forked from Minki/linux
89cbc76768
__get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
1377 lines
44 KiB
C
1377 lines
44 KiB
C
/*
|
|
* Netburst Performance Events (P4, old Xeon)
|
|
*
|
|
* Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org>
|
|
* Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com>
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
|
|
#include <asm/perf_event_p4.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/apic.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
#define P4_CNTR_LIMIT 3
|
|
/*
|
|
* array indices: 0,1 - HT threads, used with HT enabled cpu
|
|
*/
|
|
struct p4_event_bind {
|
|
unsigned int opcode; /* Event code and ESCR selector */
|
|
unsigned int escr_msr[2]; /* ESCR MSR for this event */
|
|
unsigned int escr_emask; /* valid ESCR EventMask bits */
|
|
unsigned int shared; /* event is shared across threads */
|
|
char cntr[2][P4_CNTR_LIMIT]; /* counter index (offset), -1 on abscence */
|
|
};
|
|
|
|
struct p4_pebs_bind {
|
|
unsigned int metric_pebs;
|
|
unsigned int metric_vert;
|
|
};
|
|
|
|
/* it sets P4_PEBS_ENABLE_UOP_TAG as well */
|
|
#define P4_GEN_PEBS_BIND(name, pebs, vert) \
|
|
[P4_PEBS_METRIC__##name] = { \
|
|
.metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG, \
|
|
.metric_vert = vert, \
|
|
}
|
|
|
|
/*
|
|
* note we have P4_PEBS_ENABLE_UOP_TAG always set here
|
|
*
|
|
* it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
|
|
* event configuration to find out which values are to be
|
|
* written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
|
|
* resgisters
|
|
*/
|
|
static struct p4_pebs_bind p4_pebs_bind_map[] = {
|
|
P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired, 0x0000001, 0x0000001),
|
|
P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired, 0x0000002, 0x0000001),
|
|
P4_GEN_PEBS_BIND(dtlb_load_miss_retired, 0x0000004, 0x0000001),
|
|
P4_GEN_PEBS_BIND(dtlb_store_miss_retired, 0x0000004, 0x0000002),
|
|
P4_GEN_PEBS_BIND(dtlb_all_miss_retired, 0x0000004, 0x0000003),
|
|
P4_GEN_PEBS_BIND(tagged_mispred_branch, 0x0018000, 0x0000010),
|
|
P4_GEN_PEBS_BIND(mob_load_replay_retired, 0x0000200, 0x0000001),
|
|
P4_GEN_PEBS_BIND(split_load_retired, 0x0000400, 0x0000001),
|
|
P4_GEN_PEBS_BIND(split_store_retired, 0x0000400, 0x0000002),
|
|
};
|
|
|
|
/*
|
|
* Note that we don't use CCCR1 here, there is an
|
|
* exception for P4_BSQ_ALLOCATION but we just have
|
|
* no workaround
|
|
*
|
|
* consider this binding as resources which particular
|
|
* event may borrow, it doesn't contain EventMask,
|
|
* Tags and friends -- they are left to a caller
|
|
*/
|
|
static struct p4_event_bind p4_event_bind_map[] = {
|
|
[P4_EVENT_TC_DELIVER_MODE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_TC_DELIVER_MODE),
|
|
.escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID),
|
|
.shared = 1,
|
|
.cntr = { {4, 5, -1}, {6, 7, -1} },
|
|
},
|
|
[P4_EVENT_BPU_FETCH_REQUEST] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST),
|
|
.escr_msr = { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS),
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_ITLB_REFERENCE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_ITLB_REFERENCE),
|
|
.escr_msr = { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK),
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_MEMORY_CANCEL] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_MEMORY_CANCEL),
|
|
.escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF),
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_MEMORY_COMPLETE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_MEMORY_COMPLETE),
|
|
.escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC),
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_LOAD_PORT_REPLAY] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY),
|
|
.escr_msr = { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD),
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_STORE_PORT_REPLAY] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY),
|
|
.escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST),
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_MOB_LOAD_REPLAY] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY),
|
|
.escr_msr = { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR),
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_PAGE_WALK_TYPE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE),
|
|
.escr_msr = { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS),
|
|
.shared = 1,
