int num_rates, int num_retries,
u8 valid_tx_ant, bool toggle_ant)
{
int i, j;
__le32 ucode_rate;
bool bottom_reached = false;
int prev_rate_idx = rate->index;
int end = LINK_QUAL_MAX_RETRY_NUM;
int index = *rs_table_index;
for (i = 0; i < num_rates && index < end; i++) {
for (j = 0; j < num_retries && index < end; j++, index++) {
ucode_rate = cpu_to_le32(ucode_rate_from_rs_rate(mvm,
rate));
rs_table[index] = ucode_rate;
if (toggle_ant)
rs_toggle_antenna(valid_tx_ant, rate);
}
prev_rate_idx = rate->index;
bottom_reached = rs_get_lower_rate_in_column(lq_sta, rate);
if (bottom_reached && !is_legacy(rate))
break;
}
if (!bottom_reached && !is_legacy(rate))
rate->index = prev_rate_idx;
*rs_table_index = index;
}
/* Building the rate table is non trivial. When we're in MIMO2/VHT/80Mhz/SGI
* column the rate table should look like this:
*
* rate[0] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI
* rate[1] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI
* rate[2] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI
* rate[3] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI
* rate[4] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI
* rate[5] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI
* rate[6] 0x4005007 VHT | ANT: A BW: 80Mhz MCS: 7 NSS: 1 NGI
* rate[7] 0x4009006 VHT | ANT: B BW: 80Mhz MCS: 6 NSS: 1 NGI
* rate[8] 0x4005005 VHT | ANT: A BW: 80Mhz MCS: 5 NSS: 1 NGI
* rate[9] 0x800B Legacy | ANT: B Rate: 36 Mbps
* rate[10] 0x4009 Legacy | ANT: A Rate: 24 Mbps
* rate[11] 0x8007 Legacy | ANT: B Rate: 18 Mbps
* rate[12] 0x4005 Legacy | ANT: A Rate: 12 Mbps
* rate[13] 0x800F Legacy | ANT: B Rate: 9 Mbps
* rate[14] 0x400D Legacy | ANT: A Rate: 6 Mbps
* rate[15] 0x800D Legacy | ANT: B Rate: 6 Mbps
*/
static void rs_build_rates_table(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
const struct rs_rate *initial_rate)
{
struct rs_rate rate;
int num_rates, num_retries, index = 0;
u8 valid_tx_ant = 0;
struct iwl_lq_cmd *lq_cmd = &lq_sta->lq;
bool toggle_ant = false;
memcpy(&rate, initial_rate, sizeof(rate));
valid_tx_ant = iwl_mvm_get_valid_tx_ant(mvm);
/* TODO: remove old API when min FW API hits 14 */
if (!fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_LQ_SS_PARAMS) &&
rs_stbc_allow(mvm, sta, lq_sta))
rate.stbc = true;
if (is_siso(&rate)) {
num_rates = IWL_MVM_RS_INITIAL_SISO_NUM_RATES;
num_retries = IWL_MVM_RS_HT_VHT_RETRIES_PER_RATE;
} else if (is_mimo(&rate)) {
num_rates = IWL_MVM_RS_INITIAL_MIMO_NUM_RATES;
num_retries = IWL_MVM_RS_HT_VHT_RETRIES_PER_RATE;
} else {
num_rates = IWL_MVM_RS_INITIAL_LEGACY_NUM_RATES;
num_retries = IWL_MVM_RS_INITIAL_LEGACY_RETRIES;
toggle_ant = true;
}
rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index,
num_rates, num_retries, valid_tx_ant,
toggle_ant);
rs_get_lower_rate_down_column(lq_sta, &rate);
if (is_siso(&rate)) {
num_rates = IWL_MVM_RS_SECONDARY_SISO_NUM_RATES;
num_retries = IWL_MVM_RS_SECONDARY_SISO_RETRIES;
lq_cmd->mimo_delim = index;
} else if (is_legacy(&rate)) {
num_rates = IWL_MVM_RS_SECONDARY_LEGACY_NUM_RATES;
