forked from Minki/linux
9dbc090274
Add s3c6400 support to the s3c2410 driver. The nand controller in the s3c64xx devices is compatible with the one in the s3c2412, so simply reuse that code. Signed-off-by: Peter Korsgaard <jacmet@sunsite.dk> Acked-by: Ben Dooks <ben-linux@fluff.org> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
1153 lines
29 KiB
C
1153 lines
29 KiB
C
/* linux/drivers/mtd/nand/s3c2410.c
|
|
*
|
|
* Copyright © 2004-2008 Simtec Electronics
|
|
* http://armlinux.simtec.co.uk/
|
|
* Ben Dooks <ben@simtec.co.uk>
|
|
*
|
|
* Samsung S3C2410/S3C2440/S3C2412 NAND driver
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
|
|
#define DEBUG
|
|
#endif
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/cpufreq.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <plat/regs-nand.h>
|
|
#include <plat/nand.h>
|
|
|
|
#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
|
|
static int hardware_ecc = 1;
|
|
#else
|
|
static int hardware_ecc = 0;
|
|
#endif
|
|
|
|
#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
|
|
static int clock_stop = 1;
|
|
#else
|
|
static const int clock_stop = 0;
|
|
#endif
|
|
|
|
|
|
/* new oob placement block for use with hardware ecc generation
|
|
*/
|
|
|
|
static struct nand_ecclayout nand_hw_eccoob = {
|
|
.eccbytes = 3,
|
|
.eccpos = {0, 1, 2},
|
|
.oobfree = {{8, 8}}
|
|
};
|
|
|
|
/* controller and mtd information */
|
|
|
|
struct s3c2410_nand_info;
|
|
|
|
/**
|
|
* struct s3c2410_nand_mtd - driver MTD structure
|
|
* @mtd: The MTD instance to pass to the MTD layer.
|
|
* @chip: The NAND chip information.
|
|
* @set: The platform information supplied for this set of NAND chips.
|
|
* @info: Link back to the hardware information.
|
|
* @scan_res: The result from calling nand_scan_ident().
|
|
*/
|
|
struct s3c2410_nand_mtd {
|
|
struct mtd_info mtd;
|
|
struct nand_chip chip;
|
|
struct s3c2410_nand_set *set;
|
|
struct s3c2410_nand_info *info;
|
|
int scan_res;
|
|
};
|
|
|
|
enum s3c_cpu_type {
|
|
TYPE_S3C2410,
|
|
TYPE_S3C2412,
|
|
TYPE_S3C2440,
|
|
};
|
|
|
|
/* overview of the s3c2410 nand state */
|
|
|
|
/**
|
|
* struct s3c2410_nand_info - NAND controller state.
|
|
* @mtds: An array of MTD instances on this controoler.
|
|
* @platform: The platform data for this board.
|
|
* @device: The platform device we bound to.
|
|
* @area: The IO area resource that came from request_mem_region().
|
|
* @clk: The clock resource for this controller.
|
|
* @regs: The area mapped for the hardware registers described by @area.
|
|
* @sel_reg: Pointer to the register controlling the NAND selection.
|
|
* @sel_bit: The bit in @sel_reg to select the NAND chip.
|
|
* @mtd_count: The number of MTDs created from this controller.
|
|
* @save_sel: The contents of @sel_reg to be saved over suspend.
|
|
* @clk_rate: The clock rate from @clk.
|
|
* @cpu_type: The exact type of this controller.
|
|
*/
|
|
struct s3c2410_nand_info {
|
|
/* mtd info */
|
|
struct nand_hw_control controller;
|
|
struct s3c2410_nand_mtd *mtds;
|
|
struct s3c2410_platform_nand *platform;
|
|
|
|
/* device info */
|
|
struct device *device;
|
|
struct resource *area;
|
|
struct clk *clk;
|
|
void __iomem *regs;
|
|
void __iomem *sel_reg;
|
|
int sel_bit;
|
|
int mtd_count;
|
|
unsigned long save_sel;
|
|
unsigned long clk_rate;
|
|
|
|
enum s3c_cpu_type cpu_type;
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
struct notifier_block freq_transition;
|
|
#endif
|
|
};
|
|
|
|
/* conversion functions */
|
|
|
|
static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd, struct s3c2410_nand_mtd, mtd);
|
|
}
|
|
|
|
static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
|
|
{
|
|
return s3c2410_nand_mtd_toours(mtd)->info;
|
|
}
|
|
|
|
static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
|
|
{
|
|
return platform_get_drvdata(dev);
|
|
}
|
|
|
|
static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
|
|
{
|
|
return dev->dev.platform_data;
|
|
}
|
|
|
|
static inline int allow_clk_stop(struct s3c2410_nand_info *info)
|
|
{
|
|
return clock_stop;
|
|
}
|
|
|
|
/* timing calculations */
|
|
|
|
#define NS_IN_KHZ 1000000
|
|
|
|
/**
|
|
* s3c_nand_calc_rate - calculate timing data.
