linux/drivers/net/dsa/ocelot/felix_vsc9959.c
Alex Marginean 8c6123e150 net: dsa: felix: Don't restart PCS SGMII AN if not needed
Some PHYs like VSC8234 don't like it when AN restarts on their system side
and they restart line side AN too, going into an endless link up/down loop.
Don't restart PCS AN if link is up already.

Although in theory this feedback loop should be possible with the other
in-band AN modes too, for some reason it was not seen with the VSC8514
QSGMII and AQR412 USXGMII PHYs. So keep this logic only for SGMII where
the problem was found.

Fixes: bdeced75b1 ("net: dsa: felix: Add PCS operations for PHYLINK")
Suggested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-17 13:17:49 +01:00

1103 lines
34 KiB
C

// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Copyright 2017 Microsemi Corporation
* Copyright 2018-2019 NXP Semiconductors
*/
#include <linux/fsl/enetc_mdio.h>
#include <soc/mscc/ocelot_sys.h>
#include <soc/mscc/ocelot.h>
#include <linux/iopoll.h>
#include <linux/pci.h>
#include "felix.h"
/* TODO: should find a better place for these */
#define USXGMII_BMCR_RESET BIT(15)
#define USXGMII_BMCR_AN_EN BIT(12)
#define USXGMII_BMCR_RST_AN BIT(9)
#define USXGMII_BMSR_LNKS(status) (((status) & GENMASK(2, 2)) >> 2)
#define USXGMII_BMSR_AN_CMPL(status) (((status) & GENMASK(5, 5)) >> 5)
#define USXGMII_ADVERTISE_LNKS(x) (((x) << 15) & BIT(15))
#define USXGMII_ADVERTISE_FDX BIT(12)
#define USXGMII_ADVERTISE_SPEED(x) (((x) << 9) & GENMASK(11, 9))
#define USXGMII_LPA_LNKS(lpa) ((lpa) >> 15)
#define USXGMII_LPA_DUPLEX(lpa) (((lpa) & GENMASK(12, 12)) >> 12)
#define USXGMII_LPA_SPEED(lpa) (((lpa) & GENMASK(11, 9)) >> 9)
enum usxgmii_speed {
USXGMII_SPEED_10 = 0,
USXGMII_SPEED_100 = 1,
USXGMII_SPEED_1000 = 2,
USXGMII_SPEED_2500 = 4,
};
static const u32 vsc9959_ana_regmap[] = {
REG(ANA_ADVLEARN, 0x0089a0),
REG(ANA_VLANMASK, 0x0089a4),
REG_RESERVED(ANA_PORT_B_DOMAIN),
REG(ANA_ANAGEFIL, 0x0089ac),
REG(ANA_ANEVENTS, 0x0089b0),
REG(ANA_STORMLIMIT_BURST, 0x0089b4),
REG(ANA_STORMLIMIT_CFG, 0x0089b8),
REG(ANA_ISOLATED_PORTS, 0x0089c8),
REG(ANA_COMMUNITY_PORTS, 0x0089cc),
REG(ANA_AUTOAGE, 0x0089d0),
REG(ANA_MACTOPTIONS, 0x0089d4),
REG(ANA_LEARNDISC, 0x0089d8),
REG(ANA_AGENCTRL, 0x0089dc),
REG(ANA_MIRRORPORTS, 0x0089e0),
REG(ANA_EMIRRORPORTS, 0x0089e4),
REG(ANA_FLOODING, 0x0089e8),
REG(ANA_FLOODING_IPMC, 0x008a08),
REG(ANA_SFLOW_CFG, 0x008a0c),
REG(ANA_PORT_MODE, 0x008a28),
REG(ANA_CUT_THRU_CFG, 0x008a48),
REG(ANA_PGID_PGID, 0x008400),
REG(ANA_TABLES_ANMOVED, 0x007f1c),
REG(ANA_TABLES_MACHDATA, 0x007f20),
REG(ANA_TABLES_MACLDATA, 0x007f24),
REG(ANA_TABLES_STREAMDATA, 0x007f28),
REG(ANA_TABLES_MACACCESS, 0x007f2c),
REG(ANA_TABLES_MACTINDX, 0x007f30),
REG(ANA_TABLES_VLANACCESS, 0x007f34),
REG(ANA_TABLES_VLANTIDX, 0x007f38),
REG(ANA_TABLES_ISDXACCESS, 0x007f3c),
REG(ANA_TABLES_ISDXTIDX, 0x007f40),
REG(ANA_TABLES_ENTRYLIM, 0x007f00),
REG(ANA_TABLES_PTP_ID_HIGH, 0x007f44),
REG(ANA_TABLES_PTP_ID_LOW, 0x007f48),
REG(ANA_TABLES_STREAMACCESS, 0x007f4c),
REG(ANA_TABLES_STREAMTIDX, 0x007f50),
REG(ANA_TABLES_SEQ_HISTORY, 0x007f54),
REG(ANA_TABLES_SEQ_MASK, 0x007f58),
REG(ANA_TABLES_SFID_MASK, 0x007f5c),
REG(ANA_TABLES_SFIDACCESS, 0x007f60),
REG(ANA_TABLES_SFIDTIDX, 0x007f64),
REG(ANA_MSTI_STATE, 0x008600),
REG(ANA_OAM_UPM_LM_CNT, 0x008000),
REG(ANA_SG_ACCESS_CTRL, 0x008a64),
REG(ANA_SG_CONFIG_REG_1, 0x007fb0),
REG(ANA_SG_CONFIG_REG_2, 0x007fb4),
REG(ANA_SG_CONFIG_REG_3, 0x007fb8),
REG(ANA_SG_CONFIG_REG_4, 0x007fbc),
REG(ANA_SG_CONFIG_REG_5, 0x007fc0),
REG(ANA_SG_GCL_GS_CONFIG, 0x007f80),
REG(ANA_SG_GCL_TI_CONFIG, 0x007f90),
REG(ANA_SG_STATUS_REG_1, 0x008980),
REG(ANA_SG_STATUS_REG_2, 0x008984),
REG(ANA_SG_STATUS_REG_3, 0x008988),
REG(ANA_PORT_VLAN_CFG, 0x007800),
REG(ANA_PORT_DROP_CFG, 0x007804),
REG(ANA_PORT_QOS_CFG, 0x007808),
