forked from Minki/linux
11caf5517c
An interesting snippet from Sandybridge's prm: "Although a Ring Buffer can be enabled in the non-empty state, it must not be disabled unless it is empty. Attempting to disable a Ring Buffer in the non-empty state is UNDEFINED." Let's avoid the undefined behaviour as we disable the rings prior to reset and resume. v2: Tell HEAD to catch up to TAIL (empty ring) first, then reset both to 0 (supposedly while stopped). Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171027094311.30380-1-chris@chris-wilson.co.uk
2206 lines
58 KiB
C
2206 lines
58 KiB
C
/*
|
|
* Copyright © 2008-2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
* Zou Nan hai <nanhai.zou@intel.com>
|
|
* Xiang Hai hao<haihao.xiang@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/log2.h>
|
|
#include <drm/drmP.h>
|
|
#include "i915_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
|
|
/* Rough estimate of the typical request size, performing a flush,
|
|
* set-context and then emitting the batch.
|
|
*/
|
|
#define LEGACY_REQUEST_SIZE 200
|
|
|
|
static unsigned int __intel_ring_space(unsigned int head,
|
|
unsigned int tail,
|
|
unsigned int size)
|
|
{
|
|
/*
|
|
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
|
|
* same cacheline, the Head Pointer must not be greater than the Tail
|
|
* Pointer."
|
|
*/
|
|
GEM_BUG_ON(!is_power_of_2(size));
|
|
return (head - tail - CACHELINE_BYTES) & (size - 1);
|
|
}
|
|
|
|
unsigned int intel_ring_update_space(struct intel_ring *ring)
|
|
{
|
|
unsigned int space;
|
|
|
|
space = __intel_ring_space(ring->head, ring->emit, ring->size);
|
|
|
|
ring->space = space;
|
|
return space;
|
|
}
|
|
|
|
static int
|
|
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 cmd, *cs;
|
|
|
|
cmd = MI_FLUSH;
|
|
|
|
if (mode & EMIT_INVALIDATE)
|
|
cmd |= MI_READ_FLUSH;
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = cmd;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 cmd, *cs;
|
|
|
|
/*
|
|
* read/write caches:
|
|
*
|
|
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
|
|
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
|
|
* also flushed at 2d versus 3d pipeline switches.
|
|
*
|
|
* read-only caches:
|
|
*
|
|
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
|
|
* MI_READ_FLUSH is set, and is always flushed on 965.
|
|
*
|
|
* I915_GEM_DOMAIN_COMMAND may not exist?
|
|
*
|
|
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
|
|
* invalidated when MI_EXE_FLUSH is set.
|
|
*
|
|
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
|
|
* invalidated with every MI_FLUSH.
|
|
*
|
|
* TLBs:
|
|
*
|
|
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
|
|
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
|
|
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
|
|
* are flushed at any MI_FLUSH.
|
|
*/
|
|
|
|
cmd = MI_FLUSH;
|
|
if (mode & EMIT_INVALIDATE) {
|
|
cmd |= MI_EXE_FLUSH;
|
|
if (IS_G4X(req->i915) || IS_GEN5(req->i915))
|
|
cmd |= MI_INVALIDATE_ISP;
|
|
}
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = cmd;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
|
|
* implementing two workarounds on gen6. From section 1.4.7.1
|
|
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
|
|
*
|
|
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
|
|
* produced by non-pipelined state commands), software needs to first
|
|
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
|
|
* 0.
|
|
*
|
|
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
|
|
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
|
|
*
|
|
* And the workaround for these two requires this workaround first:
|
|
*
|
|
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
|
|
* BEFORE the pipe-control with a post-sync op and no write-cache
|
|
* flushes.
|
|
*
|
|
* And this last workaround is tricky because of the requirements on
|
|
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
|
|
* volume 2 part 1:
|
|
*
|
|
* "1 of the following must also be set:
|
|
* - Render Target Cache Flush Enable ([12] of DW1)
|
|
* - Depth Cache Flush Enable ([0] of DW1)
|
|
* - Stall at Pixel Scoreboard ([1] of DW1)
|
|
* - Depth Stall ([13] of DW1)
|
|
* - Post-Sync Operation ([13] of DW1)
|
|
* - Notify Enable ([8] of DW1)"
|
|
*
|
|
* The cache flushes require the workaround flush that triggered this
|
|
* one, so we can't use it. Depth stall would trigger the same.
|
|
* Post-sync nonzero is what triggered this second workaround, so we
|
|
* can't use that one either. Notify enable is IRQs, which aren't
|
|
* really our business. That leaves only stall at scoreboard.
|
|
*/
|
|
static int
|
|
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
|
|
{
|
|
u32 scratch_addr =
|
|
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = GFX_OP_PIPE_CONTROL(5);
|
|
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
|
|
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
|
|
*cs++ = 0; /* low dword */
|
|
*cs++ = 0; /* high dword */
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
cs = intel_ring_begin(req, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = GFX_OP_PIPE_CONTROL(5);
|
|
*cs++ = PIPE_CONTROL_QW_WRITE;
|
|
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 scratch_addr =
|
|
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
|
|
u32 *cs, flags = 0;
|
|
int ret;
|
|
|
|
/* Force SNB workarounds for PIPE_CONTROL flushes */
|
|
ret = intel_emit_post_sync_nonzero_flush(req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Just flush everything. Experiments have shown that reducing the
|
|
* number of bits based on the write domains has little performance
|
|
* impact.
|
|
*/
|
|
if (mode & EMIT_FLUSH) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
/*
|
|
* Ensure that any following seqno writes only happen
|
|
* when the render cache is indeed flushed.
|
|
*/
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
}
|
|
if (mode & EMIT_INVALIDATE) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
/*
|
|
* TLB invalidate requires a post-sync write.
|
|
*/
|
|
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
|
|
}
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = GFX_OP_PIPE_CONTROL(4);
|
|
*cs++ = flags;
|
|
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
|
|
*cs++ = 0;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = GFX_OP_PIPE_CONTROL(4);
|
|
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 scratch_addr =
|
|
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
|
|
u32 *cs, flags = 0;
|
|
|
|
/*
|
|
* Ensure that any following seqno writes only happen when the render
|
|
* cache is indeed flushed.
|
|
*
|
|
* Workaround: 4th PIPE_CONTROL command (except the ones with only
|
|
* read-cache invalidate bits set) must have the CS_STALL bit set. We
|
|
* don't try to be clever and just set it unconditionally.
|
|
*/
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
/* Just flush everything. Experiments have shown that reducing the
|
|
* number of bits based on the write domains has little performance
|
|
* impact.
|
|
*/
|
|
if (mode & EMIT_FLUSH) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
|
|
flags |= PIPE_CONTROL_FLUSH_ENABLE;
|
|
}
|
|
if (mode & EMIT_INVALIDATE) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
|
|
/*
|
|
* TLB invalidate requires a post-sync write.