|
|
* @wanted: The cycle time in nanoseconds.
|
|
* @clk: The clock rate in kHz.
|
|
* @max: The maximum divider value.
|
|
*
|
|
* Calculate the timing value from the given parameters.
|
|
*/
|
|
static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
|
|
{
|
|
int result;
|
|
|
|
result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
|
|
|
|
pr_debug("result %d from %ld, %d\n", result, clk, wanted);
|
|
|
|
if (result > max) {
|
|
printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
|
|
return -1;
|
|
}
|
|
|
|
if (result < 1)
|
|
result = 1;
|
|
|
|
return result;
|
|
}
|
|
|
|
#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
|
|
|
|
/* controller setup */
|
|
|
|
/**
|
|
* s3c2410_nand_setrate - setup controller timing information.
|
|
* @info: The controller instance.
|
|
*
|
|
* Given the information supplied by the platform, calculate and set
|
|
* the necessary timing registers in the hardware to generate the
|
|
* necessary timing cycles to the hardware.
|
|
*/
|
|
static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
|
|
{
|
|
struct s3c2410_platform_nand *plat = info->platform;
|
|
int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
|
|
int tacls, twrph0, twrph1;
|
|
unsigned long clkrate = clk_get_rate(info->clk);
|
|
unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
|
|
unsigned long flags;
|
|
|
|
/* calculate the timing information for the controller */
|
|
|
|
info->clk_rate = clkrate;
|
|
clkrate /= 1000; /* turn clock into kHz for ease of use */
|
|
|
|
if (plat != NULL) {
|
|
tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
|
|
twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
|
|
twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
|
|
} else {
|
|
/* default timings */
|
|
tacls = tacls_max;
|
|
twrph0 = 8;
|
|
twrph1 = 8;
|
|
}
|
|
|
|
if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
|
|
dev_err(info->device, "cannot get suitable timings\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
|
|
tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
|
|
|
|
switch (info->cpu_type) {
|
|
case TYPE_S3C2410:
|
|
mask = (S3C2410_NFCONF_TACLS(3) |
|
|
S3C2410_NFCONF_TWRPH0(7) |
|
|
S3C2410_NFCONF_TWRPH1(7));
|
|
set = S3C2410_NFCONF_EN;
|
|
set |= S3C2410_NFCONF_TACLS(tacls - 1);
|
|
set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
|
|
set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
|
|
break;
|
|
|
|
case TYPE_S3C2440:
|
|
case TYPE_S3C2412:
|
|
mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
|
|
S3C2440_NFCONF_TWRPH0(7) |
|
|
S3C2440_NFCONF_TWRPH1(7));
|
|
|
|
set = S3C2440_NFCONF_TACLS(tacls - 1);
|
|
set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
|
|
set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
|
|
cfg = readl(info->regs + S3C2410_NFCONF);
|
|
cfg &= ~mask;
|
|
cfg |= set;
|
|
writel(cfg, info->regs + S3C2410_NFCONF);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* s3c2410_nand_inithw - basic hardware initialisation
|
|
* @info: The hardware state.
|
|
*
|
|
* Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
|
|
* to setup the hardware access speeds and set the controller to be enabled.
|
|
*/
|
|
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
|
|
{
|
|
int ret;
|
|
|
|
ret = s3c2410_nand_setrate(info);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
switch (info->cpu_type) {
|
|
case TYPE_S3C2410:
|
|
default:
|
|
break;
|
|
|
|
case TYPE_S3C2440:
|
|
case TYPE_S3C2412:
|
|
/* enable the controller and de-assert nFCE */
|
|
|
|
writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* s3c2410_nand_select_chip - select the given nand chip
|
|
* @mtd: The MTD instance for this chip.
