939678f81a
Some indexed registers do not have error bits. In these cases a value of zero should be used for error checking. Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
3976 lines
107 KiB
C
3976 lines
107 KiB
C
/*
|
|
* QLogic qlge NIC HBA Driver
|
|
* Copyright (c) 2003-2008 QLogic Corporation
|
|
* See LICENSE.qlge for copyright and licensing details.
|
|
* Author: Linux qlge network device driver by
|
|
* Ron Mercer <ron.mercer@qlogic.com>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <net/ipv6.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <net/ip6_checksum.h>
|
|
|
|
#include "qlge.h"
|
|
|
|
char qlge_driver_name[] = DRV_NAME;
|
|
const char qlge_driver_version[] = DRV_VERSION;
|
|
|
|
MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
|
|
MODULE_DESCRIPTION(DRV_STRING " ");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
static const u32 default_msg =
|
|
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
|
|
/* NETIF_MSG_TIMER | */
|
|
NETIF_MSG_IFDOWN |
|
|
NETIF_MSG_IFUP |
|
|
NETIF_MSG_RX_ERR |
|
|
NETIF_MSG_TX_ERR |
|
|
NETIF_MSG_TX_QUEUED |
|
|
NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
|
|
/* NETIF_MSG_PKTDATA | */
|
|
NETIF_MSG_HW | NETIF_MSG_WOL | 0;
|
|
|
|
static int debug = 0x00007fff; /* defaults above */
|
|
module_param(debug, int, 0);
|
|
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
|
|
|
|
#define MSIX_IRQ 0
|
|
#define MSI_IRQ 1
|
|
#define LEG_IRQ 2
|
|
static int irq_type = MSIX_IRQ;
|
|
module_param(irq_type, int, MSIX_IRQ);
|
|
MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
|
|
|
|
static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
|
|
/* required last entry */
|
|
{0,}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
|
|
|
|
/* This hardware semaphore causes exclusive access to
|
|
* resources shared between the NIC driver, MPI firmware,
|
|
* FCOE firmware and the FC driver.
|
|
*/
|
|
static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
|
|
{
|
|
u32 sem_bits = 0;
|
|
|
|
switch (sem_mask) {
|
|
case SEM_XGMAC0_MASK:
|
|
sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
|
|
break;
|
|
case SEM_XGMAC1_MASK:
|
|
sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
|
|
break;
|
|
case SEM_ICB_MASK:
|
|
sem_bits = SEM_SET << SEM_ICB_SHIFT;
|
|
break;
|
|
case SEM_MAC_ADDR_MASK:
|
|
sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
|
|
break;
|
|
case SEM_FLASH_MASK:
|
|
sem_bits = SEM_SET << SEM_FLASH_SHIFT;
|
|
break;
|
|
case SEM_PROBE_MASK:
|
|
sem_bits = SEM_SET << SEM_PROBE_SHIFT;
|
|
break;
|
|
case SEM_RT_IDX_MASK:
|
|
sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
|
|
break;
|
|
case SEM_PROC_REG_MASK:
|
|
sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
|
|
break;
|
|
default:
|
|
QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ql_write32(qdev, SEM, sem_bits | sem_mask);
|
|
return !(ql_read32(qdev, SEM) & sem_bits);
|
|
}
|
|
|
|
int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
|
|
{
|
|
unsigned int seconds = 3;
|
|
do {
|
|
if (!ql_sem_trylock(qdev, sem_mask))
|
|
return 0;
|
|
ssleep(1);
|
|
} while (--seconds);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
|
|
{
|
|
ql_write32(qdev, SEM, sem_mask);
|
|
ql_read32(qdev, SEM); /* flush */
|
|
}
|
|
|
|
/* This function waits for a specific bit to come ready
|
|
* in a given register. It is used mostly by the initialize
|
|
* process, but is also used in kernel thread API such as
|
|
* netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
|
|
*/
|
|
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
|
|
{
|
|
u32 temp;
|
|
int count = UDELAY_COUNT;
|
|
|
|
while (count) {
|
|
temp = ql_read32(qdev, reg);
|
|
|
|
/* check for errors */
|
|
if (temp & err_bit) {
|
|
QPRINTK(qdev, PROBE, ALERT,
|
|
"register 0x%.08x access error, value = 0x%.08x!.\n",
|
|
reg, temp);
|
|
return -EIO;
|
|
} else if (temp & bit)
|
|
return 0;
|
|
udelay(UDELAY_DELAY);
|
|
count--;
|
|
}
|
|
QPRINTK(qdev, PROBE, ALERT,
|
|
"Timed out waiting for reg %x to come ready.\n", reg);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* The CFG register is used to download TX and RX control blocks
|
|
* to the chip. This function waits for an operation to complete.