|
|
*/
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
|
|
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
|
|
|
|
/* Workaround: we must issue a pipe_control with CS-stall bit
|
|
* set before a pipe_control command that has the state cache
|
|
* invalidate bit set. */
|
|
gen7_render_ring_cs_stall_wa(req);
|
|
}
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = GFX_OP_PIPE_CONTROL(4);
|
|
*cs++ = flags;
|
|
*cs++ = scratch_addr;
|
|
*cs++ = 0;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 flags;
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
flags = PIPE_CONTROL_CS_STALL;
|
|
|
|
if (mode & EMIT_FLUSH) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
|
|
flags |= PIPE_CONTROL_FLUSH_ENABLE;
|
|
}
|
|
if (mode & EMIT_INVALIDATE) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
|
|
/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
|
|
cs = gen8_emit_pipe_control(cs,
|
|
PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_STALL_AT_SCOREBOARD,
|
|
0);
|
|
}
|
|
|
|
cs = gen8_emit_pipe_control(cs, flags,
|
|
i915_ggtt_offset(req->engine->scratch) +
|
|
2 * CACHELINE_BYTES);
|
|
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
u32 addr;
|
|
|
|
addr = dev_priv->status_page_dmah->busaddr;
|
|
if (INTEL_GEN(dev_priv) >= 4)
|
|
addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
|
|
I915_WRITE(HWS_PGA, addr);
|
|
}
|
|
|
|
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
i915_reg_t mmio;
|
|
|
|
/* The ring status page addresses are no longer next to the rest of
|
|
* the ring registers as of gen7.
|
|
*/
|
|
if (IS_GEN7(dev_priv)) {
|
|
switch (engine->id) {
|
|
/*
|
|
* No more rings exist on Gen7. Default case is only to shut up
|
|
* gcc switch check warning.
|
|
*/
|
|
default:
|
|
GEM_BUG_ON(engine->id);
|
|
case RCS:
|
|
mmio = RENDER_HWS_PGA_GEN7;
|
|
break;
|
|
case BCS:
|
|
mmio = BLT_HWS_PGA_GEN7;
|
|
break;
|
|
case VCS:
|
|
mmio = BSD_HWS_PGA_GEN7;
|
|
break;
|
|
case VECS:
|
|
mmio = VEBOX_HWS_PGA_GEN7;
|
|
break;
|
|
}
|
|
} else if (IS_GEN6(dev_priv)) {
|
|
mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
|
|
} else {
|
|
/* XXX: gen8 returns to sanity */
|
|
mmio = RING_HWS_PGA(engine->mmio_base);
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 6)
|
|
I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
|
|
|
|
I915_WRITE(mmio, engine->status_page.ggtt_offset);
|
|
POSTING_READ(mmio);
|
|
|
|
/*
|
|
* Flush the TLB for this page
|
|
*
|
|
* FIXME: These two bits have disappeared on gen8, so a question
|
|
* arises: do we still need this and if so how should we go about
|
|
* invalidating the TLB?
|
|
*/
|
|
if (IS_GEN(dev_priv, 6, 7)) {
|
|
i915_reg_t reg = RING_INSTPM(engine->mmio_base);
|
|
|
|
/* ring should be idle before issuing a sync flush*/
|
|
WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
|
|
|
|
I915_WRITE(reg,
|
|
_MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
|
|
INSTPM_SYNC_FLUSH));
|
|
if (intel_wait_for_register(dev_priv,
|
|
reg, INSTPM_SYNC_FLUSH, 0,
|
|
1000))
|
|
DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
|
|
engine->name);
|
|
}
|
|
}
|
|
|
|
static bool stop_ring(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
if (INTEL_GEN(dev_priv) > 2) {
|
|
I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
|
|
if (intel_wait_for_register(dev_priv,
|
|
RING_MI_MODE(engine->mmio_base),
|
|
MODE_IDLE,
|
|
MODE_IDLE,
|
|
1000)) {
|
|
DRM_ERROR("%s : timed out trying to stop ring\n",
|
|
engine->name);
|
|
/* Sometimes we observe that the idle flag is not
|
|
* set even though the ring is empty. So double
|
|
* check before giving up.
|
|
*/
|
|
if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
|
|
|
|
I915_WRITE_HEAD(engine, 0);
|
|
I915_WRITE_TAIL(engine, 0);
|
|
|
|
/* The ring must be empty before it is disabled */
|
|
I915_WRITE_CTL(engine, 0);
|
|
|
|
return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
|
|
}
|
|
|
|
static int init_ring_common(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
struct intel_ring *ring = engine->buffer;
|
|
int ret = 0;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
if (!stop_ring(engine)) {
|
|
/* G45 ring initialization often fails to reset head to zero */
|
|
DRM_DEBUG_KMS("%s head not reset to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
engine->name,
|
|
I915_READ_CTL(engine),
|
|
I915_READ_HEAD(engine),
|
|
I915_READ_TAIL(engine),
|
|
I915_READ_START(engine));
|
|
|
|
if (!stop_ring(engine)) {
|
|
DRM_ERROR("failed to set %s head to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
engine->name,
|
|
I915_READ_CTL(engine),
|
|
I915_READ_HEAD(engine),
|
|
I915_READ_TAIL(engine),
|
|
I915_READ_START(engine));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (HWS_NEEDS_PHYSICAL(dev_priv))
|
|
ring_setup_phys_status_page(engine);
|
|
else
|
|
intel_ring_setup_status_page(engine);
|
|
|
|
intel_engine_reset_breadcrumbs(engine);
|
|
|
|
/* Enforce ordering by reading HEAD register back */
|
|
I915_READ_HEAD(engine);
|
|
|
|
/* Initialize the ring. This must happen _after_ we've cleared the ring
|
|
* registers with the above sequence (the readback of the HEAD registers
|
|
* also enforces ordering), otherwise the hw might lose the new ring
|
|
* register values. */
|
|
I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
|
|
|
|
/* WaClearRingBufHeadRegAtInit:ctg,elk */
|
|
if (I915_READ_HEAD(engine))
|
|
DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
|
|
engine->name, I915_READ_HEAD(engine));
|
|
|
|
intel_ring_update_space(ring);
|
|
I915_WRITE_HEAD(engine, ring->head);
|
|
I915_WRITE_TAIL(engine, ring->tail);
|
|
(void)I915_READ_TAIL(engine);
|
|
|
|
I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
|
|
|
|
/* If the head is still not zero, the ring is dead */
|
|
if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
|
|
RING_VALID, RING_VALID,
|
|
50)) {
|
|
DRM_ERROR("%s initialization failed "
|
|
"ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
|
|
engine->name,
|
|
I915_READ_CTL(engine),
|
|
I915_READ_CTL(engine) & RING_VALID,
|
|
I915_READ_HEAD(engine), ring->head,
|
|
I915_READ_TAIL(engine), ring->tail,
|
|
I915_READ_START(engine),
|
|
i915_ggtt_offset(ring->vma));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
intel_engine_init_hangcheck(engine);
|
|
|
|
if (INTEL_GEN(dev_priv) > 2)
|
|
I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void reset_ring_common(struct intel_engine_cs *engine,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
/*
|
|
* RC6 must be prevented until the reset is complete and the engine
|
|
* reinitialised. If it occurs in the middle of this sequence, the
|
|
* state written to/loaded from the power context is ill-defined (e.g.
|
|
* the PP_BASE_DIR may be lost).
|
|
*/
|
|
assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
|
|
|
|
/*
|
|
* Try to restore the logical GPU state to match the continuation
|
|
* of the request queue. If we skip the context/PD restore, then
|
|
* the next request may try to execute assuming that its context
|
|
* is valid and loaded on the GPU and so may try to access invalid
|
|
* memory, prompting repeated GPU hangs.