|
|
* @chip: The chip number.
|
|
*
|
|
* This is called by the MTD layer to either select a given chip for the
|
|
* @mtd instance, or to indicate that the access has finished and the
|
|
* chip can be de-selected.
|
|
*
|
|
* The routine ensures that the nFCE line is correctly setup, and any
|
|
* platform specific selection code is called to route nFCE to the specific
|
|
* chip.
|
|
*/
|
|
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct s3c2410_nand_info *info;
|
|
struct s3c2410_nand_mtd *nmtd;
|
|
struct nand_chip *this = mtd->priv;
|
|
unsigned long cur;
|
|
|
|
nmtd = this->priv;
|
|
info = nmtd->info;
|
|
|
|
if (chip != -1 && allow_clk_stop(info))
|
|
clk_enable(info->clk);
|
|
|
|
cur = readl(info->sel_reg);
|
|
|
|
if (chip == -1) {
|
|
cur |= info->sel_bit;
|
|
} else {
|
|
if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
|
|
dev_err(info->device, "invalid chip %d\n", chip);
|
|
return;
|
|
}
|
|
|
|
if (info->platform != NULL) {
|
|
if (info->platform->select_chip != NULL)
|
|
(info->platform->select_chip) (nmtd->set, chip);
|
|
}
|
|
|
|
cur &= ~info->sel_bit;
|
|
}
|
|
|
|
writel(cur, info->sel_reg);
|
|
|
|
if (chip == -1 && allow_clk_stop(info))
|
|
clk_disable(info->clk);
|
|
}
|
|
|
|
/* s3c2410_nand_hwcontrol
|
|
*
|
|
* Issue command and address cycles to the chip
|
|
*/
|
|
|
|
static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
|
|
if (cmd == NAND_CMD_NONE)
|
|
return;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
writeb(cmd, info->regs + S3C2410_NFCMD);
|
|
else
|
|
writeb(cmd, info->regs + S3C2410_NFADDR);
|
|
}
|
|
|
|
/* command and control functions */
|
|
|
|
static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
|
|
if (cmd == NAND_CMD_NONE)
|
|
return;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
writeb(cmd, info->regs + S3C2440_NFCMD);
|
|
else
|
|
writeb(cmd, info->regs + S3C2440_NFADDR);
|
|
}
|
|
|
|
/* s3c2410_nand_devready()
|
|
*
|
|
* returns 0 if the nand is busy, 1 if it is ready
|
|
*/
|
|
|
|
static int s3c2410_nand_devready(struct mtd_info *mtd)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
|
|
}
|
|
|
|
static int s3c2440_nand_devready(struct mtd_info *mtd)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
|
|
}
|
|
|
|
static int s3c2412_nand_devready(struct mtd_info *mtd)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
|
|
}
|
|
|
|
/* ECC handling functions */
|
|
|
|
static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
unsigned int diff0, diff1, diff2;
|
|
unsigned int bit, byte;
|
|
|
|
pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
|
|
|
|
diff0 = read_ecc[0] ^ calc_ecc[0];
|
|
diff1 = read_ecc[1] ^ calc_ecc[1];
|
|
diff2 = read_ecc[2] ^ calc_ecc[2];
|
|
|
|
pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
|
|
__func__,
|
|
read_ecc[0], read_ecc[1], read_ecc[2],
|
|
calc_ecc[0], calc_ecc[1], calc_ecc[2],
|
|
diff0, diff1, diff2);
|
|
|
|
if (diff0 == 0 && diff1 == 0 && diff2 == 0)
|
|
return 0; /* ECC is ok */
|
|
|
|
/* sometimes people do not think about using the ECC, so check
|
|
* to see if we have an 0xff,0xff,0xff read ECC and then ignore
|
|
* the error, on the assumption that this is an un-eccd page.
|
|
*/
|
|
if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
|
|
&& info->platform->ignore_unset_ecc)
|
|
return 0;
|
|
|
|
/* Can we correct this ECC (ie, one row and column change).
