ad756a1603
This patch handles PCID/INVPCID for guests. Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple linear-address spaces so that the processor may retain cached information when software switches to a different linear address space. Refer to section 4.10.1 in IA32 Intel Software Developer's Manual Volume 3A for details. For guests with EPT, the PCID feature is enabled and INVPCID behaves as running natively. For guests without EPT, the PCID feature is disabled and INVPCID triggers #UD. Signed-off-by: Junjie Mao <junjie.mao@intel.com> Signed-off-by: Avi Kivity <avi@redhat.com>
678 lines
17 KiB
C
678 lines
17 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
* cpuid support routines
|
|
*
|
|
* derived from arch/x86/kvm/x86.c
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
|
|
* Copyright IBM Corporation, 2008
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/user.h>
|
|
#include <asm/xsave.h>
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "mmu.h"
|
|
#include "trace.h"
|
|
|
|
void kvm_update_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1, 0);
|
|
if (!best)
|
|
return;
|
|
|
|
/* Update OSXSAVE bit */
|
|
if (cpu_has_xsave && best->function == 0x1) {
|
|
best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
|
|
best->ecx |= bit(X86_FEATURE_OSXSAVE);
|
|
}
|
|
|
|
if (apic) {
|
|
if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
|
|
apic->lapic_timer.timer_mode_mask = 3 << 17;
|
|
else
|
|
apic->lapic_timer.timer_mode_mask = 1 << 17;
|
|
}
|
|
|
|
kvm_pmu_cpuid_update(vcpu);
|
|
}
|
|
|
|
static int is_efer_nx(void)
|
|
{
|
|
unsigned long long efer = 0;
|
|
|
|
rdmsrl_safe(MSR_EFER, &efer);
|
|
return efer & EFER_NX;
|
|
}
|
|
|
|
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_cpuid_entry2 *e, *entry;
|
|
|
|
entry = NULL;
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
if (e->function == 0x80000001) {
|
|
entry = e;
|
|
break;
|
|
}
|
|
}
|
|
if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
|
|
entry->edx &= ~(1 << 20);
|
|
printk(KERN_INFO "kvm: guest NX capability removed\n");
|
|
}
|
|
}
|
|
|
|
/* when an old userspace process fills a new kernel module */
|
|
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid *cpuid,
|
|
struct kvm_cpuid_entry __user *entries)
|
|
{
|
|
int r, i;
|
|
struct kvm_cpuid_entry *cpuid_entries;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
goto out;
|
|
r = -ENOMEM;
|
|
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
|
|
if (!cpuid_entries)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(cpuid_entries, entries,
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
|
|
goto out_free;
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
|
|
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
|
|
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
|
|
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
|
|
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
|
|
vcpu->arch.cpuid_entries[i].index = 0;
|
|
vcpu->arch.cpuid_entries[i].flags = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[0] = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[1] = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[2] = 0;
|
|
}
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
cpuid_fix_nx_cap(vcpu);
|
|
r = 0;
|
|
kvm_apic_set_version(vcpu);
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
|
kvm_update_cpuid(vcpu);
|
|
|
|
out_free:
|
|
vfree(cpuid_entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out;
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
kvm_apic_set_version(vcpu);
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
|
kvm_update_cpuid(vcpu);
|
|
return 0;
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent < vcpu->arch.cpuid_nent)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out;
|
|
return 0;
|
|
|
|
out:
|
|
cpuid->nent = vcpu->arch.cpuid_nent;
|
|
return r;
|
|
}
|
|
|
|
static void cpuid_mask(u32 *word, int wordnum)
|
|
{
|
|
*word &= boot_cpu_data.x86_capability[wordnum];
|
|
}
|
|
|
|
static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
|
|
u32 index)
|
|
{
|
|
entry->function = function;
|
|
entry->index = index;
|
|
cpuid_count(entry->function, entry->index,
|
|
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
|
|
entry->flags = 0;
|
|
}
|
|
|
|
static bool supported_xcr0_bit(unsigned bit)
|
|
{
|
|
u64 mask = ((u64)1 << bit);
|
|
|
|
return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
|
|
}
|
|
|
|
#define F(x) bit(X86_FEATURE_##x)
|
|
|
|