|
|
*
|
|
* If the request was guilty, we still restore the logical state
|
|
* in case the next request requires it (e.g. the aliasing ppgtt),
|
|
* but skip over the hung batch.
|
|
*
|
|
* If the request was innocent, we try to replay the request with
|
|
* the restored context.
|
|
*/
|
|
if (request) {
|
|
struct drm_i915_private *dev_priv = request->i915;
|
|
struct intel_context *ce = &request->ctx->engine[engine->id];
|
|
struct i915_hw_ppgtt *ppgtt;
|
|
|
|
/* FIXME consider gen8 reset */
|
|
|
|
if (ce->state) {
|
|
I915_WRITE(CCID,
|
|
i915_ggtt_offset(ce->state) |
|
|
BIT(8) /* must be set! */ |
|
|
CCID_EXTENDED_STATE_SAVE |
|
|
CCID_EXTENDED_STATE_RESTORE |
|
|
CCID_EN);
|
|
}
|
|
|
|
ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
|
|
if (ppgtt) {
|
|
u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
|
|
|
|
I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
|
|
|
|
/* Wait for the PD reload to complete */
|
|
if (intel_wait_for_register(dev_priv,
|
|
RING_PP_DIR_BASE(engine),
|
|
BIT(0), 0,
|
|
10))
|
|
DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
|
|
|
|
ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
|
|
}
|
|
|
|
/* If the rq hung, jump to its breadcrumb and skip the batch */
|
|
if (request->fence.error == -EIO)
|
|
request->ring->head = request->postfix;
|
|
} else {
|
|
engine->legacy_active_context = NULL;
|
|
}
|
|
}
|
|
|
|
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_workarounds_emit(req);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
ret = i915_gem_render_state_emit(req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_render_ring(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
int ret = init_ring_common(engine);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
|
|
if (IS_GEN(dev_priv, 4, 6))
|
|
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
|
|
|
|
/* We need to disable the AsyncFlip performance optimisations in order
|
|
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
|
|
* programmed to '1' on all products.
|
|
*
|
|
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
|
|
*/
|
|
if (IS_GEN(dev_priv, 6, 7))
|
|
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
|
|
|
|
/* Required for the hardware to program scanline values for waiting */
|
|
/* WaEnableFlushTlbInvalidationMode:snb */
|
|
if (IS_GEN6(dev_priv))
|
|
I915_WRITE(GFX_MODE,
|
|
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
|
|
|
|
/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
|
|
if (IS_GEN7(dev_priv))
|
|
I915_WRITE(GFX_MODE_GEN7,
|
|
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
|
|
_MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
|
|
|
|
if (IS_GEN6(dev_priv)) {
|
|
/* From the Sandybridge PRM, volume 1 part 3, page 24:
|
|
* "If this bit is set, STCunit will have LRA as replacement
|
|
* policy. [...] This bit must be reset. LRA replacement
|
|
* policy is not supported."
|
|
*/
|
|
I915_WRITE(CACHE_MODE_0,
|
|
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
|
|
}
|
|
|
|
if (IS_GEN(dev_priv, 6, 7))
|
|
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
|
|
|
|
if (INTEL_INFO(dev_priv)->gen >= 6)
|
|
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
|
|
|
|
return init_workarounds_ring(engine);
|
|
}
|
|
|
|
static void render_ring_cleanup(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
i915_vma_unpin_and_release(&dev_priv->semaphore);
|
|
}
|
|
|
|
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
|
|
{
|
|
struct drm_i915_private *dev_priv = req->i915;
|
|
struct intel_engine_cs *waiter;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(waiter, dev_priv, id) {
|
|
u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
|
|
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
|
|
continue;
|
|
|
|
*cs++ = GFX_OP_PIPE_CONTROL(6);
|
|
*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
|
|
PIPE_CONTROL_CS_STALL;
|
|
*cs++ = lower_32_bits(gtt_offset);
|
|
*cs++ = upper_32_bits(gtt_offset);
|
|
*cs++ = req->global_seqno;
|
|
*cs++ = 0;
|
|
*cs++ = MI_SEMAPHORE_SIGNAL |
|
|
MI_SEMAPHORE_TARGET(waiter->hw_id);
|
|
*cs++ = 0;
|
|
}
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
|
|
{
|
|
struct drm_i915_private *dev_priv = req->i915;
|
|
struct intel_engine_cs *waiter;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(waiter, dev_priv, id) {
|
|
u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
|
|
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
|
|
continue;
|
|
|
|
*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
|
|
*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
|
|
*cs++ = upper_32_bits(gtt_offset);
|
|
*cs++ = req->global_seqno;
|
|
*cs++ = MI_SEMAPHORE_SIGNAL |
|
|
MI_SEMAPHORE_TARGET(waiter->hw_id);
|
|
*cs++ = 0;
|
|
}
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
|
|
{
|
|
struct drm_i915_private *dev_priv = req->i915;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int num_rings = 0;
|
|
|
|
for_each_engine(engine, dev_priv, id) {
|
|
i915_reg_t mbox_reg;
|
|
|
|
if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
|
|
continue;
|
|
|
|
mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
|
|
if (i915_mmio_reg_valid(mbox_reg)) {
|
|
*cs++ = MI_LOAD_REGISTER_IMM(1);
|
|
*cs++ = i915_mmio_reg_offset(mbox_reg);
|
|
*cs++ = req->global_seqno;
|
|
num_rings++;
|
|
}
|
|
}
|
|
if (num_rings & 1)
|
|
*cs++ = MI_NOOP;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static void cancel_requests(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&engine->timeline->lock, flags);
|
|
|
|
/* Mark all submitted requests as skipped. */
|
|
list_for_each_entry(request, &engine->timeline->requests, link) {
|
|
GEM_BUG_ON(!request->global_seqno);
|
|
if (!i915_gem_request_completed(request))
|
|
dma_fence_set_error(&request->fence, -EIO);
|
|
}
|
|
/* Remaining _unready_ requests will be nop'ed when submitted */
|
|
|
|
spin_unlock_irqrestore(&engine->timeline->lock, flags);
|
|
}
|
|
|
|
static void i9xx_submit_request(struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_private *dev_priv = request->i915;
|
|
|
|
i915_gem_request_submit(request);
|
|
|
|
I915_WRITE_TAIL(request->engine,
|
|
intel_ring_set_tail(request->ring, request->tail));
|
|
}
|
|
|
|
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
|
|
{
|
|
*cs++ = MI_STORE_DWORD_INDEX;
|
|
*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
|
|
*cs++ = req->global_seqno;
|
|
*cs++ = MI_USER_INTERRUPT;
|
|
|
|
req->tail = intel_ring_offset(req, cs);
|
|
assert_ring_tail_valid(req->ring, req->tail);
|
|
}
|
|
|
|
static const int i9xx_emit_breadcrumb_sz = 4;
|
|
|
|
/**
|
|
* gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
|
|
*
|
|
* @request - request to write to the ring
|
|
*
|
|
* Update the mailbox registers in the *other* rings with the current seqno.
|
|
* This acts like a signal in the canonical semaphore.