|
|
* Note, this is similar to the 256 error code on smartmedia */
|
|
|
|
if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
|
|
((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
|
|
((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
|
|
/* calculate the bit position of the error */
|
|
|
|
bit = ((diff2 >> 3) & 1) |
|
|
((diff2 >> 4) & 2) |
|
|
((diff2 >> 5) & 4);
|
|
|
|
/* calculate the byte position of the error */
|
|
|
|
byte = ((diff2 << 7) & 0x100) |
|
|
((diff1 << 0) & 0x80) |
|
|
((diff1 << 1) & 0x40) |
|
|
((diff1 << 2) & 0x20) |
|
|
((diff1 << 3) & 0x10) |
|
|
((diff0 >> 4) & 0x08) |
|
|
((diff0 >> 3) & 0x04) |
|
|
((diff0 >> 2) & 0x02) |
|
|
((diff0 >> 1) & 0x01);
|
|
|
|
dev_dbg(info->device, "correcting error bit %d, byte %d\n",
|
|
bit, byte);
|
|
|
|
dat[byte] ^= (1 << bit);
|
|
return 1;
|
|
}
|
|
|
|
/* if there is only one bit difference in the ECC, then
|
|
* one of only a row or column parity has changed, which
|
|
* means the error is most probably in the ECC itself */
|
|
|
|
diff0 |= (diff1 << 8);
|
|
diff0 |= (diff2 << 16);
|
|
|
|
if ((diff0 & ~(1<<fls(diff0))) == 0)
|
|
return 1;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* ECC functions
|
|
*
|
|
* These allow the s3c2410 and s3c2440 to use the controller's ECC
|
|
* generator block to ECC the data as it passes through]
|
|
*/
|
|
|
|
static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
unsigned long ctrl;
|
|
|
|
ctrl = readl(info->regs + S3C2410_NFCONF);
|
|
ctrl |= S3C2410_NFCONF_INITECC;
|
|
writel(ctrl, info->regs + S3C2410_NFCONF);
|
|
}
|
|
|
|
static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
unsigned long ctrl;
|
|
|
|
ctrl = readl(info->regs + S3C2440_NFCONT);
|
|
writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
|
|
}
|
|
|
|
static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
unsigned long ctrl;
|
|
|
|
ctrl = readl(info->regs + S3C2440_NFCONT);
|
|
writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
|
|
}
|
|
|
|
static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
|
|
ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
|
|
ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
|
|
ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
|
|
|
|
pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
|
|
ecc_code[0], ecc_code[1], ecc_code[2]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
|
|
|
|
ecc_code[0] = ecc;
|
|
ecc_code[1] = ecc >> 8;
|
|
ecc_code[2] = ecc >> 16;
|
|
|
|
pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
|
|
|
|
ecc_code[0] = ecc;
|
|
ecc_code[1] = ecc >> 8;
|
|
ecc_code[2] = ecc >> 16;
|
|
|
|
pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* over-ride the standard functions for a little more speed. We can
|
|
* use read/write block to move the data buffers to/from the controller
|
|
*/
|
|
|
|
static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
readsb(this->IO_ADDR_R, buf, len);
|
|
}
|
|
|
|
static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
|
|
readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
|
|
|
|
/* cleanup if we've got less than a word to do */
|
|
if (len & 3) {
|
|
buf += len & ~3;
|
|
|
|
for (; len & 3; len--)
|
|
*buf++ = readb(info->regs + S3C2440_NFDATA);
|
|
}
|
|
}
|
|
|
|
static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
writesb(this->IO_ADDR_W, buf, len);
|
|
}
|
|
|
|
static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
|
|
|
|
writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
|
|
|
|
/* cleanup any fractional write */
|
|
if (len & 3) {
|
|
buf += len & ~3;
|
|
|
|
for (; len & 3; len--, buf++)
|
|