num_retries = IWL_MVM_RS_SECONDARY_LEGACY_RETRIES;
} else {
WARN_ON_ONCE(1);
}
toggle_ant = true;
rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index,
num_rates, num_retries, valid_tx_ant,
toggle_ant);
rs_get_lower_rate_down_column(lq_sta, &rate);
num_rates = IWL_MVM_RS_SECONDARY_LEGACY_NUM_RATES;
num_retries = IWL_MVM_RS_SECONDARY_LEGACY_RETRIES;
rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index,
num_rates, num_retries, valid_tx_ant,
toggle_ant);
}
struct rs_bfer_active_iter_data {
struct ieee80211_sta *exclude_sta;
struct iwl_mvm_sta *bfer_mvmsta;
};
static void rs_bfer_active_iter(void *_data,
struct ieee80211_sta *sta)
{
struct rs_bfer_active_iter_data *data = _data;
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct iwl_lq_cmd *lq_cmd = &mvmsta->lq_sta.lq;
u32 ss_params = le32_to_cpu(lq_cmd->ss_params);
if (sta == data->exclude_sta)
return;
/* The current sta has BFER allowed */
if (ss_params & LQ_SS_BFER_ALLOWED) {
WARN_ON_ONCE(data->bfer_mvmsta != NULL);
data->bfer_mvmsta = mvmsta;
}
}
static int rs_bfer_priority(struct iwl_mvm_sta *sta)
{
int prio = -1;
enum nl80211_iftype viftype = ieee80211_vif_type_p2p(sta->vif);
switch (viftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
prio = 3;
break;
case NL80211_IFTYPE_P2P_CLIENT:
prio = 2;
break;
case NL80211_IFTYPE_STATION:
prio = 1;
break;
default:
WARN_ONCE(true, "viftype %d sta_id %d", viftype, sta->sta_id);
prio = -1;
}
return prio;
}
/* Returns >0 if sta1 has a higher BFER priority compared to sta2 */
static int rs_bfer_priority_cmp(struct iwl_mvm_sta *sta1,
struct iwl_mvm_sta *sta2)
{
int prio1 = rs_bfer_priority(sta1);
int prio2 = rs_bfer_priority(sta2);
if (prio1 > prio2)
return 1;
if (prio1 < prio2)
return -1;
return 0;
}
static void rs_set_lq_ss_params(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
const struct rs_rate *initial_rate)
{
struct iwl_lq_cmd *lq_cmd = &lq_sta->lq;
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct rs_bfer_active_iter_data data = {
.exclude_sta = sta,
.bfer_mvmsta = NULL,
};
struct iwl_mvm_sta *bfer_mvmsta = NULL;
u32 ss_params = LQ_SS_PARAMS_VALID;
if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta))
goto out;
#ifdef CONFIG_MAC80211_DEBUGFS
/* Check if forcing the decision is configured.
* Note that SISO is forced by not allowing STBC or BFER
*/
if (lq_sta->pers.ss_force == RS_SS_FORCE_STBC)
ss_params |= (LQ_SS_STBC_1SS_ALLOWED | LQ_SS_FORCE);
else if (lq_sta->pers.ss_force == RS_SS_FORCE_BFER)
ss_params |= (LQ_SS_BFER_ALLOWED | LQ_SS_FORCE);
if (lq_sta->pers.ss_force != RS_SS_FORCE_NONE) {
IWL_DEBUG_RATE(mvm, "Forcing single stream Tx decision %d\n",
lq_sta->pers.ss_force);
goto out;
}
#endif
if (lq_sta->stbc_capable)
ss_params |= LQ_SS_STBC_1SS_ALLOWED;
if (!lq_sta->bfer_capable)
goto out;
ieee80211_iterate_stations_atomic(mvm->hw,
rs_bfer_active_iter,
&data);
bfer_mvmsta = data.bfer_mvmsta;
/* This code is safe as it doesn't run concurrently for different
* stations. This is guaranteed by the fact that calls to
* ieee80211_tx_status wouldn't run concurrently for a single HW.