|
|
*/
|
|
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
|
|
{
|
|
return i9xx_emit_breadcrumb(req,
|
|
req->engine->semaphore.signal(req, cs));
|
|
}
|
|
|
|
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
|
|
u32 *cs)
|
|
{
|
|
struct intel_engine_cs *engine = req->engine;
|
|
|
|
if (engine->semaphore.signal)
|
|
cs = engine->semaphore.signal(req, cs);
|
|
|
|
*cs++ = GFX_OP_PIPE_CONTROL(6);
|
|
*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_QW_WRITE;
|
|
*cs++ = intel_hws_seqno_address(engine);
|
|
*cs++ = 0;
|
|
*cs++ = req->global_seqno;
|
|
/* We're thrashing one dword of HWS. */
|
|
*cs++ = 0;
|
|
*cs++ = MI_USER_INTERRUPT;
|
|
*cs++ = MI_NOOP;
|
|
|
|
req->tail = intel_ring_offset(req, cs);
|
|
assert_ring_tail_valid(req->ring, req->tail);
|
|
}
|
|
|
|
static const int gen8_render_emit_breadcrumb_sz = 8;
|
|
|
|
/**
|
|
* intel_ring_sync - sync the waiter to the signaller on seqno
|
|
*
|
|
* @waiter - ring that is waiting
|
|
* @signaller - ring which has, or will signal
|
|
* @seqno - seqno which the waiter will block on
|
|
*/
|
|
|
|
static int
|
|
gen8_ring_sync_to(struct drm_i915_gem_request *req,
|
|
struct drm_i915_gem_request *signal)
|
|
{
|
|
struct drm_i915_private *dev_priv = req->i915;
|
|
u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
|
|
struct i915_hw_ppgtt *ppgtt;
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
|
|
MI_SEMAPHORE_SAD_GTE_SDD;
|
|
*cs++ = signal->global_seqno;
|
|
*cs++ = lower_32_bits(offset);
|
|
*cs++ = upper_32_bits(offset);
|
|
intel_ring_advance(req, cs);
|
|
|
|
/* When the !RCS engines idle waiting upon a semaphore, they lose their
|
|
* pagetables and we must reload them before executing the batch.
|
|
* We do this on the i915_switch_context() following the wait and
|
|
* before the dispatch.
|
|
*/
|
|
ppgtt = req->ctx->ppgtt;
|
|
if (ppgtt && req->engine->id != RCS)
|
|
ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen6_ring_sync_to(struct drm_i915_gem_request *req,
|
|
struct drm_i915_gem_request *signal)
|
|
{
|
|
u32 dw1 = MI_SEMAPHORE_MBOX |
|
|
MI_SEMAPHORE_COMPARE |
|
|
MI_SEMAPHORE_REGISTER;
|
|
u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
|
|
u32 *cs;
|
|
|
|
WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = dw1 | wait_mbox;
|
|
/* Throughout all of the GEM code, seqno passed implies our current
|
|
* seqno is >= the last seqno executed. However for hardware the
|
|
* comparison is strictly greater than.
|
|
*/
|
|
*cs++ = signal->global_seqno - 1;
|
|
*cs++ = 0;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gen5_seqno_barrier(struct intel_engine_cs *engine)
|
|
{
|
|
/* MI_STORE are internally buffered by the GPU and not flushed
|
|
* either by MI_FLUSH or SyncFlush or any other combination of
|
|
* MI commands.
|
|
*
|
|
* "Only the submission of the store operation is guaranteed.
|
|
* The write result will be complete (coherent) some time later
|
|
* (this is practically a finite period but there is no guaranteed
|
|
* latency)."
|
|
*
|
|
* Empirically, we observe that we need a delay of at least 75us to
|
|
* be sure that the seqno write is visible by the CPU.
|
|
*/
|
|
usleep_range(125, 250);
|
|
}
|
|
|
|
static void
|
|
gen6_seqno_barrier(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
/* Workaround to force correct ordering between irq and seqno writes on
|
|
* ivb (and maybe also on snb) by reading from a CS register (like
|
|
* ACTHD) before reading the status page.
|
|
*
|
|
* Note that this effectively stalls the read by the time it takes to
|
|
* do a memory transaction, which more or less ensures that the write
|
|
* from the GPU has sufficient time to invalidate the CPU cacheline.
|
|
* Alternatively we could delay the interrupt from the CS ring to give
|
|
* the write time to land, but that would incur a delay after every
|
|
* batch i.e. much more frequent than a delay when waiting for the
|
|
* interrupt (with the same net latency).
|
|
*
|
|
* Also note that to prevent whole machine hangs on gen7, we have to
|
|
* take the spinlock to guard against concurrent cacheline access.
|
|
*/
|
|
spin_lock_irq(&dev_priv->uncore.lock);
|
|
POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
|
|
spin_unlock_irq(&dev_priv->uncore.lock);
|
|
}
|
|
|
|
static void
|
|
gen5_irq_enable(struct intel_engine_cs *engine)
|
|
{
|
|
gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
|
|
}
|
|
|
|
static void
|
|
gen5_irq_disable(struct intel_engine_cs *engine)
|
|
{
|
|
gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
|
|
}
|
|
|
|
static void
|
|
i9xx_irq_enable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
dev_priv->irq_mask &= ~engine->irq_enable_mask;
|
|
I915_WRITE(IMR, dev_priv->irq_mask);
|
|
POSTING_READ_FW(RING_IMR(engine->mmio_base));
|
|
}
|
|
|
|
static void
|
|
i9xx_irq_disable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
dev_priv->irq_mask |= engine->irq_enable_mask;
|
|
I915_WRITE(IMR, dev_priv->irq_mask);
|
|
}
|
|
|
|
static void
|
|
i8xx_irq_enable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
dev_priv->irq_mask &= ~engine->irq_enable_mask;
|
|
I915_WRITE16(IMR, dev_priv->irq_mask);
|
|
POSTING_READ16(RING_IMR(engine->mmio_base));
|
|
}
|
|
|
|
static void
|
|
i8xx_irq_disable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
dev_priv->irq_mask |= engine->irq_enable_mask;
|
|
I915_WRITE16(IMR, dev_priv->irq_mask);
|
|
}
|
|
|
|
static int
|
|
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_FLUSH;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gen6_irq_enable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
I915_WRITE_IMR(engine,
|
|
~(engine->irq_enable_mask |
|
|
engine->irq_keep_mask));
|
|
gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
|
|
}
|
|
|
|
static void
|
|
gen6_irq_disable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
|
|
gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
|
|
}
|
|
|
|
static void
|
|
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
|
|
gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
|
|
}
|
|
|
|
static void
|
|
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
I915_WRITE_IMR(engine, ~0);
|
|
gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
|
|
}
|
|
|
|
static void
|
|
gen8_irq_enable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
I915_WRITE_IMR(engine,
|
|
~(engine->irq_enable_mask |
|
|
engine->irq_keep_mask));
|
|
POSTING_READ_FW(RING_IMR(engine->mmio_base));
|
|
}
|
|
|
|
static void
|
|
gen8_irq_disable(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
|
|
}
|
|
|
|
static int
|
|
i965_emit_bb_start(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 length,
|
|
unsigned int dispatch_flags)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
|
|
I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
|
|
*cs++ = offset;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
|
|
#define I830_BATCH_LIMIT (256*1024)
|
|
#define I830_TLB_ENTRIES (2)
|
|
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
|
|
static int
|
|
i830_emit_bb_start(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 len,
|
|
unsigned int dispatch_flags)
|
|
{
|
|
u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
|
|
|
|
cs = intel_ring_begin(req, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
/* Evict the invalid PTE TLBs */
|
|
*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
|
|
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
|
|
*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
|
|
*cs++ = cs_offset;
|
|
*cs++ = 0xdeadbeef;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
|
|
if (len > I830_BATCH_LIMIT)
|
|
return -ENOSPC;
|
|
|
|
cs = intel_ring_begin(req, 6 + 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
/* Blit the batch (which has now all relocs applied) to the
|
|
* stable batch scratch bo area (so that the CS never
|
|
* stumbles over its tlb invalidation bug) ...