writeb(*buf, info->regs + S3C2440_NFDATA);
|
|
}
|
|
}
|
|
|
|
/* cpufreq driver support */
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
|
|
static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct s3c2410_nand_info *info;
|
|
unsigned long newclk;
|
|
|
|
info = container_of(nb, struct s3c2410_nand_info, freq_transition);
|
|
newclk = clk_get_rate(info->clk);
|
|
|
|
if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
|
|
(val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
|
|
s3c2410_nand_setrate(info);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
|
|
{
|
|
info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
|
|
|
|
return cpufreq_register_notifier(&info->freq_transition,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
|
|
static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
|
|
{
|
|
cpufreq_unregister_notifier(&info->freq_transition,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
|
|
#else
|
|
static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* device management functions */
|
|
|
|
static int s3c24xx_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct s3c2410_nand_info *info = to_nand_info(pdev);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
if (info == NULL)
|
|
return 0;
|
|
|
|
s3c2410_nand_cpufreq_deregister(info);
|
|
|
|
/* Release all our mtds and their partitions, then go through
|
|
* freeing the resources used
|
|
*/
|
|
|
|
if (info->mtds != NULL) {
|
|
struct s3c2410_nand_mtd *ptr = info->mtds;
|
|
int mtdno;
|
|
|
|
for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
|
|
pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
|
|
nand_release(&ptr->mtd);
|
|
}
|
|
|
|
kfree(info->mtds);
|
|
}
|
|
|
|
/* free the common resources */
|
|
|
|
if (info->clk != NULL && !IS_ERR(info->clk)) {
|
|
if (!allow_clk_stop(info))
|
|
clk_disable(info->clk);
|
|
clk_put(info->clk);
|
|
}
|
|
|
|
if (info->regs != NULL) {
|
|
iounmap(info->regs);
|
|
info->regs = NULL;
|
|
}
|
|
|
|
if (info->area != NULL) {
|
|
release_resource(info->area);
|
|
kfree(info->area);
|
|
info->area = NULL;
|
|
}
|
|
|
|
kfree(info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
const char *part_probes[] = { "cmdlinepart", NULL };
|
|
static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
|
|
struct s3c2410_nand_mtd *mtd,
|
|
struct s3c2410_nand_set *set)
|
|
{
|
|
struct mtd_partition *part_info;
|
|
int nr_part = 0;
|
|
|
|
if (set == NULL)
|
|
return add_mtd_device(&mtd->mtd);
|
|
|
|
if (set->nr_partitions == 0) {
|
|
mtd->mtd.name = set->name;
|
|
nr_part = parse_mtd_partitions(&mtd->mtd, part_probes,
|
|
&part_info, 0);
|
|
} else {
|
|
if (set->nr_partitions > 0 && set->partitions != NULL) {
|
|
nr_part = set->nr_partitions;
|
|
part_info = set->partitions;
|
|
}
|
|
}
|
|
|
|
if (nr_part > 0 && part_info)
|
|
return add_mtd_partitions(&mtd->mtd, part_info, nr_part);
|
|
|
|
return add_mtd_device(&mtd->mtd);
|
|
}
|
|
#else
|
|
static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
|
|
struct s3c2410_nand_mtd *mtd,
|
|
struct s3c2410_nand_set *set)
|
|
{
|
|
return add_mtd_device(&mtd->mtd);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* s3c2410_nand_init_chip - initialise a single instance of an chip
|
|
* @info: The base NAND controller the chip is on.
|
|
* @nmtd: The new controller MTD instance to fill in.
|
|
* @set: The information passed from the board specific platform data.
|
|
*
|
|
* Initialise the given @nmtd from the information in @info and @set. This
|
|
* readies the structure for use with the MTD layer functions by ensuring
|
|
* all pointers are setup and the necessary control routines selected.