*/
if (!bfer_mvmsta) {
IWL_DEBUG_RATE(mvm, "No sta with BFER allowed found. Allow\n");
ss_params |= LQ_SS_BFER_ALLOWED;
goto out;
}
IWL_DEBUG_RATE(mvm, "Found existing sta %d with BFER activated\n",
bfer_mvmsta->sta_id);
/* Disallow BFER on another STA if active and we're a higher priority */
if (rs_bfer_priority_cmp(mvmsta, bfer_mvmsta) > 0) {
struct iwl_lq_cmd *bfersta_lq_cmd = &bfer_mvmsta->lq_sta.lq;
u32 bfersta_ss_params = le32_to_cpu(bfersta_lq_cmd->ss_params);
bfersta_ss_params &= ~LQ_SS_BFER_ALLOWED;
bfersta_lq_cmd->ss_params = cpu_to_le32(bfersta_ss_params);
iwl_mvm_send_lq_cmd(mvm, bfersta_lq_cmd, false);
ss_params |= LQ_SS_BFER_ALLOWED;
IWL_DEBUG_RATE(mvm,
"Lower priority BFER sta found (%d). Switch BFER\n",
bfer_mvmsta->sta_id);
}
out:
lq_cmd->ss_params = cpu_to_le32(ss_params);
}
static void rs_fill_lq_cmd(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_lq_sta *lq_sta,
const struct rs_rate *initial_rate)
{
struct iwl_lq_cmd *lq_cmd = &lq_sta->lq;
struct iwl_mvm_sta *mvmsta;
struct iwl_mvm_vif *mvmvif;
lq_cmd->agg_disable_start_th = IWL_MVM_RS_AGG_DISABLE_START;
lq_cmd->agg_time_limit =
cpu_to_le16(IWL_MVM_RS_AGG_TIME_LIMIT);
#ifdef CONFIG_MAC80211_DEBUGFS
if (lq_sta->pers.dbg_fixed_rate) {
rs_build_rates_table_from_fixed(mvm, lq_cmd,
lq_sta->band,
lq_sta->pers.dbg_fixed_rate);
return;
}
#endif
if (WARN_ON_ONCE(!sta || !initial_rate))
return;
rs_build_rates_table(mvm, sta, lq_sta, initial_rate);
if (fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_LQ_SS_PARAMS))
rs_set_lq_ss_params(mvm, sta, lq_sta, initial_rate);
mvmsta = iwl_mvm_sta_from_mac80211(sta);
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
if (num_of_ant(initial_rate->ant) == 1)
lq_cmd->single_stream_ant_msk = initial_rate->ant;
lq_cmd->agg_frame_cnt_limit = mvmsta->max_agg_bufsize;
/*
* In case of low latency, tell the firmware to leave a frame in the
* Tx Fifo so that it can start a transaction in the same TxOP. This
* basically allows the firmware to send bursts.