REG(ANA_PORT_VCAP_CFG, 0x00780c),
REG(ANA_PORT_VCAP_S1_KEY_CFG, 0x007810),
REG(ANA_PORT_VCAP_S2_CFG, 0x00781c),
REG(ANA_PORT_PCP_DEI_MAP, 0x007820),
REG(ANA_PORT_CPU_FWD_CFG, 0x007860),
REG(ANA_PORT_CPU_FWD_BPDU_CFG, 0x007864),
REG(ANA_PORT_CPU_FWD_GARP_CFG, 0x007868),
REG(ANA_PORT_CPU_FWD_CCM_CFG, 0x00786c),
REG(ANA_PORT_PORT_CFG, 0x007870),
REG(ANA_PORT_POL_CFG, 0x007874),
REG(ANA_PORT_PTP_CFG, 0x007878),
REG(ANA_PORT_PTP_DLY1_CFG, 0x00787c),
REG(ANA_PORT_PTP_DLY2_CFG, 0x007880),
REG(ANA_PORT_SFID_CFG, 0x007884),
REG(ANA_PFC_PFC_CFG, 0x008800),
REG_RESERVED(ANA_PFC_PFC_TIMER),
REG_RESERVED(ANA_IPT_OAM_MEP_CFG),
REG_RESERVED(ANA_IPT_IPT),
REG_RESERVED(ANA_PPT_PPT),
REG_RESERVED(ANA_FID_MAP_FID_MAP),
REG(ANA_AGGR_CFG, 0x008a68),
REG(ANA_CPUQ_CFG, 0x008a6c),
REG_RESERVED(ANA_CPUQ_CFG2),
REG(ANA_CPUQ_8021_CFG, 0x008a74),
REG(ANA_DSCP_CFG, 0x008ab4),
REG(ANA_DSCP_REWR_CFG, 0x008bb4),
REG(ANA_VCAP_RNG_TYPE_CFG, 0x008bf4),
REG(ANA_VCAP_RNG_VAL_CFG, 0x008c14),
REG_RESERVED(ANA_VRAP_CFG),
REG_RESERVED(ANA_VRAP_HDR_DATA),
REG_RESERVED(ANA_VRAP_HDR_MASK),
REG(ANA_DISCARD_CFG, 0x008c40),
REG(ANA_FID_CFG, 0x008c44),
REG(ANA_POL_PIR_CFG, 0x004000),
REG(ANA_POL_CIR_CFG, 0x004004),
REG(ANA_POL_MODE_CFG, 0x004008),
REG(ANA_POL_PIR_STATE, 0x00400c),
REG(ANA_POL_CIR_STATE, 0x004010),
REG_RESERVED(ANA_POL_STATE),
REG(ANA_POL_FLOWC, 0x008c48),
REG(ANA_POL_HYST, 0x008cb4),
REG_RESERVED(ANA_POL_MISC_CFG),
};
static const u32 vsc9959_qs_regmap[] = {
REG(QS_XTR_GRP_CFG, 0x000000),
REG(QS_XTR_RD, 0x000008),
REG(QS_XTR_FRM_PRUNING, 0x000010),
REG(QS_XTR_FLUSH, 0x000018),
REG(QS_XTR_DATA_PRESENT, 0x00001c),
REG(QS_XTR_CFG, 0x000020),
REG(QS_INJ_GRP_CFG, 0x000024),
REG(QS_INJ_WR, 0x00002c),
REG(QS_INJ_CTRL, 0x000034),
REG(QS_INJ_STATUS, 0x00003c),
REG(QS_INJ_ERR, 0x000040),
REG_RESERVED(QS_INH_DBG),
};
static const u32 vsc9959_s2_regmap[] = {
REG(S2_CORE_UPDATE_CTRL, 0x000000),
REG(S2_CORE_MV_CFG, 0x000004),
REG(S2_CACHE_ENTRY_DAT, 0x000008),
REG(S2_CACHE_MASK_DAT, 0x000108),
REG(S2_CACHE_ACTION_DAT, 0x000208),
REG(S2_CACHE_CNT_DAT, 0x000308),
REG(S2_CACHE_TG_DAT, 0x000388),
};
static const u32 vsc9959_qsys_regmap[] = {
REG(QSYS_PORT_MODE, 0x00f460),
REG(QSYS_SWITCH_PORT_MODE, 0x00f480),
REG(QSYS_STAT_CNT_CFG, 0x00f49c),
REG(QSYS_EEE_CFG, 0x00f4a0),
REG(QSYS_EEE_THRES, 0x00f4b8),
REG(QSYS_IGR_NO_SHARING, 0x00f4bc),
REG(QSYS_EGR_NO_SHARING, 0x00f4c0),
REG(QSYS_SW_STATUS, 0x00f4c4),
REG(QSYS_EXT_CPU_CFG, 0x00f4e0),
REG_RESERVED(QSYS_PAD_CFG),
REG(QSYS_CPU_GROUP_MAP, 0x00f4e8),
REG_RESERVED(QSYS_QMAP),
REG_RESERVED(QSYS_ISDX_SGRP),
REG_RESERVED(QSYS_TIMED_FRAME_ENTRY),
REG(QSYS_TFRM_MISC, 0x00f50c),
REG(QSYS_TFRM_PORT_DLY, 0x00f510),
REG(QSYS_TFRM_TIMER_CFG_1, 0x00f514),
REG(QSYS_TFRM_TIMER_CFG_2, 0x00f518),
REG(QSYS_TFRM_TIMER_CFG_3, 0x00f51c),
REG(QSYS_TFRM_TIMER_CFG_4, 0x00f520),
REG(QSYS_TFRM_TIMER_CFG_5, 0x00f524),
REG(QSYS_TFRM_TIMER_CFG_6, 0x00f528),
REG(QSYS_TFRM_TIMER_CFG_7, 0x00f52c),
REG(QSYS_TFRM_TIMER_CFG_8, 0x00f530),
REG(QSYS_RED_PROFILE, 0x00f534),
REG(QSYS_RES_QOS_MODE, 0x00f574),
REG(QSYS_RES_CFG, 0x00c000),
REG(QSYS_RES_STAT, 0x00c004),
REG(QSYS_EGR_DROP_MODE, 0x00f578),
REG(QSYS_EQ_CTRL, 0x00f57c),
REG_RESERVED(QSYS_EVENTS_CORE),
REG(QSYS_QMAXSDU_CFG_0, 0x00f584),
REG(QSYS_QMAXSDU_CFG_1, 0x00f5a0),
REG(QSYS_QMAXSDU_CFG_2, 0x00f5bc),
REG(QSYS_QMAXSDU_CFG_3, 0x00f5d8),
REG(QSYS_QMAXSDU_CFG_4, 0x00f5f4),
REG(QSYS_QMAXSDU_CFG_5, 0x00f610),
REG(QSYS_QMAXSDU_CFG_6, 0x00f62c),
REG(QSYS_QMAXSDU_CFG_7, 0x00f648),
REG(QSYS_PREEMPTION_CFG, 0x00f664),
REG_RESERVED(QSYS_CIR_CFG),
REG(QSYS_EIR_CFG, 0x000004),
REG(QSYS_SE_CFG, 0x000008),
REG(QSYS_SE_DWRR_CFG, 0x00000c),
REG_RESERVED(QSYS_SE_CONNECT),
REG(QSYS_SE_DLB_SENSE, 0x000040),
REG(QSYS_CIR_STATE, 0x000044),
REG(QSYS_EIR_STATE, 0x000048),
REG_RESERVED(QSYS_SE_STATE),
REG(QSYS_HSCH_MISC_CFG, 0x00f67c),