|
|
*/
|
|
static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
|
|
{
|
|
int count = UDELAY_COUNT;
|
|
u32 temp;
|
|
|
|
while (count) {
|
|
temp = ql_read32(qdev, CFG);
|
|
if (temp & CFG_LE)
|
|
return -EIO;
|
|
if (!(temp & bit))
|
|
return 0;
|
|
udelay(UDELAY_DELAY);
|
|
count--;
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
|
|
/* Used to issue init control blocks to hw. Maps control block,
|
|
* sets address, triggers download, waits for completion.
|
|
*/
|
|
int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
|
|
u16 q_id)
|
|
{
|
|
u64 map;
|
|
int status = 0;
|
|
int direction;
|
|
u32 mask;
|
|
u32 value;
|
|
|
|
direction =
|
|
(bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
|
|
PCI_DMA_FROMDEVICE;
|
|
|
|
map = pci_map_single(qdev->pdev, ptr, size, direction);
|
|
if (pci_dma_mapping_error(qdev->pdev, map)) {
|
|
QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
status = ql_wait_cfg(qdev, bit);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Timed out waiting for CFG to come ready.\n");
|
|
goto exit;
|
|
}
|
|
|
|
status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, ICB_L, (u32) map);
|
|
ql_write32(qdev, ICB_H, (u32) (map >> 32));
|
|
ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
|
|
|
|
mask = CFG_Q_MASK | (bit << 16);
|
|
value = bit | (q_id << CFG_Q_SHIFT);
|
|
ql_write32(qdev, CFG, (mask | value));
|
|
|
|
/*
|
|
* Wait for the bit to clear after signaling hw.
|
|
*/
|
|
status = ql_wait_cfg(qdev, bit);
|
|
exit:
|
|
pci_unmap_single(qdev->pdev, map, size, direction);
|
|
return status;
|
|
}
|
|
|
|
/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
|
|
int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
|
|
u32 *value)
|
|
{
|
|
u32 offset = 0;
|
|
int status;
|
|
|
|
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
|
|
if (status)
|
|
return status;
|
|
switch (type) {
|
|
case MAC_ADDR_TYPE_MULTI_MAC:
|
|
case MAC_ADDR_TYPE_CAM_MAC:
|
|
{
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
|
|
(index << MAC_ADDR_IDX_SHIFT) | /* index */
|
|
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
|
|
if (status)
|
|
goto exit;
|
|
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
|
|
(index << MAC_ADDR_IDX_SHIFT) | /* index */
|
|
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
|
|
if (status)
|
|
goto exit;
|
|
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
|
|
if (type == MAC_ADDR_TYPE_CAM_MAC) {
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
|
|
(index << MAC_ADDR_IDX_SHIFT) | /* index */
|
|
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
|
|
status =
|
|
ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
|
|
MAC_ADDR_MR, 0);
|
|
if (status)
|
|
goto exit;
|
|
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
|
|
}
|
|
break;
|
|
}
|
|
case MAC_ADDR_TYPE_VLAN:
|
|
case MAC_ADDR_TYPE_MULTI_FLTR:
|
|
default:
|
|
QPRINTK(qdev, IFUP, CRIT,
|
|
"Address type %d not yet supported.\n", type);
|
|
status = -EPERM;
|
|
}
|
|
exit:
|
|
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
|
|
return status;
|
|
}
|
|
|
|
/* Set up a MAC, multicast or VLAN address for the
|
|
* inbound frame matching.