|
|
*/
|
|
*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
|
|
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
|
|
*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
|
|
*cs++ = cs_offset;
|
|
*cs++ = 4096;
|
|
*cs++ = offset;
|
|
|
|
*cs++ = MI_FLUSH;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
/* ... and execute it. */
|
|
offset = cs_offset;
|
|
}
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
|
|
*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
|
|
MI_BATCH_NON_SECURE);
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_emit_bb_start(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 len,
|
|
unsigned int dispatch_flags)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
|
|
*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
|
|
MI_BATCH_NON_SECURE);
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int intel_ring_pin(struct intel_ring *ring,
|
|
struct drm_i915_private *i915,
|
|
unsigned int offset_bias)
|
|
{
|
|
enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
|
|
struct i915_vma *vma = ring->vma;
|
|
unsigned int flags;
|
|
void *addr;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(ring->vaddr);
|
|
|
|
|
|
flags = PIN_GLOBAL;
|
|
if (offset_bias)
|
|
flags |= PIN_OFFSET_BIAS | offset_bias;
|
|
if (vma->obj->stolen)
|
|
flags |= PIN_MAPPABLE;
|
|
|
|
if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
|
|
if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
|
|
ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
|
|
else
|
|
ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
if (i915_vma_is_map_and_fenceable(vma))
|
|
addr = (void __force *)i915_vma_pin_iomap(vma);
|
|
else
|
|
addr = i915_gem_object_pin_map(vma->obj, map);
|
|
if (IS_ERR(addr))
|
|
goto err;
|
|
|
|
vma->obj->pin_global++;
|
|
|
|
ring->vaddr = addr;
|
|
return 0;
|
|
|
|
err:
|
|
i915_vma_unpin(vma);
|
|
return PTR_ERR(addr);
|
|
}
|
|
|
|
void intel_ring_reset(struct intel_ring *ring, u32 tail)
|
|
{
|
|
GEM_BUG_ON(!list_empty(&ring->request_list));
|
|
ring->tail = tail;
|
|
ring->head = tail;
|
|
ring->emit = tail;
|
|
intel_ring_update_space(ring);
|
|
}
|
|
|
|
void intel_ring_unpin(struct intel_ring *ring)
|
|
{
|
|
GEM_BUG_ON(!ring->vma);
|
|
GEM_BUG_ON(!ring->vaddr);
|
|
|
|
/* Discard any unused bytes beyond that submitted to hw. */
|
|
intel_ring_reset(ring, ring->tail);
|
|
|
|
if (i915_vma_is_map_and_fenceable(ring->vma))
|
|
i915_vma_unpin_iomap(ring->vma);
|
|
else
|
|
i915_gem_object_unpin_map(ring->vma->obj);
|
|
ring->vaddr = NULL;
|
|
|
|
ring->vma->obj->pin_global--;
|
|
i915_vma_unpin(ring->vma);
|
|
}
|
|
|
|
static struct i915_vma *
|
|
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
|
|
obj = i915_gem_object_create_stolen(dev_priv, size);
|
|
if (!obj)
|
|
obj = i915_gem_object_create_internal(dev_priv, size);
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
/* mark ring buffers as read-only from GPU side by default */
|
|
obj->gt_ro = 1;
|
|
|
|
vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
|
|
if (IS_ERR(vma))
|
|
goto err;
|
|
|
|
return vma;
|
|
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return vma;
|
|
}
|
|
|
|
struct intel_ring *
|
|
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
|
|
{
|
|
struct intel_ring *ring;
|
|
struct i915_vma *vma;
|
|
|
|
GEM_BUG_ON(!is_power_of_2(size));
|
|
GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
|
|
|
|
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
|
|
if (!ring)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&ring->request_list);
|
|
|
|
ring->size = size;
|
|
/* Workaround an erratum on the i830 which causes a hang if
|
|
* the TAIL pointer points to within the last 2 cachelines
|
|
* of the buffer.
|
|
*/
|
|
ring->effective_size = size;
|
|
if (IS_I830(engine->i915) || IS_I845G(engine->i915))
|
|
ring->effective_size -= 2 * CACHELINE_BYTES;
|
|
|
|
intel_ring_update_space(ring);
|
|
|
|
vma = intel_ring_create_vma(engine->i915, size);
|
|
if (IS_ERR(vma)) {
|
|
kfree(ring);
|
|
return ERR_CAST(vma);
|
|
}
|
|
ring->vma = vma;
|
|
|
|
return ring;
|
|
}
|
|
|
|
void
|
|
intel_ring_free(struct intel_ring *ring)
|
|
{
|
|
struct drm_i915_gem_object *obj = ring->vma->obj;
|
|
|
|
i915_vma_close(ring->vma);
|
|
__i915_gem_object_release_unless_active(obj);
|
|
|
|
kfree(ring);
|
|
}
|
|
|
|
static int context_pin(struct i915_gem_context *ctx)
|
|
{
|
|
struct i915_vma *vma = ctx->engine[RCS].state;
|
|
int ret;
|
|
|
|
/* Clear this page out of any CPU caches for coherent swap-in/out.
|
|
* We only want to do this on the first bind so that we do not stall
|
|
* on an active context (which by nature is already on the GPU).
|
|
*/
|
|
if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
|
|
ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
|
|
PIN_GLOBAL | PIN_HIGH);
|
|
}
|
|
|
|
static struct i915_vma *
|
|
alloc_context_vma(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *i915 = engine->i915;
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
|
|
obj = i915_gem_object_create(i915, engine->context_size);
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
/*
|
|
* Try to make the context utilize L3 as well as LLC.
|
|
*
|
|
* On VLV we don't have L3 controls in the PTEs so we
|
|
* shouldn't touch the cache level, especially as that
|
|
* would make the object snooped which might have a
|
|
* negative performance impact.
|
|
*
|
|
* Snooping is required on non-llc platforms in execlist
|
|
* mode, but since all GGTT accesses use PAT entry 0 we
|
|
* get snooping anyway regardless of cache_level.
|
|
*
|
|
* This is only applicable for Ivy Bridge devices since
|
|
* later platforms don't have L3 control bits in the PTE.