|
|
*/
|
|
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
|
|
struct s3c2410_nand_mtd *nmtd,
|
|
struct s3c2410_nand_set *set)
|
|
{
|
|
struct nand_chip *chip = &nmtd->chip;
|
|
void __iomem *regs = info->regs;
|
|
|
|
chip->write_buf = s3c2410_nand_write_buf;
|
|
chip->read_buf = s3c2410_nand_read_buf;
|
|
chip->select_chip = s3c2410_nand_select_chip;
|
|
chip->chip_delay = 50;
|
|
chip->priv = nmtd;
|
|
chip->options = 0;
|
|
chip->controller = &info->controller;
|
|
|
|
switch (info->cpu_type) {
|
|
case TYPE_S3C2410:
|
|
chip->IO_ADDR_W = regs + S3C2410_NFDATA;
|
|
info->sel_reg = regs + S3C2410_NFCONF;
|
|
info->sel_bit = S3C2410_NFCONF_nFCE;
|
|
chip->cmd_ctrl = s3c2410_nand_hwcontrol;
|
|
chip->dev_ready = s3c2410_nand_devready;
|
|
break;
|
|
|
|
case TYPE_S3C2440:
|
|
chip->IO_ADDR_W = regs + S3C2440_NFDATA;
|
|
info->sel_reg = regs + S3C2440_NFCONT;
|
|
info->sel_bit = S3C2440_NFCONT_nFCE;
|
|
chip->cmd_ctrl = s3c2440_nand_hwcontrol;
|
|
chip->dev_ready = s3c2440_nand_devready;
|
|
chip->read_buf = s3c2440_nand_read_buf;
|
|
chip->write_buf = s3c2440_nand_write_buf;
|
|
break;
|
|
|
|
case TYPE_S3C2412:
|
|
chip->IO_ADDR_W = regs + S3C2440_NFDATA;
|
|
info->sel_reg = regs + S3C2440_NFCONT;
|
|
info->sel_bit = S3C2412_NFCONT_nFCE0;
|
|
chip->cmd_ctrl = s3c2440_nand_hwcontrol;
|
|
chip->dev_ready = s3c2412_nand_devready;
|
|
|
|
if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
|
|
dev_info(info->device, "System booted from NAND\n");
|
|
|
|
break;
|
|
}
|
|
|
|
chip->IO_ADDR_R = chip->IO_ADDR_W;
|
|
|
|
nmtd->info = info;
|
|
nmtd->mtd.priv = chip;
|
|
nmtd->mtd.owner = THIS_MODULE;
|
|
nmtd->set = set;
|
|
|
|
if (hardware_ecc) {
|
|
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
|
|
chip->ecc.correct = s3c2410_nand_correct_data;
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
switch (info->cpu_type) {
|
|
case TYPE_S3C2410:
|
|
chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
|
|
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
|
|
break;
|
|
|
|
case TYPE_S3C2412:
|
|
chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
|
|
chip->ecc.calculate = s3c2412_nand_calculate_ecc;
|
|
break;
|
|
|
|
case TYPE_S3C2440:
|
|
chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
|
|
chip->ecc.calculate = s3c2440_nand_calculate_ecc;
|
|
break;
|
|
|
|
}
|
|
} else {
|
|
chip->ecc.mode = NAND_ECC_SOFT;
|
|
}
|
|
|
|
if (set->ecc_layout != NULL)
|
|
chip->ecc.layout = set->ecc_layout;
|
|
|
|
if (set->disable_ecc)
|
|
chip->ecc.mode = NAND_ECC_NONE;
|
|
|
|
switch (chip->ecc.mode) {
|
|
case NAND_ECC_NONE:
|
|
dev_info(info->device, "NAND ECC disabled\n");
|
|
break;
|
|
case NAND_ECC_SOFT:
|
|
dev_info(info->device, "NAND soft ECC\n");
|
|
break;
|
|
case NAND_ECC_HW:
|
|
dev_info(info->device, "NAND hardware ECC\n");
|
|
break;
|
|
default:
|
|
dev_info(info->device, "NAND ECC UNKNOWN\n");
|
|
break;
|
|
}
|
|
|
|
/* If you use u-boot BBT creation code, specifying this flag will
|
|
* let the kernel fish out the BBT from the NAND, and also skip the
|
|
* full NAND scan that can take 1/2s or so. Little things... */
|
|
if (set->flash_bbt)
|
|
chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
|
|
}
|
|
|
|
/**
|
|
* s3c2410_nand_update_chip - post probe update
|
|
* @info: The controller instance.
|
|
* @nmtd: The driver version of the MTD instance.
|
|
*
|
|
* This routine is called after the chip probe has succesfully completed
|
|
* and the relevant per-chip information updated. This call ensure that
|
|
* we update the internal state accordingly.
|
|
*
|
|
* The internal state is currently limited to the ECC state information.