|
|
*/
|
|
static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
|
|
u16 index)
|
|
{
|
|
u32 offset = 0;
|
|
int status = 0;
|
|
|
|
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
|
|
if (status)
|
|
return status;
|
|
switch (type) {
|
|
case MAC_ADDR_TYPE_MULTI_MAC:
|
|
case MAC_ADDR_TYPE_CAM_MAC:
|
|
{
|
|
u32 cam_output;
|
|
u32 upper = (addr[0] << 8) | addr[1];
|
|
u32 lower =
|
|
(addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
|
|
(addr[5]);
|
|
|
|
QPRINTK(qdev, IFUP, INFO,
|
|
"Adding %s address %pM"
|
|
" at index %d in the CAM.\n",
|
|
((type ==
|
|
MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
|
|
"UNICAST"), addr, index);
|
|
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
|
|
(index << MAC_ADDR_IDX_SHIFT) | /* index */
|
|
type); /* type */
|
|
ql_write32(qdev, MAC_ADDR_DATA, lower);
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
|
|
(index << MAC_ADDR_IDX_SHIFT) | /* index */
|
|
type); /* type */
|
|
ql_write32(qdev, MAC_ADDR_DATA, upper);
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
|
|
(index << MAC_ADDR_IDX_SHIFT) | /* index */
|
|
type); /* type */
|
|
/* This field should also include the queue id
|
|
and possibly the function id. Right now we hardcode
|
|
the route field to NIC core.
|
|
*/
|
|
if (type == MAC_ADDR_TYPE_CAM_MAC) {
|
|
cam_output = (CAM_OUT_ROUTE_NIC |
|
|
(qdev->
|
|
func << CAM_OUT_FUNC_SHIFT) |
|
|
(qdev->
|
|
rss_ring_first_cq_id <<
|
|
CAM_OUT_CQ_ID_SHIFT));
|
|
if (qdev->vlgrp)
|
|
cam_output |= CAM_OUT_RV;
|
|
/* route to NIC core */
|
|
ql_write32(qdev, MAC_ADDR_DATA, cam_output);
|
|
}
|
|
break;
|
|
}
|
|
case MAC_ADDR_TYPE_VLAN:
|
|
{
|
|
u32 enable_bit = *((u32 *) &addr[0]);
|
|
/* For VLAN, the addr actually holds a bit that
|
|
* either enables or disables the vlan id we are
|
|
* addressing. It's either MAC_ADDR_E on or off.
|
|
* That's bit-27 we're talking about.
|
|
*/
|
|
QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
|
|
(enable_bit ? "Adding" : "Removing"),
|
|
index, (enable_bit ? "to" : "from"));
|
|
|
|
status =
|
|
ql_wait_reg_rdy(qdev,
|
|
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
|
|
(index << MAC_ADDR_IDX_SHIFT) | /* index */
|
|
type | /* type */
|
|
enable_bit); /* enable/disable */
|
|
break;
|
|
}
|
|
case MAC_ADDR_TYPE_MULTI_FLTR:
|
|
default:
|
|
QPRINTK(qdev, IFUP, CRIT,
|
|
"Address type %d not yet supported.\n", type);
|
|
status = -EPERM;
|
|
}
|
|
exit:
|
|
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
|
|
return status;
|
|
}
|
|
|
|
/* Get a specific frame routing value from the CAM.
|
|
* Used for debug and reg dump.
|
|
*/
|
|
int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
|
|
{
|
|
int status = 0;
|
|
|
|
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
|
|
if (status)
|
|
goto exit;
|
|
|
|
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
|
|
ql_write32(qdev, RT_IDX,
|
|
RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
|
|
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
|
|
if (status)
|
|
goto exit;
|
|
*value = ql_read32(qdev, RT_DATA);
|
|
exit:
|
|
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
|
|
return status;
|
|
}
|
|
|
|
/* The NIC function for this chip has 16 routing indexes. Each one can be used
|
|
* to route different frame types to various inbound queues. We send broadcast/
|
|
* multicast/error frames to the default queue for slow handling,
|
|
* and CAM hit/RSS frames to the fast handling queues.