*/
if (iwl_mvm_vif_low_latency(mvmvif)) {
lq_cmd->agg_frame_cnt_limit--;
if (mvm->low_latency_agg_frame_limit)
lq_cmd->agg_frame_cnt_limit =
min(lq_cmd->agg_frame_cnt_limit,
mvm->low_latency_agg_frame_limit);
}
if (mvmsta->vif->p2p)
lq_cmd->flags |= LQ_FLAG_USE_RTS_MSK;
lq_cmd->agg_time_limit =
cpu_to_le16(iwl_mvm_coex_agg_time_limit(mvm, sta));
}
static void *rs_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
return hw->priv;
}
/* rate scale requires free function to be implemented */
static void rs_free(void *mvm_rate)
{
return;
}
static void rs_free_sta(void *mvm_r, struct ieee80211_sta *sta,
void *mvm_sta)
{
struct iwl_op_mode *op_mode __maybe_unused = mvm_r;
struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode);
IWL_DEBUG_RATE(mvm, "enter\n");
IWL_DEBUG_RATE(mvm, "leave\n");
}
#ifdef CONFIG_MAC80211_DEBUGFS
int rs_pretty_print_rate(char *buf, const u32 rate)
{
char *type, *bw;
u8 mcs = 0, nss = 0;
u8 ant = (rate & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS;
if (!(rate & RATE_MCS_HT_MSK) &&
!(rate & RATE_MCS_VHT_MSK)) {
int index = iwl_hwrate_to_plcp_idx(rate);
return sprintf(buf, "Legacy | ANT: %s Rate: %s Mbps\n",
rs_pretty_ant(ant),
index == IWL_RATE_INVALID ? "BAD" :
iwl_rate_mcs[index].mbps);
}
if (rate & RATE_MCS_VHT_MSK) {
type = "VHT";
mcs = rate & RATE_VHT_MCS_RATE_CODE_MSK;
nss = ((rate & RATE_VHT_MCS_NSS_MSK)
>> RATE_VHT_MCS_NSS_POS) + 1;
} else if (rate & RATE_MCS_HT_MSK) {
type = "HT";
mcs = rate & RATE_HT_MCS_INDEX_MSK;
} else {
type = "Unknown"; /* shouldn't happen */
}
switch (rate & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
bw = "20Mhz";
break;
case RATE_MCS_CHAN_WIDTH_40:
bw = "40Mhz";
break;
case RATE_MCS_CHAN_WIDTH_80:
bw = "80Mhz";
break;
case RATE_MCS_CHAN_WIDTH_160:
bw = "160Mhz";
break;
default:
bw = "BAD BW";
}
return sprintf(buf, "%s | ANT: %s BW: %s MCS: %d NSS: %d %s%s%s%s%s\n",
type, rs_pretty_ant(ant), bw, mcs, nss,
(rate & RATE_MCS_SGI_MSK) ? "SGI " : "NGI ",
(rate & RATE_MCS_HT_STBC_MSK) ? "STBC " : "",
(rate & RATE_MCS_LDPC_MSK) ? "LDPC " : "",
(rate & RATE_MCS_BF_MSK) ? "BF " : "",
(rate & RATE_MCS_ZLF_MSK) ? "ZLF " : "");
}
/**
* Program the device to use fixed rate for frame transmit
* This is for debugging/testing only
* once the device start use fixed rate, we need to reload the module
* to being back the normal operation.
*/
static void rs_program_fix_rate(struct iwl_mvm *mvm,
struct iwl_lq_sta *lq_sta)
{
lq_sta->active_legacy_rate = 0x0FFF; /* 1 - 54 MBits, includes CCK */
lq_sta->active_siso_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */
lq_sta->active_mimo2_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */
IWL_DEBUG_RATE(mvm, "sta_id %d rate 0x%X\n",
lq_sta->lq.sta_id, lq_sta->pers.dbg_fixed_rate);
if (lq_sta->pers.dbg_fixed_rate) {
rs_fill_lq_cmd(mvm, NULL, lq_sta, NULL);