REG(QSYS_TAG_CONFIG, 0x00f680),
REG(QSYS_TAS_PARAM_CFG_CTRL, 0x00f698),
REG(QSYS_PORT_MAX_SDU, 0x00f69c),
REG(QSYS_PARAM_CFG_REG_1, 0x00f440),
REG(QSYS_PARAM_CFG_REG_2, 0x00f444),
REG(QSYS_PARAM_CFG_REG_3, 0x00f448),
REG(QSYS_PARAM_CFG_REG_4, 0x00f44c),
REG(QSYS_PARAM_CFG_REG_5, 0x00f450),
REG(QSYS_GCL_CFG_REG_1, 0x00f454),
REG(QSYS_GCL_CFG_REG_2, 0x00f458),
REG(QSYS_PARAM_STATUS_REG_1, 0x00f400),
REG(QSYS_PARAM_STATUS_REG_2, 0x00f404),
REG(QSYS_PARAM_STATUS_REG_3, 0x00f408),
REG(QSYS_PARAM_STATUS_REG_4, 0x00f40c),
REG(QSYS_PARAM_STATUS_REG_5, 0x00f410),
REG(QSYS_PARAM_STATUS_REG_6, 0x00f414),
REG(QSYS_PARAM_STATUS_REG_7, 0x00f418),
REG(QSYS_PARAM_STATUS_REG_8, 0x00f41c),
REG(QSYS_PARAM_STATUS_REG_9, 0x00f420),
REG(QSYS_GCL_STATUS_REG_1, 0x00f424),
REG(QSYS_GCL_STATUS_REG_2, 0x00f428),
};
static const u32 vsc9959_rew_regmap[] = {
REG(REW_PORT_VLAN_CFG, 0x000000),
REG(REW_TAG_CFG, 0x000004),
REG(REW_PORT_CFG, 0x000008),
REG(REW_DSCP_CFG, 0x00000c),
REG(REW_PCP_DEI_QOS_MAP_CFG, 0x000010),
REG(REW_PTP_CFG, 0x000050),
REG(REW_PTP_DLY1_CFG, 0x000054),
REG(REW_RED_TAG_CFG, 0x000058),
REG(REW_DSCP_REMAP_DP1_CFG, 0x000410),
REG(REW_DSCP_REMAP_CFG, 0x000510),
REG_RESERVED(REW_STAT_CFG),
REG_RESERVED(REW_REW_STICKY),
REG_RESERVED(REW_PPT),
};
static const u32 vsc9959_sys_regmap[] = {
REG(SYS_COUNT_RX_OCTETS, 0x000000),
REG(SYS_COUNT_RX_MULTICAST, 0x000008),
REG(SYS_COUNT_RX_SHORTS, 0x000010),
REG(SYS_COUNT_RX_FRAGMENTS, 0x000014),
REG(SYS_COUNT_RX_JABBERS, 0x000018),
REG(SYS_COUNT_RX_64, 0x000024),
REG(SYS_COUNT_RX_65_127, 0x000028),
REG(SYS_COUNT_RX_128_255, 0x00002c),
REG(SYS_COUNT_RX_256_1023, 0x000030),
REG(SYS_COUNT_RX_1024_1526, 0x000034),
REG(SYS_COUNT_RX_1527_MAX, 0x000038),
REG(SYS_COUNT_RX_LONGS, 0x000044),
REG(SYS_COUNT_TX_OCTETS, 0x000200),
REG(SYS_COUNT_TX_COLLISION, 0x000210),
REG(SYS_COUNT_TX_DROPS, 0x000214),
REG(SYS_COUNT_TX_64, 0x00021c),
REG(SYS_COUNT_TX_65_127, 0x000220),
REG(SYS_COUNT_TX_128_511, 0x000224),
REG(SYS_COUNT_TX_512_1023, 0x000228),
REG(SYS_COUNT_TX_1024_1526, 0x00022c),
REG(SYS_COUNT_TX_1527_MAX, 0x000230),
REG(SYS_COUNT_TX_AGING, 0x000278),
REG(SYS_RESET_CFG, 0x000e00),
REG(SYS_SR_ETYPE_CFG, 0x000e04),
REG(SYS_VLAN_ETYPE_CFG, 0x000e08),
REG(SYS_PORT_MODE, 0x000e0c),
REG(SYS_FRONT_PORT_MODE, 0x000e2c),
REG(SYS_FRM_AGING, 0x000e44),
REG(SYS_STAT_CFG, 0x000e48),
REG(SYS_SW_STATUS, 0x000e4c),
REG_RESERVED(SYS_MISC_CFG),
REG(SYS_REW_MAC_HIGH_CFG, 0x000e6c),
REG(SYS_REW_MAC_LOW_CFG, 0x000e84),
REG(SYS_TIMESTAMP_OFFSET, 0x000e9c),
REG(SYS_PAUSE_CFG, 0x000ea0),
REG(SYS_PAUSE_TOT_CFG, 0x000ebc),
REG(SYS_ATOP, 0x000ec0),
REG(SYS_ATOP_TOT_CFG, 0x000edc),
REG(SYS_MAC_FC_CFG, 0x000ee0),
REG(SYS_MMGT, 0x000ef8),
REG_RESERVED(SYS_MMGT_FAST),
REG_RESERVED(SYS_EVENTS_DIF),
REG_RESERVED(SYS_EVENTS_CORE),
REG_RESERVED(SYS_CNT),
REG(SYS_PTP_STATUS, 0x000f14),
REG(SYS_PTP_TXSTAMP, 0x000f18),
REG(SYS_PTP_NXT, 0x000f1c),
REG(SYS_PTP_CFG, 0x000f20),
REG(SYS_RAM_INIT, 0x000f24),
REG_RESERVED(SYS_CM_ADDR),
REG_RESERVED(SYS_CM_DATA_WR),
REG_RESERVED(SYS_CM_DATA_RD),
REG_RESERVED(SYS_CM_OP),
REG_RESERVED(SYS_CM_DATA),
};
static const u32 vsc9959_ptp_regmap[] = {
REG(PTP_PIN_CFG, 0x000000),
REG(PTP_PIN_TOD_SEC_MSB, 0x000004),
REG(PTP_PIN_TOD_SEC_LSB, 0x000008),
REG(PTP_PIN_TOD_NSEC, 0x00000c),
REG(PTP_CFG_MISC, 0x0000a0),
REG(PTP_CLK_CFG_ADJ_CFG, 0x0000a4),
REG(PTP_CLK_CFG_ADJ_FREQ, 0x0000a8),
};
static const u32 vsc9959_gcb_regmap[] = {
REG(GCB_SOFT_RST, 0x000004),
};
static const u32 *vsc9959_regmap[] = {
[ANA] = vsc9959_ana_regmap,
[QS] = vsc9959_qs_regmap,
[QSYS] = vsc9959_qsys_regmap,
[REW] = vsc9959_rew_regmap,
[SYS] = vsc9959_sys_regmap,
[S2] = vsc9959_s2_regmap,
[PTP] = vsc9959_ptp_regmap,
[GCB] = vsc9959_gcb_regmap,
};
/* Addresses are relative to the PCI device's base address and
* will be fixed up at ioremap time.