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_BSQ_CACHE_REFERENCE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE),
|
|
.escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS),
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_IOQ_ALLOCATION] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_IOQ_ALLOCATION),
|
|
.escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH),
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_IOQ_ACTIVE_ENTRIES] = { /* shared ESCR */
|
|
.opcode = P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES),
|
|
.escr_msr = { MSR_P4_FSB_ESCR1, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH),
|
|
.cntr = { {2, -1, -1}, {3, -1, -1} },
|
|
},
|
|
[P4_EVENT_FSB_DATA_ACTIVITY] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY),
|
|
.escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER),
|
|
.shared = 1,
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_BSQ_ALLOCATION] = { /* shared ESCR, broken CCCR1 */
|
|
.opcode = P4_OPCODE(P4_EVENT_BSQ_ALLOCATION),
|
|
.escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2),
|
|
.cntr = { {0, -1, -1}, {1, -1, -1} },
|
|
},
|
|
[P4_EVENT_BSQ_ACTIVE_ENTRIES] = { /* shared ESCR */
|
|
.opcode = P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES),
|
|
.escr_msr = { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2),
|
|
.cntr = { {2, -1, -1}, {3, -1, -1} },
|
|
},
|
|
[P4_EVENT_SSE_INPUT_ASSIST] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_PACKED_SP_UOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_PACKED_SP_UOP),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_PACKED_DP_UOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_PACKED_DP_UOP),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_SCALAR_SP_UOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_SCALAR_SP_UOP),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_SCALAR_DP_UOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_SCALAR_DP_UOP),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_64BIT_MMX_UOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_64BIT_MMX_UOP),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_128BIT_MMX_UOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_128BIT_MMX_UOP),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_X87_FP_UOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_X87_FP_UOP),
|
|
.escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_TC_MISC] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_TC_MISC),
|
|
.escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH),
|
|
.cntr = { {4, 5, -1}, {6, 7, -1} },
|
|
},
|
|
[P4_EVENT_GLOBAL_POWER_EVENTS] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS),
|
|
.escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING),
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_TC_MS_XFER] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_TC_MS_XFER),
|
|
.escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC),
|
|
.cntr = { {4, 5, -1}, {6, 7, -1} },
|
|
},
|
|
[P4_EVENT_UOP_QUEUE_WRITES] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES),
|
|
.escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM),
|
|
.cntr = { {4, 5, -1}, {6, 7, -1} },
|
|
},
|
|
[P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE),
|
|
.escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT),
|
|
.cntr = { {4, 5, -1}, {6, 7, -1} },
|
|
},
|
|
[P4_EVENT_RETIRED_BRANCH_TYPE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE),
|
|
.escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT),
|
|
.cntr = { {4, 5, -1}, {6, 7, -1} },
|
|
},
|
|
[P4_EVENT_RESOURCE_STALL] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_RESOURCE_STALL),
|
|
.escr_msr = { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_WC_BUFFER] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_WC_BUFFER),
|
|
.escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
|
|
.shared = 1,
|
|
.cntr = { {8, 9, -1}, {10, 11, -1} },
|
|
},
|
|
[P4_EVENT_B2B_CYCLES] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_B2B_CYCLES),
|
|
.escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask = 0,
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_BNR] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_BNR),
|
|
.escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask = 0,
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_SNOOP] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_SNOOP),
|
|
.escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask = 0,