iwl_mvm_send_lq_cmd(lq_sta->pers.drv, &lq_sta->lq, false);
}
}
static ssize_t rs_sta_dbgfs_scale_table_write(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct iwl_lq_sta *lq_sta = file->private_data;
struct iwl_mvm *mvm;
char buf[64];
size_t buf_size;
u32 parsed_rate;
mvm = lq_sta->pers.drv;
memset(buf, 0, sizeof(buf));
buf_size = min(count, sizeof(buf) - 1);
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
if (sscanf(buf, "%x", &parsed_rate) == 1)
lq_sta->pers.dbg_fixed_rate = parsed_rate;
else
lq_sta->pers.dbg_fixed_rate = 0;
rs_program_fix_rate(mvm, lq_sta);
return count;
}
static ssize_t rs_sta_dbgfs_scale_table_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
char *buff;
int desc = 0;
int i = 0;
ssize_t ret;
struct iwl_lq_sta *lq_sta = file->private_data;
struct iwl_mvm *mvm;
struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]);
struct rs_rate *rate = &tbl->rate;
u32 ss_params;
mvm = lq_sta->pers.drv;
buff = kmalloc(2048, GFP_KERNEL);
if (!buff)
return -ENOMEM;
desc += sprintf(buff+desc, "sta_id %d\n", lq_sta->lq.sta_id);
desc += sprintf(buff+desc, "failed=%d success=%d rate=0%lX\n",
lq_sta->total_failed, lq_sta->total_success,
lq_sta->active_legacy_rate);
desc += sprintf(buff+desc, "fixed rate 0x%X\n",
lq_sta->pers.dbg_fixed_rate);
desc += sprintf(buff+desc, "valid_tx_ant %s%s%s\n",
(iwl_mvm_get_valid_tx_ant(mvm) & ANT_A) ? "ANT_A," : "",
(iwl_mvm_get_valid_tx_ant(mvm) & ANT_B) ? "ANT_B," : "",
(iwl_mvm_get_valid_tx_ant(mvm) & ANT_C) ? "ANT_C" : "");
desc += sprintf(buff+desc, "lq type %s\n",
(is_legacy(rate)) ? "legacy" :
is_vht(rate) ? "VHT" : "HT");
if (!is_legacy(rate)) {
desc += sprintf(buff + desc, " %s",
(is_siso(rate)) ? "SISO" : "MIMO2");
desc += sprintf(buff + desc, " %s",
(is_ht20(rate)) ? "20MHz" :
(is_ht40(rate)) ? "40MHz" :
(is_ht80(rate)) ? "80Mhz" : "BAD BW");
desc += sprintf(buff + desc, " %s %s %s\n",
(rate->sgi) ? "SGI" : "NGI",
(rate->ldpc) ? "LDPC" : "BCC",
(lq_sta->is_agg) ? "AGG on" : "");
}
desc += sprintf(buff+desc, "last tx rate=0x%X\n",
lq_sta->last_rate_n_flags);
desc += sprintf(buff+desc,
"general: flags=0x%X mimo-d=%d s-ant=0x%x d-ant=0x%x\n",
lq_sta->lq.flags,
lq_sta->lq.mimo_delim,
lq_sta->lq.single_stream_ant_msk,
lq_sta->lq.dual_stream_ant_msk);
desc += sprintf(buff+desc,
"agg: time_limit=%d dist_start_th=%d frame_cnt_limit=%d\n",
le16_to_cpu(lq_sta->lq.agg_time_limit),
lq_sta->lq.agg_disable_start_th,
lq_sta->lq.agg_frame_cnt_limit);
desc += sprintf(buff+desc, "reduced tpc=%d\n", lq_sta->lq.reduced_tpc);
ss_params = le32_to_cpu(lq_sta->lq.ss_params);
desc += sprintf(buff+desc, "single stream params: %s%s%s%s\n",
(ss_params & LQ_SS_PARAMS_VALID) ?
"VALID" : "INVALID",
(ss_params & LQ_SS_BFER_ALLOWED) ?
", BFER" : "",
(ss_params & LQ_SS_STBC_1SS_ALLOWED) ?
", STBC" : "",
(ss_params & LQ_SS_FORCE) ?