*/
static struct resource vsc9959_target_io_res[] = {
[ANA] = {
.start = 0x0280000,
.end = 0x028ffff,
.name = "ana",
},
[QS] = {
.start = 0x0080000,
.end = 0x00800ff,
.name = "qs",
},
[QSYS] = {
.start = 0x0200000,
.end = 0x021ffff,
.name = "qsys",
},
[REW] = {
.start = 0x0030000,
.end = 0x003ffff,
.name = "rew",
},
[SYS] = {
.start = 0x0010000,
.end = 0x001ffff,
.name = "sys",
},
[S2] = {
.start = 0x0060000,
.end = 0x00603ff,
.name = "s2",
},
[PTP] = {
.start = 0x0090000,
.end = 0x00900cb,
.name = "ptp",
},
[GCB] = {
.start = 0x0070000,
.end = 0x00701ff,
.name = "devcpu_gcb",
},
};
static struct resource vsc9959_port_io_res[] = {
{
.start = 0x0100000,
.end = 0x010ffff,
.name = "port0",
},
{
.start = 0x0110000,
.end = 0x011ffff,
.name = "port1",
},
{
.start = 0x0120000,
.end = 0x012ffff,
.name = "port2",
},
{
.start = 0x0130000,
.end = 0x013ffff,
.name = "port3",
},
{
.start = 0x0140000,
.end = 0x014ffff,
.name = "port4",
},
{
.start = 0x0150000,
.end = 0x015ffff,
.name = "port5",
},
};
/* Port MAC 0 Internal MDIO bus through which the SerDes acting as an
* SGMII/QSGMII MAC PCS can be found.
*/
static struct resource vsc9959_imdio_res = {
.start = 0x8030,
.end = 0x8040,
.name = "imdio",
};
static const struct reg_field vsc9959_regfields[] = {
[ANA_ADVLEARN_VLAN_CHK] = REG_FIELD(ANA_ADVLEARN, 6, 6),
[ANA_ADVLEARN_LEARN_MIRROR] = REG_FIELD(ANA_ADVLEARN, 0, 5),
[ANA_ANEVENTS_FLOOD_DISCARD] = REG_FIELD(ANA_ANEVENTS, 30, 30),
[ANA_ANEVENTS_AUTOAGE] = REG_FIELD(ANA_ANEVENTS, 26, 26),
[ANA_ANEVENTS_STORM_DROP] = REG_FIELD(ANA_ANEVENTS, 24, 24),
[ANA_ANEVENTS_LEARN_DROP] = REG_FIELD(ANA_ANEVENTS, 23, 23),
[ANA_ANEVENTS_AGED_ENTRY] = REG_FIELD(ANA_ANEVENTS, 22, 22),
[ANA_ANEVENTS_CPU_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 21, 21),
[ANA_ANEVENTS_AUTO_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 20, 20),
[ANA_ANEVENTS_LEARN_REMOVE] = REG_FIELD(ANA_ANEVENTS, 19, 19),
[ANA_ANEVENTS_AUTO_LEARNED] = REG_FIELD(ANA_ANEVENTS, 18, 18),
[ANA_ANEVENTS_AUTO_MOVED] = REG_FIELD(ANA_ANEVENTS, 17, 17),
[ANA_ANEVENTS_CLASSIFIED_DROP] = REG_FIELD(ANA_ANEVENTS, 15, 15),
[ANA_ANEVENTS_CLASSIFIED_COPY] = REG_FIELD(ANA_ANEVENTS, 14, 14),
[ANA_ANEVENTS_VLAN_DISCARD] = REG_FIELD(ANA_ANEVENTS, 13, 13),
[ANA_ANEVENTS_FWD_DISCARD] = REG_FIELD(ANA_ANEVENTS, 12, 12),
[ANA_ANEVENTS_MULTICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 11, 11),
[ANA_ANEVENTS_UNICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 10, 10),
[ANA_ANEVENTS_DEST_KNOWN] = REG_FIELD(ANA_ANEVENTS, 9, 9),
[ANA_ANEVENTS_BUCKET3_MATCH] = REG_FIELD(ANA_ANEVENTS, 8, 8),
[ANA_ANEVENTS_BUCKET2_MATCH] = REG_FIELD(ANA_ANEVENTS, 7, 7),
[ANA_ANEVENTS_BUCKET1_MATCH] = REG_FIELD(ANA_ANEVENTS, 6, 6),
[ANA_ANEVENTS_BUCKET0_MATCH] = REG_FIELD(ANA_ANEVENTS, 5, 5),
[ANA_ANEVENTS_CPU_OPERATION] = REG_FIELD(ANA_ANEVENTS, 4, 4),
[ANA_ANEVENTS_DMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 3, 3),
[ANA_ANEVENTS_SMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 2, 2),
[ANA_ANEVENTS_SEQ_GEN_ERR_0] = REG_FIELD(ANA_ANEVENTS, 1, 1),
[ANA_ANEVENTS_SEQ_GEN_ERR_1] = REG_FIELD(ANA_ANEVENTS, 0, 0),
[ANA_TABLES_MACACCESS_B_DOM] = REG_FIELD(ANA_TABLES_MACACCESS, 16, 16),
[ANA_TABLES_MACTINDX_BUCKET] = REG_FIELD(ANA_TABLES_MACTINDX, 11, 12),
[ANA_TABLES_MACTINDX_M_INDEX] = REG_FIELD(ANA_TABLES_MACTINDX, 0, 10),
[SYS_RESET_CFG_CORE_ENA] = REG_FIELD(SYS_RESET_CFG, 0, 0),
[GCB_SOFT_RST_SWC_RST] = REG_FIELD(GCB_SOFT_RST, 0, 0),
};
static const struct ocelot_stat_layout vsc9959_stats_layout[] = {
{ .offset = 0x00, .name = "rx_octets", },
{ .offset = 0x01, .name = "rx_unicast", },
{ .offset = 0x02, .name = "rx_multicast", },
{ .offset = 0x03, .name = "rx_broadcast", },
{ .offset = 0x04, .name = "rx_shorts", },
{ .offset = 0x05, .name = "rx_fragments", },
{ .offset = 0x06, .name = "rx_jabbers", },
{ .offset = 0x07, .name = "rx_crc_align_errs", },
{ .offset = 0x08, .name = "rx_sym_errs", },
{ .offset = 0x09, .name = "rx_frames_below_65_octets", },
{ .offset = 0x0A, .name = "rx_frames_65_to_127_octets", },
{ .offset = 0x0B, .name = "rx_frames_128_to_255_octets", },
{ .offset = 0x0C, .name = "rx_frames_256_to_511_octets", },
{ .offset = 0x0D, .name = "rx_frames_512_to_1023_octets", },