static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
|
|
u32 index, int *nent, int maxnent)
|
|
{
|
|
int r;
|
|
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
|
|
#ifdef CONFIG_X86_64
|
|
unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
|
|
? F(GBPAGES) : 0;
|
|
unsigned f_lm = F(LM);
|
|
#else
|
|
unsigned f_gbpages = 0;
|
|
unsigned f_lm = 0;
|
|
#endif
|
|
unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
|
|
unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
|
|
|
|
/* cpuid 1.edx */
|
|
const u32 kvm_supported_word0_x86_features =
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
|
|
0 /* Reserved, DS, ACPI */ | F(MMX) |
|
|
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
|
|
0 /* HTT, TM, Reserved, PBE */;
|
|
/* cpuid 0x80000001.edx */
|
|
const u32 kvm_supported_word1_x86_features =
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* Reserved */ |
|
|
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
|
|
F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
|
|
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
|
|
/* cpuid 1.ecx */
|
|
const u32 kvm_supported_word4_x86_features =
|
|
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
|
|
0 /* DS-CPL, VMX, SMX, EST */ |
|
|
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
|
|
F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
|
|
F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
|
|
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
|
|
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
|
|
F(F16C) | F(RDRAND);
|
|
/* cpuid 0x80000001.ecx */
|
|
const u32 kvm_supported_word6_x86_features =
|
|
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
|
|
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
|
|
F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
|
|
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
|
|
|
|
/* cpuid 0xC0000001.edx */
|
|
const u32 kvm_supported_word5_x86_features =
|
|
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
|
|
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
|
|
F(PMM) | F(PMM_EN);
|
|
|
|
/* cpuid 7.0.ebx */
|
|
const u32 kvm_supported_word9_x86_features =
|
|
F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
|
|
F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
|
|
|
|
/* all calls to cpuid_count() should be made on the same cpu */
|
|
get_cpu();
|
|
|
|
r = -E2BIG;
|
|
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
do_cpuid_1_ent(entry, function, index);
|
|
++*nent;
|
|
|
|
switch (function) {
|
|
case 0:
|
|
entry->eax = min(entry->eax, (u32)0xd);
|
|
break;
|
|
case 1:
|
|
entry->edx &= kvm_supported_word0_x86_features;
|
|
cpuid_mask(&entry->edx, 0);
|
|
entry->ecx &= kvm_supported_word4_x86_features;
|
|
cpuid_mask(&entry->ecx, 4);
|
|
/* we support x2apic emulation even if host does not support
|
|
* it since we emulate x2apic in software */
|
|
entry->ecx |= F(X2APIC);
|
|
break;
|
|
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
|
|
* may return different values. This forces us to get_cpu() before
|
|
* issuing the first command, and also to emulate this annoying behavior
|
|
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
|
|
case 2: {
|
|
int t, times = entry->eax & 0xff;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
for (t = 1; t < times; ++t) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
do_cpuid_1_ent(&entry[t], function, 0);
|
|
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
/* function 4 has additional index. */
|
|
case 4: {
|
|
int i, cache_type;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
/* read more entries until cache_type is zero */
|
|
for (i = 1; ; ++i) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
cache_type = entry[i - 1].eax & 0x1f;
|
|
if (!cache_type)
|
|
break;
|
|
do_cpuid_1_ent(&entry[i], function, i);
|
|
entry[i].flags |=
|
|
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case 7: {
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
/* Mask ebx against host capbability word 9 */
|
|
if (index == 0) {
|
|
entry->ebx &= kvm_supported_word9_x86_features;
|
|
cpuid_mask(&entry->ebx, 9);
|
|
} else
|
|
entry->ebx = 0;
|
|
entry->eax = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
}
|
|
case 9:
|
|
break;
|
|
case 0xa: { /* Architectural Performance Monitoring */
|
|
struct x86_pmu_capability cap;
|
|
union cpuid10_eax eax;
|
|
union cpuid10_edx edx;
|
|
|
|
perf_get_x86_pmu_capability(&cap);
|
|
|
|
/*
|
|
* Only support guest architectural pmu on a host
|
|
* with architectural pmu.