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_RESPONSE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_RESPONSE),
|
|
.escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
|
|
.escr_emask = 0,
|
|
.cntr = { {0, -1, -1}, {2, -1, -1} },
|
|
},
|
|
[P4_EVENT_FRONT_END_EVENT] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_FRONT_END_EVENT),
|
|
.escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_EXECUTION_EVENT] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_EXECUTION_EVENT),
|
|
.escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_REPLAY_EVENT] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_REPLAY_EVENT),
|
|
.escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_INSTR_RETIRED] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_INSTR_RETIRED),
|
|
.escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_UOPS_RETIRED] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_UOPS_RETIRED),
|
|
.escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_UOP_TYPE] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_UOP_TYPE),
|
|
.escr_msr = { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_BRANCH_RETIRED] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_BRANCH_RETIRED),
|
|
.escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_MISPRED_BRANCH_RETIRED] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED),
|
|
.escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_X87_ASSIST] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_X87_ASSIST),
|
|
.escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_MACHINE_CLEAR] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_MACHINE_CLEAR),
|
|
.escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
[P4_EVENT_INSTR_COMPLETED] = {
|
|
.opcode = P4_OPCODE(P4_EVENT_INSTR_COMPLETED),
|
|
.escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
|
|
.escr_emask =
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS),
|
|
.cntr = { {12, 13, 16}, {14, 15, 17} },
|
|
},
|
|
};
|
|
|
|
#define P4_GEN_CACHE_EVENT(event, bit, metric) \
|
|
p4_config_pack_escr(P4_ESCR_EVENT(event) | \
|
|
P4_ESCR_EMASK_BIT(event, bit)) | \
|
|
p4_config_pack_cccr(metric | \
|
|
P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
|
|
|
|
static __initconst const u64 p4_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
|
|
P4_PEBS_METRIC__1stl_cache_load_miss_retired),
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
|
|
P4_PEBS_METRIC__2ndl_cache_load_miss_retired),
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
|
|
P4_PEBS_METRIC__dtlb_load_miss_retired),
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
|
|
P4_PEBS_METRIC__dtlb_store_miss_retired),
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
|
|
P4_PEBS_METRIC__none),
|
|
[ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
|
|
P4_PEBS_METRIC__none),
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Because of Netburst being quite restricted in how many
|
|
* identical events may run simultaneously, we introduce event aliases,
|
|
* ie the different events which have the same functionality but
|
|
* utilize non-intersected resources (ESCR/CCCR/counter registers).
|
|
*
|
|
* This allow us to relax restrictions a bit and run two or more
|
|
* identical events together.
|
|
*
|
|
* Never set any custom internal bits such as P4_CONFIG_HT,
|
|
* P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
|
|
* either up to date automatically or not applicable at all.
|
|
*/
|
|
struct p4_event_alias {
|
|
u64 original;
|
|
u64 alternative;
|
|
} p4_event_aliases[] = {
|
|
{
|
|
/*
|
|
* Non-halted cycles can be substituted with non-sleeping cycles (see
|
|
* Intel SDM Vol3b for details). We need this alias to be able
|
|
* to run nmi-watchdog and 'perf top' (or any other user space tool
|
|
* which is interested in running PERF_COUNT_HW_CPU_CYCLES)
|
|
* simultaneously.
|
|
*/
|
|
.original =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)),
|
|
.alternative =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)|
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)|
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)|
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)|
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))|
|
|
p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT |
|
|
P4_CCCR_COMPARE),
|
|
},
|
|
};
|
|
|
|
static u64 p4_get_alias_event(u64 config)
|
|
{
|
|
u64 config_match;
|
|
int i;
|
|
|
|
/*
|
|
* Only event with special mark is allowed,
|
|
* we're to be sure it didn't come as malformed
|
|
* RAW event.