{ .offset = 0x0E, .name = "rx_frames_1024_to_1526_octets", },
{ .offset = 0x0F, .name = "rx_frames_over_1526_octets", },
{ .offset = 0x10, .name = "rx_pause", },
{ .offset = 0x11, .name = "rx_control", },
{ .offset = 0x12, .name = "rx_longs", },
{ .offset = 0x13, .name = "rx_classified_drops", },
{ .offset = 0x14, .name = "rx_red_prio_0", },
{ .offset = 0x15, .name = "rx_red_prio_1", },
{ .offset = 0x16, .name = "rx_red_prio_2", },
{ .offset = 0x17, .name = "rx_red_prio_3", },
{ .offset = 0x18, .name = "rx_red_prio_4", },
{ .offset = 0x19, .name = "rx_red_prio_5", },
{ .offset = 0x1A, .name = "rx_red_prio_6", },
{ .offset = 0x1B, .name = "rx_red_prio_7", },
{ .offset = 0x1C, .name = "rx_yellow_prio_0", },
{ .offset = 0x1D, .name = "rx_yellow_prio_1", },
{ .offset = 0x1E, .name = "rx_yellow_prio_2", },
{ .offset = 0x1F, .name = "rx_yellow_prio_3", },
{ .offset = 0x20, .name = "rx_yellow_prio_4", },
{ .offset = 0x21, .name = "rx_yellow_prio_5", },
{ .offset = 0x22, .name = "rx_yellow_prio_6", },
{ .offset = 0x23, .name = "rx_yellow_prio_7", },
{ .offset = 0x24, .name = "rx_green_prio_0", },
{ .offset = 0x25, .name = "rx_green_prio_1", },
{ .offset = 0x26, .name = "rx_green_prio_2", },
{ .offset = 0x27, .name = "rx_green_prio_3", },
{ .offset = 0x28, .name = "rx_green_prio_4", },
{ .offset = 0x29, .name = "rx_green_prio_5", },
{ .offset = 0x2A, .name = "rx_green_prio_6", },
{ .offset = 0x2B, .name = "rx_green_prio_7", },
{ .offset = 0x80, .name = "tx_octets", },
{ .offset = 0x81, .name = "tx_unicast", },
{ .offset = 0x82, .name = "tx_multicast", },
{ .offset = 0x83, .name = "tx_broadcast", },
{ .offset = 0x84, .name = "tx_collision", },
{ .offset = 0x85, .name = "tx_drops", },
{ .offset = 0x86, .name = "tx_pause", },
{ .offset = 0x87, .name = "tx_frames_below_65_octets", },
{ .offset = 0x88, .name = "tx_frames_65_to_127_octets", },
{ .offset = 0x89, .name = "tx_frames_128_255_octets", },
{ .offset = 0x8B, .name = "tx_frames_256_511_octets", },
{ .offset = 0x8C, .name = "tx_frames_1024_1526_octets", },
{ .offset = 0x8D, .name = "tx_frames_over_1526_octets", },
{ .offset = 0x8E, .name = "tx_yellow_prio_0", },
{ .offset = 0x8F, .name = "tx_yellow_prio_1", },
{ .offset = 0x90, .name = "tx_yellow_prio_2", },
{ .offset = 0x91, .name = "tx_yellow_prio_3", },
{ .offset = 0x92, .name = "tx_yellow_prio_4", },
{ .offset = 0x93, .name = "tx_yellow_prio_5", },
{ .offset = 0x94, .name = "tx_yellow_prio_6", },
{ .offset = 0x95, .name = "tx_yellow_prio_7", },
{ .offset = 0x96, .name = "tx_green_prio_0", },
{ .offset = 0x97, .name = "tx_green_prio_1", },
{ .offset = 0x98, .name = "tx_green_prio_2", },
{ .offset = 0x99, .name = "tx_green_prio_3", },
{ .offset = 0x9A, .name = "tx_green_prio_4", },
{ .offset = 0x9B, .name = "tx_green_prio_5", },
{ .offset = 0x9C, .name = "tx_green_prio_6", },
{ .offset = 0x9D, .name = "tx_green_prio_7", },
{ .offset = 0x9E, .name = "tx_aged", },
{ .offset = 0x100, .name = "drop_local", },
{ .offset = 0x101, .name = "drop_tail", },
{ .offset = 0x102, .name = "drop_yellow_prio_0", },
{ .offset = 0x103, .name = "drop_yellow_prio_1", },
{ .offset = 0x104, .name = "drop_yellow_prio_2", },
{ .offset = 0x105, .name = "drop_yellow_prio_3", },
{ .offset = 0x106, .name = "drop_yellow_prio_4", },
{ .offset = 0x107, .name = "drop_yellow_prio_5", },
{ .offset = 0x108, .name = "drop_yellow_prio_6", },
{ .offset = 0x109, .name = "drop_yellow_prio_7", },
{ .offset = 0x10A, .name = "drop_green_prio_0", },
{ .offset = 0x10B, .name = "drop_green_prio_1", },
{ .offset = 0x10C, .name = "drop_green_prio_2", },
{ .offset = 0x10D, .name = "drop_green_prio_3", },
{ .offset = 0x10E, .name = "drop_green_prio_4", },
{ .offset = 0x10F, .name = "drop_green_prio_5", },
{ .offset = 0x110, .name = "drop_green_prio_6", },
{ .offset = 0x111, .name = "drop_green_prio_7", },
};
#define VSC9959_INIT_TIMEOUT 50000
#define VSC9959_GCB_RST_SLEEP 100
#define VSC9959_SYS_RAMINIT_SLEEP 80
static int vsc9959_gcb_soft_rst_status(struct ocelot *ocelot)
{
int val;
regmap_field_read(ocelot->regfields[GCB_SOFT_RST_SWC_RST], &val);
return val;
}
static int vsc9959_sys_ram_init_status(struct ocelot *ocelot)
{
return ocelot_read(ocelot, SYS_RAM_INIT);
}
static int vsc9959_reset(struct ocelot *ocelot)