|
|
*/
|
|
static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
|
|
int enable)
|
|
{
|
|
int status;
|
|
u32 value = 0;
|
|
|
|
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
|
|
if (status)
|
|
return status;
|
|
|
|
QPRINTK(qdev, IFUP, DEBUG,
|
|
"%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
|
|
(enable ? "Adding" : "Removing"),
|
|
((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
|
|
((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
|
|
((index ==
|
|
RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
|
|
((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
|
|
((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
|
|
((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
|
|
((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
|
|
((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
|
|
((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
|
|
((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
|
|
((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
|
|
((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
|
|
((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
|
|
((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
|
|
((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
|
|
((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
|
|
(enable ? "to" : "from"));
|
|
|
|
switch (mask) {
|
|
case RT_IDX_CAM_HIT:
|
|
{
|
|
value = RT_IDX_DST_CAM_Q | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
case RT_IDX_VALID: /* Promiscuous Mode frames. */
|
|
{
|
|
value = RT_IDX_DST_DFLT_Q | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
|
|
{
|
|
value = RT_IDX_DST_DFLT_Q | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
|
|
{
|
|
value = RT_IDX_DST_DFLT_Q | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
case RT_IDX_MCAST: /* Pass up All Multicast frames. */
|
|
{
|
|
value = RT_IDX_DST_CAM_Q | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
|
|
{
|
|
value = RT_IDX_DST_CAM_Q | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
|
|
{
|
|
value = RT_IDX_DST_RSS | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
case 0: /* Clear the E-bit on an entry. */
|
|
{
|
|
value = RT_IDX_DST_DFLT_Q | /* dest */
|
|
RT_IDX_TYPE_NICQ | /* type */
|
|
(index << RT_IDX_IDX_SHIFT);/* index */
|
|
break;
|
|
}
|
|
default:
|
|
QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
|
|
mask);
|
|
status = -EPERM;
|
|
goto exit;
|
|
}
|
|
|
|
if (value) {
|
|
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
|
|
if (status)
|
|
goto exit;
|
|
value |= (enable ? RT_IDX_E : 0);
|
|
ql_write32(qdev, RT_IDX, value);
|
|
ql_write32(qdev, RT_DATA, enable ? mask : 0);
|
|
}
|
|
exit:
|
|
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
|
|
return status;
|
|
}
|
|
|
|
static void ql_enable_interrupts(struct ql_adapter *qdev)
|
|
{
|
|
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
|
|
}
|
|
|
|
static void ql_disable_interrupts(struct ql_adapter *qdev)
|
|
{
|
|
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
|
|
}
|
|
|
|
/* If we're running with multiple MSI-X vectors then we enable on the fly.
|
|
* Otherwise, we may have multiple outstanding workers and don't want to
|
|
* enable until the last one finishes. In this case, the irq_cnt gets
|
|
* incremented everytime we queue a worker and decremented everytime
|
|
* a worker finishes. Once it hits zero we enable the interrupt.
|
|
*/
|
|
u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
|
|
{
|
|
u32 var = 0;
|
|
unsigned long hw_flags = 0;
|
|
struct intr_context *ctx = qdev->intr_context + intr;
|
|
|
|
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
|
|
/* Always enable if we're MSIX multi interrupts and
|
|
* it's not the default (zeroeth) interrupt.
|
|
*/
|
|
ql_write32(qdev, INTR_EN,
|
|
ctx->intr_en_mask);
|
|
var = ql_read32(qdev, STS);
|
|
return var;
|
|
}
|
|
|
|
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
|
|
if (atomic_dec_and_test(&ctx->irq_cnt)) {
|
|
ql_write32(qdev, INTR_EN,
|
|
ctx->intr_en_mask);
|
|
var = ql_read32(qdev, STS);
|
|
}
|
|
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
|
|
return var;
|
|
}
|
|
|
|
static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
|
|
{
|
|
u32 var = 0;
|
|
unsigned long hw_flags;
|
|
struct intr_context *ctx;
|
|
|
|
/* HW disables for us if we're MSIX multi interrupts and
|
|
* it's not the default (zeroeth) interrupt.