", FORCE" : "");
desc += sprintf(buff+desc,
"Start idx [0]=0x%x [1]=0x%x [2]=0x%x [3]=0x%x\n",
lq_sta->lq.initial_rate_index[0],
lq_sta->lq.initial_rate_index[1],
lq_sta->lq.initial_rate_index[2],
lq_sta->lq.initial_rate_index[3]);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
u32 r = le32_to_cpu(lq_sta->lq.rs_table[i]);
desc += sprintf(buff+desc, " rate[%d] 0x%X ", i, r);
desc += rs_pretty_print_rate(buff+desc, r);
}
ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc);
kfree(buff);
return ret;
}
static const struct file_operations rs_sta_dbgfs_scale_table_ops = {
.write = rs_sta_dbgfs_scale_table_write,
.read = rs_sta_dbgfs_scale_table_read,
.open = simple_open,
.llseek = default_llseek,
};
static ssize_t rs_sta_dbgfs_stats_table_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
char *buff;
int desc = 0;
int i, j;
ssize_t ret;
struct iwl_scale_tbl_info *tbl;
struct rs_rate *rate;
struct iwl_lq_sta *lq_sta = file->private_data;
buff = kmalloc(1024, GFP_KERNEL);
if (!buff)
return -ENOMEM;
for (i = 0; i < LQ_SIZE; i++) {
tbl = &(lq_sta->lq_info[i]);
rate = &tbl->rate;
desc += sprintf(buff+desc,
"%s type=%d SGI=%d BW=%s DUP=0\n"
"index=%d\n",
lq_sta->active_tbl == i ? "*" : "x",
rate->type,
rate->sgi,
is_ht20(rate) ? "20Mhz" :
is_ht40(rate) ? "40Mhz" :
is_ht80(rate) ? "80Mhz" : "ERR",
rate->index);
for (j = 0; j < IWL_RATE_COUNT; j++) {
desc += sprintf(buff+desc,
"counter=%d success=%d %%=%d\n",
tbl->win[j].counter,
tbl->win[j].success_counter,
tbl->win[j].success_ratio);
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc);
kfree(buff);
return ret;
}
static const struct file_operations rs_sta_dbgfs_stats_table_ops = {
.read = rs_sta_dbgfs_stats_table_read,
.open = simple_open,
.llseek = default_llseek,
};
static ssize_t rs_sta_dbgfs_drv_tx_stats_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
static const char * const column_name[] = {
[RS_COLUMN_LEGACY_ANT_A] = "LEGACY_ANT_A",
[RS_COLUMN_LEGACY_ANT_B] = "LEGACY_ANT_B",
[RS_COLUMN_SISO_ANT_A] = "SISO_ANT_A",
[RS_COLUMN_SISO_ANT_B] = "SISO_ANT_B",
[RS_COLUMN_SISO_ANT_A_SGI] = "SISO_ANT_A_SGI",
[RS_COLUMN_SISO_ANT_B_SGI] = "SISO_ANT_B_SGI",
[RS_COLUMN_MIMO2] = "MIMO2",
[RS_COLUMN_MIMO2_SGI] = "MIMO2_SGI",
};
static const char * const rate_name[] = {
[IWL_RATE_1M_INDEX] = "1M",
[IWL_RATE_2M_INDEX] = "2M",
[IWL_RATE_5M_INDEX] = "5.5M",
[IWL_RATE_11M_INDEX] = "11M",
[IWL_RATE_6M_INDEX] = "6M|MCS0",
[IWL_RATE_9M_INDEX] = "9M",
[IWL_RATE_12M_INDEX] = "12M|MCS1",
[IWL_RATE_18M_INDEX] = "18M|MCS2",
[IWL_RATE_24M_INDEX] = "24M|MCS3",
[IWL_RATE_36M_INDEX] = "36M|MCS4",
[IWL_RATE_48M_INDEX] = "48M|MCS5",
[IWL_RATE_54M_INDEX] = "54M|MCS6",
[IWL_RATE_MCS_7_INDEX] = "MCS7",
[IWL_RATE_MCS_8_INDEX] = "MCS8",