{
int val, err;
/* soft-reset the switch core */
regmap_field_write(ocelot->regfields[GCB_SOFT_RST_SWC_RST], 1);
err = readx_poll_timeout(vsc9959_gcb_soft_rst_status, ocelot, val, !val,
VSC9959_GCB_RST_SLEEP, VSC9959_INIT_TIMEOUT);
if (err) {
dev_err(ocelot->dev, "timeout: switch core reset\n");
return err;
}
/* initialize switch mem ~40us */
ocelot_write(ocelot, SYS_RAM_INIT_RAM_INIT, SYS_RAM_INIT);
err = readx_poll_timeout(vsc9959_sys_ram_init_status, ocelot, val, !val,
VSC9959_SYS_RAMINIT_SLEEP,
VSC9959_INIT_TIMEOUT);
if (err) {
dev_err(ocelot->dev, "timeout: switch sram init\n");
return err;
}
/* enable switch core */
regmap_field_write(ocelot->regfields[SYS_RESET_CFG_CORE_ENA], 1);
return 0;
}
static void vsc9959_pcs_an_restart_sgmii(struct phy_device *pcs)
{
phy_set_bits(pcs, MII_BMCR, BMCR_ANRESTART);
}
static void vsc9959_pcs_an_restart_usxgmii(struct phy_device *pcs)
{
phy_write_mmd(pcs, MDIO_MMD_VEND2, MII_BMCR,
USXGMII_BMCR_RESET |
USXGMII_BMCR_AN_EN |
USXGMII_BMCR_RST_AN);
}
static void vsc9959_pcs_an_restart(struct ocelot *ocelot, int port)
{
struct felix *felix = ocelot_to_felix(ocelot);
struct phy_device *pcs = felix->pcs[port];
if (!pcs)
return;
switch (pcs->interface) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_QSGMII:
vsc9959_pcs_an_restart_sgmii(pcs);
break;
case PHY_INTERFACE_MODE_USXGMII:
vsc9959_pcs_an_restart_usxgmii(pcs);
break;
default:
dev_err(ocelot->dev, "Invalid PCS interface type %s\n",
phy_modes(pcs->interface));
break;
}
}
/* We enable SGMII AN only when the PHY has managed = "in-band-status" in the
* device tree. If we are in MLO_AN_PHY mode, we program directly state->speed
* into the PCS, which is retrieved out-of-band over MDIO. This also has the
* benefit of working with SGMII fixed-links, like downstream switches, where
* both link partners attempt to operate as AN slaves and therefore AN never
* completes. But it also has the disadvantage that some PHY chips don't pass
* traffic if SGMII AN is enabled but not completed (acknowledged by us), so
* setting MLO_AN_INBAND is actually required for those.
*/
static void vsc9959_pcs_init_sgmii(struct phy_device *pcs,
unsigned int link_an_mode,
const struct phylink_link_state *state)
{
if (link_an_mode == MLO_AN_INBAND) {
int bmsr, bmcr;
/* Some PHYs like VSC8234 don't like it when AN restarts on
* their system side and they restart line side AN too, going
* into an endless link up/down loop. Don't restart PCS AN if
* link is up already.
* We do check that AN is enabled just in case this is the 1st
* call, PCS detects a carrier but AN is disabled from power on
* or by boot loader.
*/
bmcr = phy_read(pcs, MII_BMCR);
if (bmcr < 0)
return;
bmsr = phy_read(pcs, MII_BMSR);
if (bmsr < 0)
return;
if ((bmcr & BMCR_ANENABLE) && (bmsr & BMSR_LSTATUS))
return;
/* SGMII spec requires tx_config_Reg[15:0] to be exactly 0x4001
* for the MAC PCS in order to acknowledge the AN.
*/
phy_write(pcs, MII_ADVERTISE, ADVERTISE_SGMII |
ADVERTISE_LPACK);
phy_write(pcs, ENETC_PCS_IF_MODE,
ENETC_PCS_IF_MODE_SGMII_EN |
ENETC_PCS_IF_MODE_USE_SGMII_AN);
/* Adjust link timer for SGMII */
phy_write(pcs, ENETC_PCS_LINK_TIMER1,
ENETC_PCS_LINK_TIMER1_VAL);
phy_write(pcs, ENETC_PCS_LINK_TIMER2,
ENETC_PCS_LINK_TIMER2_VAL);
phy_write(pcs, MII_BMCR, BMCR_ANRESTART | BMCR_ANENABLE);
} else {
int speed;
if (state->duplex == DUPLEX_HALF) {
phydev_err(pcs, "Half duplex not supported\n");
return;
}
switch (state->speed) {
case SPEED_1000:
speed = ENETC_PCS_SPEED_1000;
break;
case SPEED_100:
speed = ENETC_PCS_SPEED_100;
break;
case SPEED_10:
speed = ENETC_PCS_SPEED_10;
break;
case SPEED_UNKNOWN:
/* Silently don't do anything */
return;
default:
phydev_err(pcs, "Invalid PCS speed %d\n", state->speed);
return;
}
phy_write(pcs, ENETC_PCS_IF_MODE,
ENETC_PCS_IF_MODE_SGMII_EN |
ENETC_PCS_IF_MODE_SGMII_SPEED(speed));
/* Yes, not a mistake: speed is given by IF_MODE. */
phy_write(pcs, MII_BMCR, BMCR_RESET |
BMCR_SPEED1000 |
BMCR_FULLDPLX);
}
}
/* 2500Base-X is SerDes protocol 7 on Felix and 6 on ENETC. It is a SerDes lane
* clocked at 3.125 GHz which encodes symbols with 8b/10b and does not have
* auto-negotiation of any link parameters. Electrically it is compatible with
* a single lane of XAUI.