|
|
*/
|
|
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
|
|
return 0;
|
|
|
|
ctx = qdev->intr_context + intr;
|
|
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
|
|
if (!atomic_read(&ctx->irq_cnt)) {
|
|
ql_write32(qdev, INTR_EN,
|
|
ctx->intr_dis_mask);
|
|
var = ql_read32(qdev, STS);
|
|
}
|
|
atomic_inc(&ctx->irq_cnt);
|
|
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
|
|
return var;
|
|
}
|
|
|
|
static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
for (i = 0; i < qdev->intr_count; i++) {
|
|
/* The enable call does a atomic_dec_and_test
|
|
* and enables only if the result is zero.
|
|
* So we precharge it here.
|
|
*/
|
|
if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
|
|
i == 0))
|
|
atomic_set(&qdev->intr_context[i].irq_cnt, 1);
|
|
ql_enable_completion_interrupt(qdev, i);
|
|
}
|
|
|
|
}
|
|
|
|
static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
|
|
{
|
|
int status = 0;
|
|
/* wait for reg to come ready */
|
|
status = ql_wait_reg_rdy(qdev,
|
|
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
|
|
if (status)
|
|
goto exit;
|
|
/* set up for reg read */
|
|
ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
|
|
/* wait for reg to come ready */
|
|
status = ql_wait_reg_rdy(qdev,
|
|
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
|
|
if (status)
|
|
goto exit;
|
|
/* get the data */
|
|
*data = ql_read32(qdev, FLASH_DATA);
|
|
exit:
|
|
return status;
|
|
}
|
|
|
|
static int ql_get_flash_params(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
int status;
|
|
u32 *p = (u32 *)&qdev->flash;
|
|
|
|
if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
|
|
return -ETIMEDOUT;
|
|
|
|
for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
|
|
status = ql_read_flash_word(qdev, i, p);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
|
|
goto exit;
|
|
}
|
|
|
|
}
|
|
exit:
|
|
ql_sem_unlock(qdev, SEM_FLASH_MASK);
|
|
return status;
|
|
}
|
|
|
|
/* xgmac register are located behind the xgmac_addr and xgmac_data
|
|
* register pair. Each read/write requires us to wait for the ready
|
|
* bit before reading/writing the data.
|
|
*/
|
|
static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
|
|
{
|
|
int status;
|
|
/* wait for reg to come ready */
|
|
status = ql_wait_reg_rdy(qdev,
|
|
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
|
|
if (status)
|
|
return status;
|
|
/* write the data to the data reg */
|
|
ql_write32(qdev, XGMAC_DATA, data);
|
|
/* trigger the write */
|
|
ql_write32(qdev, XGMAC_ADDR, reg);
|
|
return status;
|
|
}
|
|
|
|
/* xgmac register are located behind the xgmac_addr and xgmac_data
|
|
* register pair. Each read/write requires us to wait for the ready
|
|
* bit before reading/writing the data.
|
|
*/
|
|
int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
|
|
{
|
|
int status = 0;
|
|
/* wait for reg to come ready */
|
|
status = ql_wait_reg_rdy(qdev,
|
|
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
|
|
if (status)
|
|
goto exit;
|
|
/* set up for reg read */
|
|
ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
|
|
/* wait for reg to come ready */
|
|
status = ql_wait_reg_rdy(qdev,
|
|
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
|
|
if (status)
|
|
goto exit;
|
|
/* get the data */
|
|
*data = ql_read32(qdev, XGMAC_DATA);
|
|
exit:
|
|
return status;
|
|
}
|
|
|
|
/* This is used for reading the 64-bit statistics regs. */
|
|
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
|
|
{
|
|
int status = 0;
|
|
u32 hi = 0;
|
|
u32 lo = 0;
|
|
|
|
status = ql_read_xgmac_reg(qdev, reg, &lo);
|
|
if (status)
|
|
goto exit;
|
|
|
|
status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
|
|
if (status)
|
|
goto exit;
|
|
|
|
*data = (u64) lo | ((u64) hi << 32);
|
|
|
|
exit:
|
|
return status;
|
|
}
|
|
|
|
/* Take the MAC Core out of reset.