|
|
*/
|
|
if (!(config & P4_CONFIG_ALIASABLE))
|
|
return 0;
|
|
|
|
config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
|
|
if (config_match == p4_event_aliases[i].original) {
|
|
config_match = p4_event_aliases[i].alternative;
|
|
break;
|
|
} else if (config_match == p4_event_aliases[i].alternative) {
|
|
config_match = p4_event_aliases[i].original;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i >= ARRAY_SIZE(p4_event_aliases))
|
|
return 0;
|
|
|
|
return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
|
|
}
|
|
|
|
static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
|
|
/* non-halted CPU clocks */
|
|
[PERF_COUNT_HW_CPU_CYCLES] =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)) |
|
|
P4_CONFIG_ALIASABLE,
|
|
|
|
/*
|
|
* retired instructions
|
|
* in a sake of simplicity we don't use the FSB tagging
|
|
*/
|
|
[PERF_COUNT_HW_INSTRUCTIONS] =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)),
|
|
|
|
/* cache hits */
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)),
|
|
|
|
/* cache misses */
|
|
[PERF_COUNT_HW_CACHE_MISSES] =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)),
|
|
|
|
/* branch instructions retired */
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)),
|
|
|
|
/* mispredicted branches retired */
|
|
[PERF_COUNT_HW_BRANCH_MISSES] =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)),
|
|
|
|
/* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN): */
|
|
[PERF_COUNT_HW_BUS_CYCLES] =
|
|
p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) |
|
|
P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)) |
|
|
p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE),
|
|
};
|
|
|
|
static struct p4_event_bind *p4_config_get_bind(u64 config)
|
|
{
|
|
unsigned int evnt = p4_config_unpack_event(config);
|
|
struct p4_event_bind *bind = NULL;
|
|
|
|
if (evnt < ARRAY_SIZE(p4_event_bind_map))
|
|
bind = &p4_event_bind_map[evnt];
|
|
|
|
return bind;
|
|
}
|
|
|
|
static u64 p4_pmu_event_map(int hw_event)
|
|
{
|
|
struct p4_event_bind *bind;
|
|
unsigned int esel;
|
|
u64 config;
|
|
|
|
config = p4_general_events[hw_event];
|
|
bind = p4_config_get_bind(config);
|
|
esel = P4_OPCODE_ESEL(bind->opcode);
|
|
config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
|
|
|
|
return config;
|
|
}
|
|
|
|
/* check cpu model specifics */
|
|
static bool p4_event_match_cpu_model(unsigned int event_idx)
|
|
{
|
|
/* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
|
|
if (event_idx == P4_EVENT_INSTR_COMPLETED) {
|
|
if (boot_cpu_data.x86_model != 3 &&
|
|
boot_cpu_data.x86_model != 4 &&
|
|
boot_cpu_data.x86_model != 6)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* For info
|
|
* - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
|
|
*/
|
|
|
|
return true;
|
|
}
|
|
|
|
static int p4_validate_raw_event(struct perf_event *event)
|
|
{
|
|
unsigned int v, emask;
|
|
|
|
/* User data may have out-of-bound event index */
|
|
v = p4_config_unpack_event(event->attr.config);
|
|
if (v >= ARRAY_SIZE(p4_event_bind_map))
|
|
return -EINVAL;
|
|
|
|
/* It may be unsupported: */
|
|
if (!p4_event_match_cpu_model(v))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
|
|
* in Architectural Performance Monitoring, it means not
|
|
* on _which_ logical cpu to count but rather _when_, ie it
|
|
* depends on logical cpu state -- count event if one cpu active,
|
|
* none, both or any, so we just allow user to pass any value
|
|
* desired.
|
|
*
|
|
* In turn we always set Tx_OS/Tx_USR bits bound to logical
|
|
* cpu without their propagation to another cpu
|
|
*/
|
|
|
|
/*
|
|
* if an event is shared across the logical threads
|
|
* the user needs special permissions to be able to use it
|
|
*/
|
|
if (p4_ht_active() && p4_event_bind_map[v].shared) {
|
|
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
}
|
|
|
|
/* ESCR EventMask bits may be invalid */
|
|
emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
|
|