* The hardware reference manual wants to call this mode SGMII, but it isn't
* really, since the fundamental features of SGMII:
* - Downgrading the link speed by duplicating symbols
* - Auto-negotiation
* are not there.
* The speed is configured at 1000 in the IF_MODE and BMCR MDIO registers
* because the clock frequency is actually given by a PLL configured in the
* Reset Configuration Word (RCW).
* Since there is no difference between fixed speed SGMII w/o AN and 802.3z w/o
* AN, we call this PHY interface type 2500Base-X. In case a PHY negotiates a
* lower link speed on line side, the system-side interface remains fixed at
* 2500 Mbps and we do rate adaptation through pause frames.
*/
static void vsc9959_pcs_init_2500basex(struct phy_device *pcs,
unsigned int link_an_mode,
const struct phylink_link_state *state)
{
if (link_an_mode == MLO_AN_INBAND) {
phydev_err(pcs, "AN not supported on 3.125GHz SerDes lane\n");
return;
}
phy_write(pcs, ENETC_PCS_IF_MODE,
ENETC_PCS_IF_MODE_SGMII_EN |
ENETC_PCS_IF_MODE_SGMII_SPEED(ENETC_PCS_SPEED_2500));
phy_write(pcs, MII_BMCR, BMCR_SPEED1000 |
BMCR_FULLDPLX |
BMCR_RESET);
}
static void vsc9959_pcs_init_usxgmii(struct phy_device *pcs,
unsigned int link_an_mode,
const struct phylink_link_state *state)
{
if (link_an_mode != MLO_AN_INBAND) {
phydev_err(pcs, "USXGMII only supports in-band AN for now\n");
return;
}
/* Configure device ability for the USXGMII Replicator */
phy_write_mmd(pcs, MDIO_MMD_VEND2, MII_ADVERTISE,
USXGMII_ADVERTISE_SPEED(USXGMII_SPEED_2500) |
USXGMII_ADVERTISE_LNKS(1) |
ADVERTISE_SGMII |
ADVERTISE_LPACK |
USXGMII_ADVERTISE_FDX);
}
static void vsc9959_pcs_init(struct ocelot *ocelot, int port,
unsigned int link_an_mode,
const struct phylink_link_state *state)
{
struct felix *felix = ocelot_to_felix(ocelot);
struct phy_device *pcs = felix->pcs[port];
if (!pcs)
return;
/* The PCS does not implement the BMSR register fully, so capability
* detection via genphy_read_abilities does not work. Since we can get
* the PHY config word from the LPA register though, there is still
* value in using the generic phy_resolve_aneg_linkmode function. So
* populate the supported and advertising link modes manually here.
*/
linkmode_set_bit_array(phy_basic_ports_array,
ARRAY_SIZE(phy_basic_ports_array),
pcs->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, pcs->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, pcs->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, pcs->supported);
if (pcs->interface == PHY_INTERFACE_MODE_2500BASEX ||
pcs->interface == PHY_INTERFACE_MODE_USXGMII)
linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
pcs->supported);
if (pcs->interface != PHY_INTERFACE_MODE_2500BASEX)
linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
pcs->supported);
phy_advertise_supported(pcs);
switch (pcs->interface) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_QSGMII:
vsc9959_pcs_init_sgmii(pcs, link_an_mode, state);
break;
case PHY_INTERFACE_MODE_2500BASEX:
vsc9959_pcs_init_2500basex(pcs, link_an_mode, state);
break;
case PHY_INTERFACE_MODE_USXGMII:
vsc9959_pcs_init_usxgmii(pcs, link_an_mode, state);
break;
default:
dev_err(ocelot->dev, "Unsupported link mode %s\n",
phy_modes(pcs->interface));
}
}
static void vsc9959_pcs_link_state_resolve(struct phy_device *pcs,
struct phylink_link_state *state)
{
state->an_complete = pcs->autoneg_complete;
state->an_enabled = pcs->autoneg;
state->link = pcs->link;
state->duplex = pcs->duplex;
state->speed = pcs->speed;
/* SGMII AN does not negotiate flow control, but that's ok,
* since phylink already knows that, and does:
* link_state.pause |= pl->phy_state.pause;
*/
state->pause = MLO_PAUSE_NONE;
phydev_dbg(pcs,
"mode=%s/%s/%s adv=%*pb lpa=%*pb link=%u an_enabled=%u an_complete=%u\n",
phy_modes(pcs->interface),
phy_speed_to_str(pcs->speed),
phy_duplex_to_str(pcs->duplex),
__ETHTOOL_LINK_MODE_MASK_NBITS, pcs->advertising,
__ETHTOOL_LINK_MODE_MASK_NBITS, pcs->lp_advertising,
pcs->link, pcs->autoneg, pcs->autoneg_complete);
}
static void vsc9959_pcs_link_state_sgmii(struct phy_device *pcs,
struct phylink_link_state *state)
{
int err;
err = genphy_update_link(pcs);
if (err < 0)
return;
if (pcs->autoneg_complete) {
u16 lpa = phy_read(pcs, MII_LPA);
mii_lpa_to_linkmode_lpa_sgmii(pcs->lp_advertising, lpa);
phy_resolve_aneg_linkmode(pcs);
}
}
static void vsc9959_pcs_link_state_2500basex(struct phy_device *pcs,
struct phylink_link_state *state)
{
int err;
err = genphy_update_link(pcs);
if (err < 0)
return;
pcs->speed = SPEED_2500;
pcs->asym_pause = true;
pcs->pause = true;
}
static void vsc9959_pcs_link_state_usxgmii(struct phy_device *pcs,
struct phylink_link_state *state)
{
int status, lpa;
status = phy_read_mmd(pcs, MDIO_MMD_VEND2, MII_BMSR);
if (status < 0)
return;
pcs->autoneg = true;
pcs->autoneg_complete = USXGMII_BMSR_AN_CMPL(status);