[IWL_RATE_MCS_9_INDEX] = "MCS9",
};
char *buff, *pos, *endpos;
int col, rate;
ssize_t ret;
struct iwl_lq_sta *lq_sta = file->private_data;
struct rs_rate_stats *stats;
static const size_t bufsz = 1024;
buff = kmalloc(bufsz, GFP_KERNEL);
if (!buff)
return -ENOMEM;
pos = buff;
endpos = pos + bufsz;
pos += scnprintf(pos, endpos - pos, "COLUMN,");
for (rate = 0; rate < IWL_RATE_COUNT; rate++)
pos += scnprintf(pos, endpos - pos, "%s,", rate_name[rate]);
pos += scnprintf(pos, endpos - pos, "\n");
for (col = 0; col < RS_COLUMN_COUNT; col++) {
pos += scnprintf(pos, endpos - pos,
"%s,", column_name[col]);
for (rate = 0; rate < IWL_RATE_COUNT; rate++) {
stats = &(lq_sta->pers.tx_stats[col][rate]);
pos += scnprintf(pos, endpos - pos,
"%llu/%llu,",
stats->success,
stats->total);
}
pos += scnprintf(pos, endpos - pos, "\n");
}
ret = simple_read_from_buffer(user_buf, count, ppos, buff, pos - buff);
kfree(buff);
return ret;
}
static ssize_t rs_sta_dbgfs_drv_tx_stats_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_lq_sta *lq_sta = file->private_data;
memset(lq_sta->pers.tx_stats, 0, sizeof(lq_sta->pers.tx_stats));
return count;
}
static const struct file_operations rs_sta_dbgfs_drv_tx_stats_ops = {
.read = rs_sta_dbgfs_drv_tx_stats_read,
.write = rs_sta_dbgfs_drv_tx_stats_write,
.open = simple_open,
.llseek = default_llseek,
};
static ssize_t iwl_dbgfs_ss_force_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_lq_sta *lq_sta = file->private_data;
char buf[12];
int bufsz = sizeof(buf);
int pos = 0;
static const char * const ss_force_name[] = {
[RS_SS_FORCE_NONE] = "none",
[RS_SS_FORCE_STBC] = "stbc",
[RS_SS_FORCE_BFER] = "bfer",
[RS_SS_FORCE_SISO] = "siso",
};
pos += scnprintf(buf+pos, bufsz-pos, "%s\n",
ss_force_name[lq_sta->pers.ss_force]);
return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
}
static ssize_t iwl_dbgfs_ss_force_write(struct iwl_lq_sta *lq_sta, char *buf,
size_t count, loff_t *ppos)
{
struct iwl_mvm *mvm = lq_sta->pers.drv;
int ret = 0;
if (!strncmp("none", buf, 4)) {
lq_sta->pers.ss_force = RS_SS_FORCE_NONE;
} else if (!strncmp("siso", buf, 4)) {
lq_sta->pers.ss_force = RS_SS_FORCE_SISO;
} else if (!strncmp("stbc", buf, 4)) {
if (lq_sta->stbc_capable) {
lq_sta->pers.ss_force = RS_SS_FORCE_STBC;
} else {
IWL_ERR(mvm,
"can't force STBC. peer doesn't support\n");
ret = -EINVAL;
}
} else if (!strncmp("bfer", buf, 4)) {
if (lq_sta->bfer_capable) {
lq_sta->pers.ss_force = RS_SS_FORCE_BFER;
} else {
IWL_ERR(mvm,
"can't force BFER. peer doesn't support\n");
ret = -EINVAL;
}
} else {
IWL_ERR(mvm, "valid values none|siso|stbc|bfer\n");
ret = -EINVAL;
}
return ret ?: count;
}
#define MVM_DEBUGFS_READ_WRITE_FILE_OPS(name, bufsz) \