if (emask & ~p4_event_bind_map[v].escr_emask)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* it may have some invalid PEBS bits
|
|
*/
|
|
if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
|
|
return -EINVAL;
|
|
|
|
v = p4_config_unpack_metric(event->attr.config);
|
|
if (v >= ARRAY_SIZE(p4_pebs_bind_map))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int p4_hw_config(struct perf_event *event)
|
|
{
|
|
int cpu = get_cpu();
|
|
int rc = 0;
|
|
u32 escr, cccr;
|
|
|
|
/*
|
|
* the reason we use cpu that early is that: if we get scheduled
|
|
* first time on the same cpu -- we will not need swap thread
|
|
* specific flags in config (and will save some cpu cycles)
|
|
*/
|
|
|
|
cccr = p4_default_cccr_conf(cpu);
|
|
escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
|
|
event->attr.exclude_user);
|
|
event->hw.config = p4_config_pack_escr(escr) |
|
|
p4_config_pack_cccr(cccr);
|
|
|
|
if (p4_ht_active() && p4_ht_thread(cpu))
|
|
event->hw.config = p4_set_ht_bit(event->hw.config);
|
|
|
|
if (event->attr.type == PERF_TYPE_RAW) {
|
|
struct p4_event_bind *bind;
|
|
unsigned int esel;
|
|
/*
|
|
* Clear bits we reserve to be managed by kernel itself
|
|
* and never allowed from a user space
|
|
*/
|
|
event->attr.config &= P4_CONFIG_MASK;
|
|
|
|
rc = p4_validate_raw_event(event);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/*
|
|
* Note that for RAW events we allow user to use P4_CCCR_RESERVED
|
|
* bits since we keep additional info here (for cache events and etc)
|
|
*/
|
|
event->hw.config |= event->attr.config;
|
|
bind = p4_config_get_bind(event->attr.config);
|
|
if (!bind) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
esel = P4_OPCODE_ESEL(bind->opcode);
|
|
event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
|
|
}
|
|
|
|
rc = x86_setup_perfctr(event);
|
|
out:
|
|
put_cpu();
|
|
return rc;
|
|
}
|
|
|
|
static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
|
|
{
|
|
u64 v;
|
|
|
|
/* an official way for overflow indication */
|
|
rdmsrl(hwc->config_base, v);
|
|
if (v & P4_CCCR_OVF) {
|
|
wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* In some circumstances the overflow might issue an NMI but did
|
|
* not set P4_CCCR_OVF bit. Because a counter holds a negative value
|
|
* we simply check for high bit being set, if it's cleared it means
|
|
* the counter has reached zero value and continued counting before
|
|
* real NMI signal was received:
|
|
*/
|
|
rdmsrl(hwc->event_base, v);
|
|
if (!(v & ARCH_P4_UNFLAGGED_BIT))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void p4_pmu_disable_pebs(void)
|
|
{
|
|
/*
|
|
* FIXME
|
|
*
|
|
* It's still allowed that two threads setup same cache
|
|
* events so we can't simply clear metrics until we knew
|
|
* no one is depending on us, so we need kind of counter
|
|
* for "ReplayEvent" users.
|
|
*
|
|
* What is more complex -- RAW events, if user (for some
|
|
* reason) will pass some cache event metric with improper
|
|
* event opcode -- it's fine from hardware point of view
|
|
* but completely nonsense from "meaning" of such action.
|
|
*
|
|
* So at moment let leave metrics turned on forever -- it's
|
|
* ok for now but need to be revisited!
|
|
*
|
|
* (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0);
|
|
* (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0);
|
|
*/
|
|
}
|
|
|
|
static inline void p4_pmu_disable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/*
|
|
* If event gets disabled while counter is in overflowed
|
|
* state we need to clear P4_CCCR_OVF, otherwise interrupt get
|
|
* asserted again and again
|
|
*/
|
|
(void)wrmsrl_safe(hwc->config_base,
|
|
p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
|
|
}
|
|
|
|
static void p4_pmu_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct perf_event *event = cpuc->events[idx];
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
p4_pmu_disable_event(event);
|
|
}
|
|
|
|
p4_pmu_disable_pebs();
|
|