pcs->link = USXGMII_BMSR_LNKS(status);
if (!pcs->link || !pcs->autoneg_complete)
return;
lpa = phy_read_mmd(pcs, MDIO_MMD_VEND2, MII_LPA);
if (lpa < 0)
return;
switch (USXGMII_LPA_SPEED(lpa)) {
case USXGMII_SPEED_10:
pcs->speed = SPEED_10;
break;
case USXGMII_SPEED_100:
pcs->speed = SPEED_100;
break;
case USXGMII_SPEED_1000:
pcs->speed = SPEED_1000;
break;
case USXGMII_SPEED_2500:
pcs->speed = SPEED_2500;
break;
default:
break;
}
if (USXGMII_LPA_DUPLEX(lpa))
pcs->duplex = DUPLEX_FULL;
else
pcs->duplex = DUPLEX_HALF;
}
static void vsc9959_pcs_link_state(struct ocelot *ocelot, int port,
struct phylink_link_state *state)
{
struct felix *felix = ocelot_to_felix(ocelot);
struct phy_device *pcs = felix->pcs[port];
if (!pcs)
return;
pcs->speed = SPEED_UNKNOWN;
pcs->duplex = DUPLEX_UNKNOWN;
pcs->pause = 0;
pcs->asym_pause = 0;
switch (pcs->interface) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_QSGMII:
vsc9959_pcs_link_state_sgmii(pcs, state);
break;
case PHY_INTERFACE_MODE_2500BASEX:
vsc9959_pcs_link_state_2500basex(pcs, state);
break;
case PHY_INTERFACE_MODE_USXGMII:
vsc9959_pcs_link_state_usxgmii(pcs, state);
break;
default:
return;
}
vsc9959_pcs_link_state_resolve(pcs, state);
}
static int vsc9959_prevalidate_phy_mode(struct ocelot *ocelot, int port,
phy_interface_t phy_mode)
{
switch (phy_mode) {
case PHY_INTERFACE_MODE_GMII:
/* Only supported on internal to-CPU ports */
if (port != 4 && port != 5)
return -ENOTSUPP;
return 0;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_QSGMII:
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_2500BASEX:
/* Not supported on internal to-CPU ports */
if (port == 4 || port == 5)
return -ENOTSUPP;
return 0;
default:
return -ENOTSUPP;
}
}
static const struct ocelot_ops vsc9959_ops = {
.reset = vsc9959_reset,
};
static int vsc9959_mdio_bus_alloc(struct ocelot *ocelot)
{
struct felix *felix = ocelot_to_felix(ocelot);
struct enetc_mdio_priv *mdio_priv;
struct device *dev = ocelot->dev;
resource_size_t imdio_base;
void __iomem *imdio_regs;
struct resource *res;
struct enetc_hw *hw;
struct mii_bus *bus;
int port;
int rc;
felix->pcs = devm_kcalloc(dev, felix->info->num_ports,
sizeof(struct phy_device *),
GFP_KERNEL);
if (!felix->pcs) {
dev_err(dev, "failed to allocate array for PCS PHYs\n");
return -ENOMEM;
}
imdio_base = pci_resource_start(felix->pdev,
felix->info->imdio_pci_bar);
res = felix->info->imdio_res;
res->flags = IORESOURCE_MEM;
res->start += imdio_base;
res->end += imdio_base;
imdio_regs = devm_ioremap_resource(dev, res);
if (IS_ERR(imdio_regs)) {
dev_err(dev, "failed to map internal MDIO registers\n");
return PTR_ERR(imdio_regs);
}
hw = enetc_hw_alloc(dev, imdio_regs);
if (IS_ERR(hw)) {
dev_err(dev, "failed to allocate ENETC HW structure\n");
return PTR_ERR(hw);
}
bus = devm_mdiobus_alloc_size(dev, sizeof(*mdio_priv));
if (!bus)
return -ENOMEM;
bus->name = "VSC9959 internal MDIO bus";
bus->read = enetc_mdio_read;
bus->write = enetc_mdio_write;
bus->parent = dev;
mdio_priv = bus->priv;
mdio_priv->hw = hw;
/* This gets added to imdio_regs, which already maps addresses
* starting with the proper offset.
*/
mdio_priv->mdio_base = 0;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-imdio", dev_name(dev));
/* Needed in order to initialize the bus mutex lock */
rc = mdiobus_register(bus);
if (rc < 0) {
dev_err(dev, "failed to register MDIO bus\n");
return rc;
}
felix->imdio = bus;
for (port = 0; port < felix->info->num_ports; port++) {
struct ocelot_port *ocelot_port = ocelot->ports[port];
struct phy_device *pcs;
bool is_c45 = false;
if (ocelot_port->phy_mode == PHY_INTERFACE_MODE_USXGMII)
is_c45 = true;
pcs = get_phy_device(felix->imdio, port, is_c45);
if (IS_ERR(pcs))
continue;
pcs->interface = ocelot_port->phy_mode;
felix->pcs[port] = pcs;
dev_info(dev, "Found PCS at internal MDIO address %d\n", port);
}
return 0;
}
static void vsc9959_mdio_bus_free(struct ocelot *ocelot)
{
struct felix *felix = ocelot_to_felix(ocelot);
int port;
for (port = 0; port < ocelot->num_phys_ports; port++) {
struct phy_device *pcs = felix->pcs[port];
if (!pcs)
continue;
put_device(&pcs->mdio.dev);
}
mdiobus_unregister(felix->imdio);
}
struct felix_info felix_info_vsc9959 = {
.target_io_res = vsc9959_target_io_res,
.port_io_res = vsc9959_port_io_res,
.imdio_res = &vsc9959_imdio_res,
.regfields = vsc9959_regfields,
.map = vsc9959_regmap,
.ops = &vsc9959_ops,
.stats_layout = vsc9959_stats_layout,
.num_stats = ARRAY_SIZE(vsc9959_stats_layout),
.shared_queue_sz = 128 * 1024,
.num_ports = 6,
.switch_pci_bar = 4,
.imdio_pci_bar = 0,
.mdio_bus_alloc = vsc9959_mdio_bus_alloc,
.mdio_bus_free = vsc9959_mdio_bus_free,
.pcs_init = vsc9959_pcs_init,
.pcs_an_restart = vsc9959_pcs_an_restart,
.pcs_link_state = vsc9959_pcs_link_state,
.prevalidate_phy_mode = vsc9959_prevalidate_phy_mode,
};