|
|
*/
|
|
static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
|
|
struct s3c2410_nand_mtd *nmtd)
|
|
{
|
|
struct nand_chip *chip = &nmtd->chip;
|
|
|
|
dev_dbg(info->device, "chip %p => page shift %d\n",
|
|
chip, chip->page_shift);
|
|
|
|
if (chip->ecc.mode != NAND_ECC_HW)
|
|
return;
|
|
|
|
/* change the behaviour depending on wether we are using
|
|
* the large or small page nand device */
|
|
|
|
if (chip->page_shift > 10) {
|
|
chip->ecc.size = 256;
|
|
chip->ecc.bytes = 3;
|
|
} else {
|
|
chip->ecc.size = 512;
|
|
chip->ecc.bytes = 3;
|
|
chip->ecc.layout = &nand_hw_eccoob;
|
|
}
|
|
}
|
|
|
|
/* s3c24xx_nand_probe
|
|
*
|
|
* called by device layer when it finds a device matching
|
|
* one our driver can handled. This code checks to see if
|
|
* it can allocate all necessary resources then calls the
|
|
* nand layer to look for devices
|
|
*/
|
|
static int s3c24xx_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
|
|
enum s3c_cpu_type cpu_type;
|
|
struct s3c2410_nand_info *info;
|
|
struct s3c2410_nand_mtd *nmtd;
|
|
struct s3c2410_nand_set *sets;
|
|
struct resource *res;
|
|
int err = 0;
|
|
int size;
|
|
int nr_sets;
|
|
int setno;
|
|
|
|
cpu_type = platform_get_device_id(pdev)->driver_data;
|
|
|
|
pr_debug("s3c2410_nand_probe(%p)\n", pdev);
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (info == NULL) {
|
|
dev_err(&pdev->dev, "no memory for flash info\n");
|
|
err = -ENOMEM;
|
|
goto exit_error;
|
|
}
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
platform_set_drvdata(pdev, info);
|
|
|
|
spin_lock_init(&info->controller.lock);
|
|
init_waitqueue_head(&info->controller.wq);
|
|
|
|
/* get the clock source and enable it */
|
|
|
|
info->clk = clk_get(&pdev->dev, "nand");
|
|
if (IS_ERR(info->clk)) {
|
|
dev_err(&pdev->dev, "failed to get clock\n");
|
|
err = -ENOENT;
|
|
goto exit_error;
|
|
}
|
|
|
|
clk_enable(info->clk);
|
|
|
|
/* allocate and map the resource */
|
|
|
|
/* currently we assume we have the one resource */
|
|
res = pdev->resource;
|
|
size = res->end - res->start + 1;
|
|
|
|
info->area = request_mem_region(res->start, size, pdev->name);
|
|
|
|
if (info->area == NULL) {
|
|
dev_err(&pdev->dev, "cannot reserve register region\n");
|
|
err = -ENOENT;
|
|
goto exit_error;
|
|
}
|
|
|
|
info->device = &pdev->dev;
|
|
info->platform = plat;
|
|
info->regs = ioremap(res->start, size);
|
|
info->cpu_type = cpu_type;
|
|
|
|
if (info->regs == NULL) {
|
|
dev_err(&pdev->dev, "cannot reserve register region\n");
|
|
err = -EIO;
|
|
goto exit_error;
|
|
}
|
|
|
|
dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
|
|
|
|
/* initialise the hardware */
|
|
|
|
err = s3c2410_nand_inithw(info);
|
|
if (err != 0)
|
|
goto exit_error;
|
|
|
|
sets = (plat != NULL) ? plat->sets : NULL;
|
|
nr_sets = (plat != NULL) ? plat->nr_sets : 1;
|
|
|
|
info->mtd_count = nr_sets;
|
|
|
|
/* allocate our information */
|
|
|
|
size = nr_sets * sizeof(*info->mtds);
|
|
info->mtds = kmalloc(size, GFP_KERNEL);
|
|
if (info->mtds == NULL) {
|
|
dev_err(&pdev->dev, "failed to allocate mtd storage\n");
|
|
err = -ENOMEM;
|
|
goto exit_error;
|
|
}
|
|
|
|
memset(info->mtds, 0, size);
|
|
|
|
/* initialise all possible chips */
|
|
|
|
nmtd = info->mtds;
|
|
|
|
for (setno = 0; setno < nr_sets; setno++, nmtd++) {
|
|
pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