}
|
|
|
|
/* configuration must be valid */
|
|
static void p4_pmu_enable_pebs(u64 config)
|
|
{
|
|
struct p4_pebs_bind *bind;
|
|
unsigned int idx;
|
|
|
|
BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK);
|
|
|
|
idx = p4_config_unpack_metric(config);
|
|
if (idx == P4_PEBS_METRIC__none)
|
|
return;
|
|
|
|
bind = &p4_pebs_bind_map[idx];
|
|
|
|
(void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, (u64)bind->metric_pebs);
|
|
(void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, (u64)bind->metric_vert);
|
|
}
|
|
|
|
static void p4_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int thread = p4_ht_config_thread(hwc->config);
|
|
u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
|
|
unsigned int idx = p4_config_unpack_event(hwc->config);
|
|
struct p4_event_bind *bind;
|
|
u64 escr_addr, cccr;
|
|
|
|
bind = &p4_event_bind_map[idx];
|
|
escr_addr = bind->escr_msr[thread];
|
|
|
|
/*
|
|
* - we dont support cascaded counters yet
|
|
* - and counter 1 is broken (erratum)
|
|
*/
|
|
WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
|
|
WARN_ON_ONCE(hwc->idx == 1);
|
|
|
|
/* we need a real Event value */
|
|
escr_conf &= ~P4_ESCR_EVENT_MASK;
|
|
escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
|
|
|
|
cccr = p4_config_unpack_cccr(hwc->config);
|
|
|
|
/*
|
|
* it could be Cache event so we need to write metrics
|
|
* into additional MSRs
|
|
*/
|
|
p4_pmu_enable_pebs(hwc->config);
|
|
|
|
(void)wrmsrl_safe(escr_addr, escr_conf);
|
|
(void)wrmsrl_safe(hwc->config_base,
|
|
(cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
|
|
}
|
|
|
|
static void p4_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct perf_event *event = cpuc->events[idx];
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
p4_pmu_enable_event(event);
|
|
}
|
|
}
|
|
|
|
static int p4_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
struct perf_event *event;
|
|
struct hw_perf_event *hwc;
|
|
int idx, handled = 0;
|
|
u64 val;
|
|
|
|
cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
int overflow;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask)) {
|
|
/* catch in-flight IRQs */
|
|
if (__test_and_clear_bit(idx, cpuc->running))
|
|
handled++;
|
|
continue;
|
|
}
|
|
|
|
event = cpuc->events[idx];
|
|
hwc = &event->hw;
|
|
|
|
WARN_ON_ONCE(hwc->idx != idx);
|
|
|
|
/* it might be unflagged overflow */
|
|
overflow = p4_pmu_clear_cccr_ovf(hwc);
|
|
|
|
val = x86_perf_event_update(event);
|
|
if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
|
|
continue;
|
|
|
|
handled += overflow;
|
|
|
|
/* event overflow for sure */
|
|
perf_sample_data_init(&data, 0, hwc->last_period);
|
|
|
|
if (!x86_perf_event_set_period(event))
|
|
continue;
|
|
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
if (handled)
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
/*
|
|
* When dealing with the unmasking of the LVTPC on P4 perf hw, it has
|
|
* been observed that the OVF bit flag has to be cleared first _before_
|
|
* the LVTPC can be unmasked.
|
|
*
|
|
* The reason is the NMI line will continue to be asserted while the OVF
|
|
* bit is set. This causes a second NMI to generate if the LVTPC is
|
|
* unmasked before the OVF bit is cleared, leading to unknown NMI
|
|
* messages.
|
|
*/
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
|
|
return handled;
|
|
}
|
|
|
|
/*
|
|
* swap thread specific fields according to a thread
|
|
* we are going to run on
|
|
*/
|
|
static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
|
|
{
|
|
u32 escr, cccr;
|
|
|
|
/*
|
|
* we either lucky and continue on same cpu or no HT support
|
|
*/
|
|
if (!p4_should_swap_ts(hwc->config, cpu))
|
|
return;
|
|
|
|
/*
|
|
* the event is migrated from an another logical
|
|
* cpu, so we need to swap thread specific flags
|
|
*/
|
|
|
|
escr = p4_config_unpack_escr(hwc->config);
|
|
cccr = p4_config_unpack_cccr(hwc->config);
|
|
|
|
if (p4_ht_thread(cpu)) {
|
|
cccr &= ~P4_CCCR_OVF_PMI_T0;