_MVM_DEBUGFS_READ_WRITE_FILE_OPS(name, bufsz, struct iwl_lq_sta)
#define MVM_DEBUGFS_ADD_FILE_RS(name, parent, mode) do { \
if (!debugfs_create_file(#name, mode, parent, lq_sta, \
&iwl_dbgfs_##name##_ops)) \
goto err; \
} while (0)
MVM_DEBUGFS_READ_WRITE_FILE_OPS(ss_force, 32);
static void rs_add_debugfs(void *mvm, void *priv_sta, struct dentry *dir)
{
struct iwl_lq_sta *lq_sta = priv_sta;
struct iwl_mvm_sta *mvmsta;
mvmsta = container_of(lq_sta, struct iwl_mvm_sta, lq_sta);
if (!mvmsta->vif)
return;
debugfs_create_file("rate_scale_table", S_IRUSR | S_IWUSR, dir,
lq_sta, &rs_sta_dbgfs_scale_table_ops);
debugfs_create_file("rate_stats_table", S_IRUSR, dir,
lq_sta, &rs_sta_dbgfs_stats_table_ops);
debugfs_create_file("drv_tx_stats", S_IRUSR | S_IWUSR, dir,
lq_sta, &rs_sta_dbgfs_drv_tx_stats_ops);
debugfs_create_u8("tx_agg_tid_enable", S_IRUSR | S_IWUSR, dir,
&lq_sta->tx_agg_tid_en);
debugfs_create_u8("reduced_tpc", S_IRUSR | S_IWUSR, dir,
&lq_sta->pers.dbg_fixed_txp_reduction);
MVM_DEBUGFS_ADD_FILE_RS(ss_force, dir, S_IRUSR | S_IWUSR);
return;
err:
IWL_ERR((struct iwl_mvm *)mvm, "Can't create debugfs entity\n");
}
static void rs_remove_debugfs(void *mvm, void *mvm_sta)
{
}
#endif
/*
* Initialization of rate scaling information is done by driver after
* the station is added. Since mac80211 calls this function before a
* station is added we ignore it.
*/
static void rs_rate_init_stub(void *mvm_r,
struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *mvm_sta)
{
}
static const struct rate_control_ops rs_mvm_ops = {
.name = RS_NAME,
.tx_status = rs_mac80211_tx_status,
.get_rate = rs_get_rate,
.rate_init = rs_rate_init_stub,
.alloc = rs_alloc,
.free = rs_free,
.alloc_sta = rs_alloc_sta,
.free_sta = rs_free_sta,
.rate_update = rs_rate_update,
#ifdef CONFIG_MAC80211_DEBUGFS
.add_sta_debugfs = rs_add_debugfs,
.remove_sta_debugfs = rs_remove_debugfs,
#endif
};
int iwl_mvm_rate_control_register(void)
{
return ieee80211_rate_control_register(&rs_mvm_ops);
}
void iwl_mvm_rate_control_unregister(void)
{
ieee80211_rate_control_unregister(&rs_mvm_ops);
}
/**
* iwl_mvm_tx_protection - Gets LQ command, change it to enable/disable
* Tx protection, according to this request and previous requests,
* and send the LQ command.
* @mvmsta: The station
* @enable: Enable Tx protection?
*/
int iwl_mvm_tx_protection(struct iwl_mvm *mvm, struct iwl_mvm_sta *mvmsta,
bool enable)
{
struct iwl_lq_cmd *lq = &mvmsta->lq_sta.lq;
lockdep_assert_held(&mvm->mutex);
if (enable) {
if (mvmsta->tx_protection == 0)
lq->flags |= LQ_FLAG_USE_RTS_MSK;
mvmsta->tx_protection++;
} else {
mvmsta->tx_protection--;
if (mvmsta->tx_protection == 0)
lq->flags &= ~LQ_FLAG_USE_RTS_MSK;
}
return iwl_mvm_send_lq_cmd(mvm, lq, false);
}