|
|
*/
|
|
if (IS_IVYBRIDGE(i915)) {
|
|
/* Ignore any error, regard it as a simple optimisation */
|
|
i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
|
|
}
|
|
|
|
vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
|
|
if (IS_ERR(vma))
|
|
i915_gem_object_put(obj);
|
|
|
|
return vma;
|
|
}
|
|
|
|
static struct intel_ring *
|
|
intel_ring_context_pin(struct intel_engine_cs *engine,
|
|
struct i915_gem_context *ctx)
|
|
{
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
|
int ret;
|
|
|
|
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
|
|
|
|
if (likely(ce->pin_count++))
|
|
goto out;
|
|
GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
|
|
|
|
if (!ce->state && engine->context_size) {
|
|
struct i915_vma *vma;
|
|
|
|
vma = alloc_context_vma(engine);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
ce->state = vma;
|
|
}
|
|
|
|
if (ce->state) {
|
|
ret = context_pin(ctx);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ce->state->obj->mm.dirty = true;
|
|
ce->state->obj->pin_global++;
|
|
}
|
|
|
|
/* The kernel context is only used as a placeholder for flushing the
|
|
* active context. It is never used for submitting user rendering and
|
|
* as such never requires the golden render context, and so we can skip
|
|
* emitting it when we switch to the kernel context. This is required
|
|
* as during eviction we cannot allocate and pin the renderstate in
|
|
* order to initialise the context.
|
|
*/
|
|
if (i915_gem_context_is_kernel(ctx))
|
|
ce->initialised = true;
|
|
|
|
i915_gem_context_get(ctx);
|
|
|
|
out:
|
|
/* One ringbuffer to rule them all */
|
|
return engine->buffer;
|
|
|
|
err:
|
|
ce->pin_count = 0;
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
|
|
struct i915_gem_context *ctx)
|
|
{
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
|
|
|
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
|
|
GEM_BUG_ON(ce->pin_count == 0);
|
|
|
|
if (--ce->pin_count)
|
|
return;
|
|
|
|
if (ce->state) {
|
|
ce->state->obj->pin_global--;
|
|
i915_vma_unpin(ce->state);
|
|
}
|
|
|
|
i915_gem_context_put(ctx);
|
|
}
|
|
|
|
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_ring *ring;
|
|
int err;
|
|
|
|
intel_engine_setup_common(engine);
|
|
|
|
err = intel_engine_init_common(engine);
|
|
if (err)
|
|
goto err;
|
|
|
|
ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
|
|
if (IS_ERR(ring)) {
|
|
err = PTR_ERR(ring);
|
|
goto err;
|
|
}
|
|
|
|
/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
|
|
err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
|
|
if (err)
|
|
goto err_ring;
|
|
|
|
GEM_BUG_ON(engine->buffer);
|
|
engine->buffer = ring;
|
|
|
|
return 0;
|
|
|
|
err_ring:
|
|
intel_ring_free(ring);
|
|
err:
|
|
intel_engine_cleanup_common(engine);
|
|
return err;
|
|
}
|
|
|
|
void intel_engine_cleanup(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
WARN_ON(INTEL_GEN(dev_priv) > 2 &&
|
|
(I915_READ_MODE(engine) & MODE_IDLE) == 0);
|
|
|
|
intel_ring_unpin(engine->buffer);
|
|
intel_ring_free(engine->buffer);
|
|
|
|
if (engine->cleanup)
|
|
engine->cleanup(engine);
|
|
|
|
intel_engine_cleanup_common(engine);
|
|
|
|
dev_priv->engine[engine->id] = NULL;
|
|
kfree(engine);
|
|
}
|
|
|
|
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
/* Restart from the beginning of the rings for convenience */
|
|
for_each_engine(engine, dev_priv, id)
|
|
intel_ring_reset(engine->buffer, 0);
|
|
}
|
|
|
|
static int ring_request_alloc(struct drm_i915_gem_request *request)
|
|
{
|
|
u32 *cs;
|
|
|
|
GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
|
|
|
|
/* Flush enough space to reduce the likelihood of waiting after
|
|
* we start building the request - in which case we will just
|
|
* have to repeat work.
|
|
*/
|
|
request->reserved_space += LEGACY_REQUEST_SIZE;
|
|
|
|
cs = intel_ring_begin(request, 0);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
request->reserved_space -= LEGACY_REQUEST_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int wait_for_space(struct drm_i915_gem_request *req,
|
|
unsigned int bytes)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
struct drm_i915_gem_request *target;
|
|
long timeout;
|
|
|
|
lockdep_assert_held(&req->i915->drm.struct_mutex);
|
|
|
|
if (intel_ring_update_space(ring) >= bytes)
|
|
return 0;
|
|
|
|
/*
|
|
* Space is reserved in the ringbuffer for finalising the request,
|
|
* as that cannot be allowed to fail. During request finalisation,
|
|
* reserved_space is set to 0 to stop the overallocation and the
|
|
* assumption is that then we never need to wait (which has the
|
|
* risk of failing with EINTR).
|
|
*
|
|
* See also i915_gem_request_alloc() and i915_add_request().
|
|
*/
|
|
GEM_BUG_ON(!req->reserved_space);
|
|
|
|
list_for_each_entry(target, &ring->request_list, ring_link) {
|
|
/* Would completion of this request free enough space? */
|
|
if (bytes <= __intel_ring_space(target->postfix,
|
|
ring->emit, ring->size))
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON(&target->ring_link == &ring->request_list))
|
|
return -ENOSPC;
|
|
|
|
timeout = i915_wait_request(target,
|
|
I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (timeout < 0)
|
|
return timeout;
|
|
|
|
i915_gem_request_retire_upto(target);
|
|
|
|
intel_ring_update_space(ring);
|
|
GEM_BUG_ON(ring->space < bytes);
|
|
return 0;
|
|
}
|
|
|
|
u32 *intel_ring_begin(struct drm_i915_gem_request *req,
|
|
unsigned int num_dwords)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
const unsigned int remain_usable = ring->effective_size - ring->emit;
|
|
const unsigned int bytes = num_dwords * sizeof(u32);
|
|
unsigned int need_wrap = 0;
|
|
unsigned int total_bytes;
|
|
u32 *cs;
|
|
|
|
/* Packets must be qword aligned. */
|
|
GEM_BUG_ON(num_dwords & 1);
|
|
|
|
total_bytes = bytes + req->reserved_space;
|
|
GEM_BUG_ON(total_bytes > ring->effective_size);
|
|
|
|
if (unlikely(total_bytes > remain_usable)) {
|
|
const int remain_actual = ring->size - ring->emit;
|
|
|
|
if (bytes > remain_usable) {
|
|
/*
|
|
* Not enough space for the basic request. So need to
|
|
* flush out the remainder and then wait for
|
|
* base + reserved.
|
|
*/
|
|
total_bytes += remain_actual;
|
|
need_wrap = remain_actual | 1;
|
|
} else {
|
|
/*
|
|
* The base request will fit but the reserved space
|
|
* falls off the end. So we don't need an immediate
|
|
* wrap and only need to effectively wait for the
|
|
* reserved size from the start of ringbuffer.