|
|
cccr |= P4_CCCR_OVF_PMI_T1;
|
|
if (escr & P4_ESCR_T0_OS) {
|
|
escr &= ~P4_ESCR_T0_OS;
|
|
escr |= P4_ESCR_T1_OS;
|
|
}
|
|
if (escr & P4_ESCR_T0_USR) {
|
|
escr &= ~P4_ESCR_T0_USR;
|
|
escr |= P4_ESCR_T1_USR;
|
|
}
|
|
hwc->config = p4_config_pack_escr(escr);
|
|
hwc->config |= p4_config_pack_cccr(cccr);
|
|
hwc->config |= P4_CONFIG_HT;
|
|
} else {
|
|
cccr &= ~P4_CCCR_OVF_PMI_T1;
|
|
cccr |= P4_CCCR_OVF_PMI_T0;
|
|
if (escr & P4_ESCR_T1_OS) {
|
|
escr &= ~P4_ESCR_T1_OS;
|
|
escr |= P4_ESCR_T0_OS;
|
|
}
|
|
if (escr & P4_ESCR_T1_USR) {
|
|
escr &= ~P4_ESCR_T1_USR;
|
|
escr |= P4_ESCR_T0_USR;
|
|
}
|
|
hwc->config = p4_config_pack_escr(escr);
|
|
hwc->config |= p4_config_pack_cccr(cccr);
|
|
hwc->config &= ~P4_CONFIG_HT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ESCR address hashing is tricky, ESCRs are not sequential
|
|
* in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
|
|
* the metric between any ESCRs is laid in range [0xa0,0xe1]
|
|
*
|
|
* so we make ~70% filled hashtable
|
|
*/
|
|
|
|
#define P4_ESCR_MSR_BASE 0x000003a0
|
|
#define P4_ESCR_MSR_MAX 0x000003e1
|
|
#define P4_ESCR_MSR_TABLE_SIZE (P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
|
|
#define P4_ESCR_MSR_IDX(msr) (msr - P4_ESCR_MSR_BASE)
|
|
#define P4_ESCR_MSR_TABLE_ENTRY(msr) [P4_ESCR_MSR_IDX(msr)] = msr
|
|
|
|
static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0),
|
|
P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1),
|
|
};
|
|
|
|
static int p4_get_escr_idx(unsigned int addr)
|
|
{
|
|
unsigned int idx = P4_ESCR_MSR_IDX(addr);
|
|
|
|
if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE ||
|
|
!p4_escr_table[idx] ||
|
|
p4_escr_table[idx] != addr)) {
|
|
WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
|
|
return -1;
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
|
|
static int p4_next_cntr(int thread, unsigned long *used_mask,
|
|
struct p4_event_bind *bind)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < P4_CNTR_LIMIT; i++) {
|
|
j = bind->cntr[thread][i];
|
|
if (j != -1 && !test_bit(j, used_mask))
|
|
return j;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
|
|
{
|
|
unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
|
|
unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
|
|
int cpu = smp_processor_id();
|
|
struct hw_perf_event *hwc;
|
|
struct p4_event_bind *bind;
|
|
unsigned int i, thread, num;
|
|
int cntr_idx, escr_idx;
|
|
u64 config_alias;
|
|
int pass;
|
|
|
|
bitmap_zero(used_mask, X86_PMC_IDX_MAX);
|
|
bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
|
|
|
|
for (i = 0, num = n; i < n; i++, num--) {
|
|
|
|
hwc = &cpuc->event_list[i]->hw;
|
|
thread = p4_ht_thread(cpu);
|
|
pass = 0;
|
|
|
|
again:
|
|
/*
|
|
* It's possible to hit a circular lock
|
|
* between original and alternative events
|
|
* if both are scheduled already.
|
|
*/
|
|
if (pass > 2)
|
|
goto done;
|
|
|
|
bind = p4_config_get_bind(hwc->config);
|
|
escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
|
|
if (unlikely(escr_idx == -1))
|
|
goto done;
|
|
|
|
if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
|
|
cntr_idx = hwc->idx;
|
|
if (assign)
|
|
assign[i] = hwc->idx;
|
|
goto reserve;
|
|
}
|
|
|
|
cntr_idx = p4_next_cntr(thread, used_mask, bind);
|
|
if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
|
|
/*
|
|
* Check whether an event alias is still available.
|
|
*/
|
|
config_alias = p4_get_alias_event(hwc->config);
|
|
if (!config_alias)
|
|
goto done;
|
|
hwc->config = config_alias;
|
|
pass++;
|
|
goto again;
|
|
}
|
|
/*
|
|
* Perf does test runs to see if a whole group can be assigned
|
|
* together succesfully. There can be multiple rounds of this.
|
|
* Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
|
|
* bits, such that the next round of group assignments will
|
|
* cause the above p4_should_swap_ts to pass instead of fail.
|
|
* This leads to counters exclusive to thread0 being used by
|
|
* thread1.