|
|
|
|
s3c2410_nand_init_chip(info, nmtd, sets);
|
|
|
|
nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
|
|
(sets) ? sets->nr_chips : 1);
|
|
|
|
if (nmtd->scan_res == 0) {
|
|
s3c2410_nand_update_chip(info, nmtd);
|
|
nand_scan_tail(&nmtd->mtd);
|
|
s3c2410_nand_add_partition(info, nmtd, sets);
|
|
}
|
|
|
|
if (sets != NULL)
|
|
sets++;
|
|
}
|
|
|
|
err = s3c2410_nand_cpufreq_register(info);
|
|
if (err < 0) {
|
|
dev_err(&pdev->dev, "failed to init cpufreq support\n");
|
|
goto exit_error;
|
|
}
|
|
|
|
if (allow_clk_stop(info)) {
|
|
dev_info(&pdev->dev, "clock idle support enabled\n");
|
|
clk_disable(info->clk);
|
|
}
|
|
|
|
pr_debug("initialised ok\n");
|
|
return 0;
|
|
|
|
exit_error:
|
|
s3c24xx_nand_remove(pdev);
|
|
|
|
if (err == 0)
|
|
err = -EINVAL;
|
|
return err;
|
|
}
|
|
|
|
/* PM Support */
|
|
#ifdef CONFIG_PM
|
|
|
|
static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
|
|
{
|
|
struct s3c2410_nand_info *info = platform_get_drvdata(dev);
|
|
|
|
if (info) {
|
|
info->save_sel = readl(info->sel_reg);
|
|
|
|
/* For the moment, we must ensure nFCE is high during
|
|
* the time we are suspended. This really should be
|
|
* handled by suspending the MTDs we are using, but
|
|
* that is currently not the case. */
|
|
|
|
writel(info->save_sel | info->sel_bit, info->sel_reg);
|
|
|
|
if (!allow_clk_stop(info))
|
|
clk_disable(info->clk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s3c24xx_nand_resume(struct platform_device *dev)
|
|
{
|
|
struct s3c2410_nand_info *info = platform_get_drvdata(dev);
|
|
unsigned long sel;
|
|
|
|
if (info) {
|
|
clk_enable(info->clk);
|
|
s3c2410_nand_inithw(info);
|
|
|
|
/* Restore the state of the nFCE line. */
|
|
|
|
sel = readl(info->sel_reg);
|
|
sel &= ~info->sel_bit;
|
|
sel |= info->save_sel & info->sel_bit;
|
|
writel(sel, info->sel_reg);
|
|
|
|
if (allow_clk_stop(info))
|
|
clk_disable(info->clk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
#define s3c24xx_nand_suspend NULL
|
|
#define s3c24xx_nand_resume NULL
|
|
#endif
|
|
|
|
/* driver device registration */
|
|
|
|
static struct platform_device_id s3c24xx_driver_ids[] = {
|
|
{
|
|
.name = "s3c2410-nand",
|
|
.driver_data = TYPE_S3C2410,
|
|
}, {
|
|
.name = "s3c2440-nand",
|
|
.driver_data = TYPE_S3C2440,
|
|
}, {
|
|
.name = "s3c2412-nand",
|
|
.driver_data = TYPE_S3C2412,
|
|
}, {
|
|
.name = "s3c6400-nand",
|
|
.driver_data = TYPE_S3C2412, /* compatible with 2412 */
|
|
},
|
|
{ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
|
|
|
|
static struct platform_driver s3c24xx_nand_driver = {
|
|
.probe = s3c24xx_nand_probe,
|
|
.remove = s3c24xx_nand_remove,
|
|
.suspend = s3c24xx_nand_suspend,
|
|
.resume = s3c24xx_nand_resume,
|
|
.id_table = s3c24xx_driver_ids,
|
|
.driver = {
|
|
.name = "s3c24xx-nand",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init s3c2410_nand_init(void)
|
|
{
|
|
printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
|
|
|
|
return platform_driver_register(&s3c24xx_nand_driver);
|
|
}
|
|
|
|
static void __exit s3c2410_nand_exit(void)
|
|
{
|
|
platform_driver_unregister(&s3c24xx_nand_driver);
|
|
}
|
|
|
|
module_init(s3c2410_nand_init);
|
|
module_exit(s3c2410_nand_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
|
|
MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
|