|
|
*/
|
|
total_bytes = req->reserved_space + remain_actual;
|
|
}
|
|
}
|
|
|
|
if (unlikely(total_bytes > ring->space)) {
|
|
int ret = wait_for_space(req, total_bytes);
|
|
if (unlikely(ret))
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
if (unlikely(need_wrap)) {
|
|
need_wrap &= ~1;
|
|
GEM_BUG_ON(need_wrap > ring->space);
|
|
GEM_BUG_ON(ring->emit + need_wrap > ring->size);
|
|
|
|
/* Fill the tail with MI_NOOP */
|
|
memset(ring->vaddr + ring->emit, 0, need_wrap);
|
|
ring->emit = 0;
|
|
ring->space -= need_wrap;
|
|
}
|
|
|
|
GEM_BUG_ON(ring->emit > ring->size - bytes);
|
|
GEM_BUG_ON(ring->space < bytes);
|
|
cs = ring->vaddr + ring->emit;
|
|
GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
|
|
ring->emit += bytes;
|
|
ring->space -= bytes;
|
|
|
|
return cs;
|
|
}
|
|
|
|
/* Align the ring tail to a cacheline boundary */
|
|
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
|
|
{
|
|
int num_dwords =
|
|
(req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
|
|
u32 *cs;
|
|
|
|
if (num_dwords == 0)
|
|
return 0;
|
|
|
|
num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
|
|
cs = intel_ring_begin(req, num_dwords);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
while (num_dwords--)
|
|
*cs++ = MI_NOOP;
|
|
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_private *dev_priv = request->i915;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* Every tail move must follow the sequence below */
|
|
|
|
/* Disable notification that the ring is IDLE. The GT
|
|
* will then assume that it is busy and bring it out of rc6.
|
|
*/
|
|
I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
|
|
_MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
|
|
|
|
/* Clear the context id. Here be magic! */
|
|
I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
|
|
|
|
/* Wait for the ring not to be idle, i.e. for it to wake up. */
|
|
if (__intel_wait_for_register_fw(dev_priv,
|
|
GEN6_BSD_SLEEP_PSMI_CONTROL,
|
|
GEN6_BSD_SLEEP_INDICATOR,
|
|
0,
|
|
1000, 0, NULL))
|
|
DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
|
|
|
|
/* Now that the ring is fully powered up, update the tail */
|
|
i9xx_submit_request(request);
|
|
|
|
/* Let the ring send IDLE messages to the GT again,
|
|
* and so let it sleep to conserve power when idle.
|
|
*/
|
|
I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
|
|
_MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 cmd, *cs;
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
cmd = MI_FLUSH_DW;
|
|
if (INTEL_GEN(req->i915) >= 8)
|
|
cmd += 1;
|
|
|
|
/* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
/*
|
|
* Bspec vol 1c.5 - video engine command streamer:
|
|
* "If ENABLED, all TLBs will be invalidated once the flush
|
|
* operation is complete. This bit is only valid when the
|
|
* Post-Sync Operation field is a value of 1h or 3h."
|
|
*/
|
|
if (mode & EMIT_INVALIDATE)
|
|
cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
|
|
|
|
*cs++ = cmd;
|
|
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
|
|
if (INTEL_GEN(req->i915) >= 8) {
|
|
*cs++ = 0; /* upper addr */
|
|
*cs++ = 0; /* value */
|
|
} else {
|
|
*cs++ = 0;
|
|
*cs++ = MI_NOOP;
|
|
}
|
|
intel_ring_advance(req, cs);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen8_emit_bb_start(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 len,
|
|
unsigned int dispatch_flags)
|
|
{
|
|
bool ppgtt = USES_PPGTT(req->i915) &&
|
|
!(dispatch_flags & I915_DISPATCH_SECURE);
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
/* FIXME(BDW): Address space and security selectors. */
|
|
*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
|
|
I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
|
|
*cs++ = lower_32_bits(offset);
|
|
*cs++ = upper_32_bits(offset);
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hsw_emit_bb_start(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 len,
|
|
unsigned int dispatch_flags)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
|
|
0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
|
|
(dispatch_flags & I915_DISPATCH_RS ?
|
|
MI_BATCH_RESOURCE_STREAMER : 0);
|
|
/* bit0-7 is the length on GEN6+ */
|
|
*cs++ = offset;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen6_emit_bb_start(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 len,
|
|
unsigned int dispatch_flags)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(req, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
|
|
0 : MI_BATCH_NON_SECURE_I965);
|
|
/* bit0-7 is the length on GEN6+ */
|
|
*cs++ = offset;
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Blitter support (SandyBridge+) */
|
|
|
|
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
|
|
{
|
|
u32 cmd, *cs;
|
|
|
|
cs = intel_ring_begin(req, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
cmd = MI_FLUSH_DW;
|
|
if (INTEL_GEN(req->i915) >= 8)
|
|
cmd += 1;
|
|
|
|
/* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
/*
|
|
* Bspec vol 1c.3 - blitter engine command streamer:
|
|
* "If ENABLED, all TLBs will be invalidated once the flush
|
|
* operation is complete. This bit is only valid when the
|
|
* Post-Sync Operation field is a value of 1h or 3h."
|
|
*/
|
|
if (mode & EMIT_INVALIDATE)
|
|
cmd |= MI_INVALIDATE_TLB;
|
|
*cs++ = cmd;
|
|
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
|
|
if (INTEL_GEN(req->i915) >= 8) {
|
|
*cs++ = 0; /* upper addr */
|
|
*cs++ = 0; /* value */
|
|
} else {
|
|
*cs++ = 0;
|
|
*cs++ = MI_NOOP;
|
|
}
|
|
intel_ring_advance(req, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
int ret, i;
|
|
|
|
if (!i915_modparams.semaphores)
|
|
return;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
|
|
struct i915_vma *vma;
|
|
|
|
obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
|
|
if (IS_ERR(obj))
|
|
goto err;
|
|
|
|
vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
|
|
if (IS_ERR(vma))
|
|
goto err_obj;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, false);
|
|
if (ret)
|
|
goto err_obj;
|
|
|
|
ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
|
|
if (ret)
|
|
goto err_obj;
|
|
|
|
dev_priv->semaphore = vma;
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8) {
|
|
u32 offset = i915_ggtt_offset(dev_priv->semaphore);
|
|
|
|
engine->semaphore.sync_to = gen8_ring_sync_to;
|
|
engine->semaphore.signal = gen8_xcs_signal;
|
|
|
|
for (i = 0; i < I915_NUM_ENGINES; i++) {
|
|
u32 ring_offset;
|
|
|
|
if (i != engine->id)
|
|
ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
|
|
else
|
|
ring_offset = MI_SEMAPHORE_SYNC_INVALID;
|
|
|
|
engine->semaphore.signal_ggtt[i] = ring_offset;
|
|
}
|
|
} else if (INTEL_GEN(dev_priv) >= 6) {
|
|
engine->semaphore.sync_to = gen6_ring_sync_to;
|
|
engine->semaphore.signal = gen6_signal;
|
|
|
|
/*
|
|
* The current semaphore is only applied on pre-gen8
|
|
* platform. And there is no VCS2 ring on the pre-gen8
|
|
* platform. So the semaphore between RCS and VCS2 is
|
|
* initialized as INVALID. Gen8 will initialize the
|
|
* sema between VCS2 and RCS later.