|
|
*
|
|
* Solve this with a cheap hack, reset the idx back to -1 to
|
|
* force a new lookup (p4_next_cntr) to get the right counter
|
|
* for the right thread.
|
|
*
|
|
* This probably doesn't comply with the general spirit of how
|
|
* perf wants to work, but P4 is special. :-(
|
|
*/
|
|
if (p4_should_swap_ts(hwc->config, cpu))
|
|
hwc->idx = -1;
|
|
p4_pmu_swap_config_ts(hwc, cpu);
|
|
if (assign)
|
|
assign[i] = cntr_idx;
|
|
reserve:
|
|
set_bit(cntr_idx, used_mask);
|
|
set_bit(escr_idx, escr_mask);
|
|
}
|
|
|
|
done:
|
|
return num ? -EINVAL : 0;
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(cccr, "config:0-31" );
|
|
PMU_FORMAT_ATTR(escr, "config:32-62");
|
|
PMU_FORMAT_ATTR(ht, "config:63" );
|
|
|
|
static struct attribute *intel_p4_formats_attr[] = {
|
|
&format_attr_cccr.attr,
|
|
&format_attr_escr.attr,
|
|
&format_attr_ht.attr,
|
|
NULL,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu p4_pmu = {
|
|
.name = "Netburst P4/Xeon",
|
|
.handle_irq = p4_pmu_handle_irq,
|
|
.disable_all = p4_pmu_disable_all,
|
|
.enable_all = p4_pmu_enable_all,
|
|
.enable = p4_pmu_enable_event,
|
|
.disable = p4_pmu_disable_event,
|
|
.eventsel = MSR_P4_BPU_CCCR0,
|
|
.perfctr = MSR_P4_BPU_PERFCTR0,
|
|
.event_map = p4_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(p4_general_events),
|
|
.get_event_constraints = x86_get_event_constraints,
|
|
/*
|
|
* IF HT disabled we may need to use all
|
|
* ARCH_P4_MAX_CCCR counters simulaneously
|
|
* though leave it restricted at moment assuming
|
|
* HT is on
|
|
*/
|
|
.num_counters = ARCH_P4_MAX_CCCR,
|
|
.apic = 1,
|
|
.cntval_bits = ARCH_P4_CNTRVAL_BITS,
|
|
.cntval_mask = ARCH_P4_CNTRVAL_MASK,
|
|
.max_period = (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
|
|
.hw_config = p4_hw_config,
|
|
.schedule_events = p4_pmu_schedule_events,
|
|
/*
|
|
* This handles erratum N15 in intel doc 249199-029,
|
|
* the counter may not be updated correctly on write
|
|
* so we need a second write operation to do the trick
|
|
* (the official workaround didn't work)
|
|
*
|
|
* the former idea is taken from OProfile code
|
|
*/
|
|
.perfctr_second_write = 1,
|
|
|
|
.format_attrs = intel_p4_formats_attr,
|
|
};
|
|
|
|
__init int p4_pmu_init(void)
|
|
{
|
|
unsigned int low, high;
|
|
int i, reg;
|
|
|
|
/* If we get stripped -- indexing fails */
|
|
BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC);
|
|
|
|
rdmsr(MSR_IA32_MISC_ENABLE, low, high);
|
|
if (!(low & (1 << 7))) {
|
|
pr_cont("unsupported Netburst CPU model %d ",
|
|
boot_cpu_data.x86_model);
|
|
return -ENODEV;
|
|
}
|
|
|
|
memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
pr_cont("Netburst events, ");
|
|
|
|
x86_pmu = p4_pmu;
|
|
|
|
/*
|
|
* Even though the counters are configured to interrupt a particular
|
|
* logical processor when an overflow happens, testing has shown that
|
|
* on kdump kernels (which uses a single cpu), thread1's counter
|
|
* continues to run and will report an NMI on thread0. Due to the
|
|
* overflow bug, this leads to a stream of unknown NMIs.
|
|
*
|
|
* Solve this by zero'ing out the registers to mimic a reset.
|
|
*/
|
|
for (i = 0; i < x86_pmu.num_counters; i++) {
|
|
reg = x86_pmu_config_addr(i);
|
|
wrmsrl_safe(reg, 0ULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|