|
|
*/
|
|
if (!cap.version)
|
|
memset(&cap, 0, sizeof(cap));
|
|
|
|
eax.split.version_id = min(cap.version, 2);
|
|
eax.split.num_counters = cap.num_counters_gp;
|
|
eax.split.bit_width = cap.bit_width_gp;
|
|
eax.split.mask_length = cap.events_mask_len;
|
|
|
|
edx.split.num_counters_fixed = cap.num_counters_fixed;
|
|
edx.split.bit_width_fixed = cap.bit_width_fixed;
|
|
edx.split.reserved = 0;
|
|
|
|
entry->eax = eax.full;
|
|
entry->ebx = cap.events_mask;
|
|
entry->ecx = 0;
|
|
entry->edx = edx.full;
|
|
break;
|
|
}
|
|
/* function 0xb has additional index. */
|
|
case 0xb: {
|
|
int i, level_type;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
/* read more entries until level_type is zero */
|
|
for (i = 1; ; ++i) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
level_type = entry[i - 1].ecx & 0xff00;
|
|
if (!level_type)
|
|
break;
|
|
do_cpuid_1_ent(&entry[i], function, i);
|
|
entry[i].flags |=
|
|
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case 0xd: {
|
|
int idx, i;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
for (idx = 1, i = 1; idx < 64; ++idx) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
do_cpuid_1_ent(&entry[i], function, idx);
|
|
if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
|
|
continue;
|
|
entry[i].flags |=
|
|
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
++*nent;
|
|
++i;
|
|
}
|
|
break;
|
|
}
|
|
case KVM_CPUID_SIGNATURE: {
|
|
char signature[12] = "KVMKVMKVM\0\0";
|
|
u32 *sigptr = (u32 *)signature;
|
|
entry->eax = KVM_CPUID_FEATURES;
|
|
entry->ebx = sigptr[0];
|
|
entry->ecx = sigptr[1];
|
|
entry->edx = sigptr[2];
|
|
break;
|
|
}
|
|
case KVM_CPUID_FEATURES:
|
|
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
|
|
(1 << KVM_FEATURE_NOP_IO_DELAY) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE2) |
|
|
(1 << KVM_FEATURE_ASYNC_PF) |
|
|
(1 << KVM_FEATURE_PV_EOI) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
|
|
|
|
if (sched_info_on())
|
|
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
|
|
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
case 0x80000000:
|
|
entry->eax = min(entry->eax, 0x8000001a);
|
|
break;
|
|
case 0x80000001:
|
|
entry->edx &= kvm_supported_word1_x86_features;
|
|
cpuid_mask(&entry->edx, 1);
|
|
entry->ecx &= kvm_supported_word6_x86_features;
|
|
cpuid_mask(&entry->ecx, 6);
|
|
break;
|
|
case 0x80000008: {
|
|
unsigned g_phys_as = (entry->eax >> 16) & 0xff;
|
|
unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
|
|
unsigned phys_as = entry->eax & 0xff;
|
|
|
|
if (!g_phys_as)
|
|
g_phys_as = phys_as;
|
|
entry->eax = g_phys_as | (virt_as << 8);
|
|
entry->ebx = entry->edx = 0;
|
|
break;
|
|
}
|
|
case 0x80000019:
|
|
entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x8000001a:
|
|
break;
|
|
case 0x8000001d:
|
|
break;
|
|
/*Add support for Centaur's CPUID instruction*/
|
|
case 0xC0000000:
|
|
/*Just support up to 0xC0000004 now*/
|
|
entry->eax = min(entry->eax, 0xC0000004);
|
|
break;
|
|
case 0xC0000001:
|
|
entry->edx &= kvm_supported_word5_x86_features;
|
|
cpuid_mask(&entry->edx, 5);
|
|
break;
|
|
case 3: /* Processor serial number */
|
|
case 5: /* MONITOR/MWAIT */
|
|
case 6: /* Thermal management */
|
|
case 0x80000007: /* Advanced power management */
|
|
case 0xC0000002:
|
|
case 0xC0000003:
|
|
case 0xC0000004:
|
|
default:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
kvm_x86_ops->set_supported_cpuid(function, entry);
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
return r;
|
|
}
|
|
|
|
#undef F
|
|
|
|
struct kvm_cpuid_param {
|
|
u32 func;
|
|
u32 idx;
|
|
bool has_leaf_count;
|
|
bool (*qualifier)(struct kvm_cpuid_param *param);
|
|
};
|
|
|
|
static bool is_centaur_cpu(struct kvm_cpuid_param *param)
|
|
{
|
|
return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
|
|
}
|
|
|
|
int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
struct kvm_cpuid_entry2 *cpuid_entries;
|
|
int limit, nent = 0, r = -E2BIG, i;
|
|
u32 func;
|
|
static struct kvm_cpuid_param param[] = {
|
|
{ .func = 0, .has_leaf_count = true },
|
|
{ .func = 0x80000000, .has_leaf_count = true },
|
|
{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
|
|