|
|
*/
|
|
for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
|
|
static const struct {
|
|
u32 wait_mbox;
|
|
i915_reg_t mbox_reg;
|
|
} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
|
|
[RCS_HW] = {
|
|
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
|
|
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
|
|
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
|
|
},
|
|
[VCS_HW] = {
|
|
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
|
|
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
|
|
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
|
|
},
|
|
[BCS_HW] = {
|
|
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
|
|
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
|
|
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
|
|
},
|
|
[VECS_HW] = {
|
|
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
|
|
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
|
|
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
|
|
},
|
|
};
|
|
u32 wait_mbox;
|
|
i915_reg_t mbox_reg;
|
|
|
|
if (i == engine->hw_id) {
|
|
wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
|
|
mbox_reg = GEN6_NOSYNC;
|
|
} else {
|
|
wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
|
|
mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
|
|
}
|
|
|
|
engine->semaphore.mbox.wait[i] = wait_mbox;
|
|
engine->semaphore.mbox.signal[i] = mbox_reg;
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
err_obj:
|
|
i915_gem_object_put(obj);
|
|
err:
|
|
DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
|
|
i915_modparams.semaphores = 0;
|
|
}
|
|
|
|
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8) {
|
|
engine->irq_enable = gen8_irq_enable;
|
|
engine->irq_disable = gen8_irq_disable;
|
|
engine->irq_seqno_barrier = gen6_seqno_barrier;
|
|
} else if (INTEL_GEN(dev_priv) >= 6) {
|
|
engine->irq_enable = gen6_irq_enable;
|
|
engine->irq_disable = gen6_irq_disable;
|
|
engine->irq_seqno_barrier = gen6_seqno_barrier;
|
|
} else if (INTEL_GEN(dev_priv) >= 5) {
|
|
engine->irq_enable = gen5_irq_enable;
|
|
engine->irq_disable = gen5_irq_disable;
|
|
engine->irq_seqno_barrier = gen5_seqno_barrier;
|
|
} else if (INTEL_GEN(dev_priv) >= 3) {
|
|
engine->irq_enable = i9xx_irq_enable;
|
|
engine->irq_disable = i9xx_irq_disable;
|
|
} else {
|
|
engine->irq_enable = i8xx_irq_enable;
|
|
engine->irq_disable = i8xx_irq_disable;
|
|
}
|
|
}
|
|
|
|
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
|
|
{
|
|
engine->submit_request = i9xx_submit_request;
|
|
engine->cancel_requests = cancel_requests;
|
|
|
|
engine->park = NULL;
|
|
engine->unpark = NULL;
|
|
}
|
|
|
|
static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
|
|
{
|
|
i9xx_set_default_submission(engine);
|
|
engine->submit_request = gen6_bsd_submit_request;
|
|
}
|
|
|
|
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
intel_ring_init_irq(dev_priv, engine);
|
|
intel_ring_init_semaphores(dev_priv, engine);
|
|
|
|
engine->init_hw = init_ring_common;
|
|
engine->reset_hw = reset_ring_common;
|
|
|
|
engine->context_pin = intel_ring_context_pin;
|
|
engine->context_unpin = intel_ring_context_unpin;
|
|
|
|
engine->request_alloc = ring_request_alloc;
|
|
|
|
engine->emit_breadcrumb = i9xx_emit_breadcrumb;
|
|
engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
|
|
if (i915_modparams.semaphores) {
|
|
int num_rings;
|
|
|
|
engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
|
|
|
|
num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
|
|
if (INTEL_GEN(dev_priv) >= 8) {
|
|
engine->emit_breadcrumb_sz += num_rings * 6;
|
|
} else {
|
|
engine->emit_breadcrumb_sz += num_rings * 3;
|
|
if (num_rings & 1)
|
|
engine->emit_breadcrumb_sz++;
|
|
}
|
|
}
|
|
|
|
engine->set_default_submission = i9xx_set_default_submission;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8)
|
|
engine->emit_bb_start = gen8_emit_bb_start;
|
|
else if (INTEL_GEN(dev_priv) >= 6)
|
|
engine->emit_bb_start = gen6_emit_bb_start;
|
|
else if (INTEL_GEN(dev_priv) >= 4)
|
|
engine->emit_bb_start = i965_emit_bb_start;
|
|
else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
|
|
engine->emit_bb_start = i830_emit_bb_start;
|
|
else
|
|
engine->emit_bb_start = i915_emit_bb_start;
|
|
}
|
|
|
|
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
int ret;
|
|
|
|
intel_ring_default_vfuncs(dev_priv, engine);
|
|
|
|
if (HAS_L3_DPF(dev_priv))
|
|
engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8) {
|
|
engine->init_context = intel_rcs_ctx_init;
|
|
engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
|
|
engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
|
|
engine->emit_flush = gen8_render_ring_flush;
|
|
if (i915_modparams.semaphores) {
|
|
int num_rings;
|
|
|
|
engine->semaphore.signal = gen8_rcs_signal;
|
|
|
|
num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
|
|
engine->emit_breadcrumb_sz += num_rings * 8;
|
|
}
|
|
} else if (INTEL_GEN(dev_priv) >= 6) {
|
|
engine->init_context = intel_rcs_ctx_init;
|
|
engine->emit_flush = gen7_render_ring_flush;
|
|
if (IS_GEN6(dev_priv))
|
|
engine->emit_flush = gen6_render_ring_flush;
|
|
} else if (IS_GEN5(dev_priv)) {
|
|
engine->emit_flush = gen4_render_ring_flush;
|
|
} else {
|
|
if (INTEL_GEN(dev_priv) < 4)
|
|
engine->emit_flush = gen2_render_ring_flush;
|
|
else
|
|
engine->emit_flush = gen4_render_ring_flush;
|
|
engine->irq_enable_mask = I915_USER_INTERRUPT;
|
|
}
|
|
|
|
if (IS_HASWELL(dev_priv))
|
|
engine->emit_bb_start = hsw_emit_bb_start;
|
|
|
|
engine->init_hw = init_render_ring;
|
|
engine->cleanup = render_ring_cleanup;
|
|
|
|
ret = intel_init_ring_buffer(engine);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 6) {
|
|
ret = intel_engine_create_scratch(engine, PAGE_SIZE);
|
|
if (ret)
|
|
return ret;
|
|
} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
|
|
ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
intel_ring_default_vfuncs(dev_priv, engine);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 6) {
|
|
/* gen6 bsd needs a special wa for tail updates */
|
|
if (IS_GEN6(dev_priv))
|
|
engine->set_default_submission = gen6_bsd_set_default_submission;
|
|
engine->emit_flush = gen6_bsd_ring_flush;
|
|
if (INTEL_GEN(dev_priv) < 8)
|
|
engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
|
|
} else {
|
|
engine->mmio_base = BSD_RING_BASE;
|
|
engine->emit_flush = bsd_ring_flush;
|
|
if (IS_GEN5(dev_priv))
|
|
engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
|
|
else
|
|
engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
|
|
}
|
|
|
|
return intel_init_ring_buffer(engine);
|
|
}
|
|
|
|
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
intel_ring_default_vfuncs(dev_priv, engine);
|
|
|
|
engine->emit_flush = gen6_ring_flush;
|
|
if (INTEL_GEN(dev_priv) < 8)
|
|
engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
|
|
|
|
return intel_init_ring_buffer(engine);
|
|
}
|
|
|
|
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
intel_ring_default_vfuncs(dev_priv, engine);
|
|
|
|
engine->emit_flush = gen6_ring_flush;
|
|
|
|
if (INTEL_GEN(dev_priv) < 8) {
|
|
engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
|
|
engine->irq_enable = hsw_vebox_irq_enable;
|
|
engine->irq_disable = hsw_vebox_irq_disable;
|
|
}
|
|
|
|
return intel_init_ring_buffer(engine);
|
|
}
|