{ .func = KVM_CPUID_SIGNATURE },
|
|
{ .func = KVM_CPUID_FEATURES },
|
|
};
|
|
|
|
if (cpuid->nent < 1)
|
|
goto out;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
|
|
r = -ENOMEM;
|
|
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
|
|
if (!cpuid_entries)
|
|
goto out;
|
|
|
|
r = 0;
|
|
for (i = 0; i < ARRAY_SIZE(param); i++) {
|
|
struct kvm_cpuid_param *ent = ¶m[i];
|
|
|
|
if (ent->qualifier && !ent->qualifier(ent))
|
|
continue;
|
|
|
|
r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
|
|
&nent, cpuid->nent);
|
|
|
|
if (r)
|
|
goto out_free;
|
|
|
|
if (!ent->has_leaf_count)
|
|
continue;
|
|
|
|
limit = cpuid_entries[nent - 1].eax;
|
|
for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
|
|
r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
|
|
&nent, cpuid->nent);
|
|
|
|
if (r)
|
|
goto out_free;
|
|
}
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(entries, cpuid_entries,
|
|
nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out_free;
|
|
cpuid->nent = nent;
|
|
r = 0;
|
|
|
|
out_free:
|
|
vfree(cpuid_entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
|
|
{
|
|
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
|
|
int j, nent = vcpu->arch.cpuid_nent;
|
|
|
|
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
/* when no next entry is found, the current entry[i] is reselected */
|
|
for (j = i + 1; ; j = (j + 1) % nent) {
|
|
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
|
|
if (ej->function == e->function) {
|
|
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
return j;
|
|
}
|
|
}
|
|
return 0; /* silence gcc, even though control never reaches here */
|
|
}
|
|
|
|
/* find an entry with matching function, matching index (if needed), and that
|
|
* should be read next (if it's stateful) */
|
|
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
|
|
u32 function, u32 index)
|
|
{
|
|
if (e->function != function)
|
|
return 0;
|
|
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
|
|
return 0;
|
|
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
|
|
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
|
|
u32 function, u32 index)
|
|
{
|
|
int i;
|
|
struct kvm_cpuid_entry2 *best = NULL;
|
|
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
struct kvm_cpuid_entry2 *e;
|
|
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
if (is_matching_cpuid_entry(e, function, index)) {
|
|
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
|
|
move_to_next_stateful_cpuid_entry(vcpu, i);
|
|
best = e;
|
|
break;
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
|
|
|
|
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
|
|
if (!best || best->eax < 0x80000008)
|
|
goto not_found;
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
|
|
if (best)
|
|
return best->eax & 0xff;
|
|
not_found:
|
|
return 36;
|
|
}
|
|
|
|
/*
|
|
* If no match is found, check whether we exceed the vCPU's limit
|
|
* and return the content of the highest valid _standard_ leaf instead.
|
|
* This is to satisfy the CPUID specification.
|
|
*/
|
|
static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
|
|
u32 function, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *maxlevel;
|
|
|
|
maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
|
|
if (!maxlevel || maxlevel->eax >= function)
|
|
return NULL;
|
|
if (function & 0x80000000) {
|
|
maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
|
|
if (!maxlevel)
|
|
return NULL;
|
|
}
|
|
return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
|
|
}
|
|
|
|
void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
|
|
{
|
|
u32 function = *eax, index = *ecx;
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, function, index);
|
|
|
|
if (!best)
|
|
best = check_cpuid_limit(vcpu, function, index);
|
|
|
|
if (best) {
|
|
*eax = best->eax;
|
|
*ebx = best->ebx;
|
|
*ecx = best->ecx;
|
|
*edx = best->edx;
|
|
} else
|
|
*eax = *ebx = *ecx = *edx = 0;
|
|
}
|
|
|
|
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 function, eax, ebx, ecx, edx;
|
|
|
|
function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
trace_kvm_cpuid(function, eax, ebx, ecx, edx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|