|
|
* Enable statistics counting.
|
|
* Take the transmitter/receiver out of reset.
|
|
* This functionality may be done in the MPI firmware at a
|
|
* later date.
|
|
*/
|
|
static int ql_port_initialize(struct ql_adapter *qdev)
|
|
{
|
|
int status = 0;
|
|
u32 data;
|
|
|
|
if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
|
|
/* Another function has the semaphore, so
|
|
* wait for the port init bit to come ready.
|
|
*/
|
|
QPRINTK(qdev, LINK, INFO,
|
|
"Another function has the semaphore, so wait for the port init bit to come ready.\n");
|
|
status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
|
|
if (status) {
|
|
QPRINTK(qdev, LINK, CRIT,
|
|
"Port initialize timed out.\n");
|
|
}
|
|
return status;
|
|
}
|
|
|
|
QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
|
|
/* Set the core reset. */
|
|
status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
|
|
if (status)
|
|
goto end;
|
|
data |= GLOBAL_CFG_RESET;
|
|
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
|
|
if (status)
|
|
goto end;
|
|
|
|
/* Clear the core reset and turn on jumbo for receiver. */
|
|
data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
|
|
data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
|
|
data |= GLOBAL_CFG_TX_STAT_EN;
|
|
data |= GLOBAL_CFG_RX_STAT_EN;
|
|
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
|
|
if (status)
|
|
goto end;
|
|
|
|
/* Enable transmitter, and clear it's reset. */
|
|
status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
|
|
if (status)
|
|
goto end;
|
|
data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
|
|
data |= TX_CFG_EN; /* Enable the transmitter. */
|
|
status = ql_write_xgmac_reg(qdev, TX_CFG, data);
|
|
if (status)
|
|
goto end;
|
|
|
|
/* Enable receiver and clear it's reset. */
|
|
status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
|
|
if (status)
|
|
goto end;
|
|
data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
|
|
data |= RX_CFG_EN; /* Enable the receiver. */
|
|
status = ql_write_xgmac_reg(qdev, RX_CFG, data);
|
|
if (status)
|
|
goto end;
|
|
|
|
/* Turn on jumbo. */
|
|
status =
|
|
ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
|
|
if (status)
|
|
goto end;
|
|
status =
|
|
ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
|
|
if (status)
|
|
goto end;
|
|
|
|
/* Signal to the world that the port is enabled. */
|
|
ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
|
|
end:
|
|
ql_sem_unlock(qdev, qdev->xg_sem_mask);
|
|
return status;
|
|
}
|
|
|
|
/* Get the next large buffer. */
|
|
static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
|
|
{
|
|
struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
|
|
rx_ring->lbq_curr_idx++;
|
|
if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
|
|
rx_ring->lbq_curr_idx = 0;
|
|
rx_ring->lbq_free_cnt++;
|
|
return lbq_desc;
|
|
}
|
|
|
|
/* Get the next small buffer. */
|
|
static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
|
|
{
|
|
struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
|
|
rx_ring->sbq_curr_idx++;
|
|
if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
|
|
rx_ring->sbq_curr_idx = 0;
|
|
rx_ring->sbq_free_cnt++;
|
|
return sbq_desc;
|
|
}
|
|
|
|
/* Update an rx ring index. */
|
|
static void ql_update_cq(struct rx_ring *rx_ring)
|
|
{
|
|
rx_ring->cnsmr_idx++;
|
|
rx_ring->curr_entry++;
|
|
if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
|
|
rx_ring->cnsmr_idx = 0;
|
|
rx_ring->curr_entry = rx_ring->cq_base;
|
|
}
|
|
}
|
|
|
|
static void ql_write_cq_idx(struct rx_ring *rx_ring)
|
|
{
|
|
ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
|
|
}
|
|
|
|
/* Process (refill) a large buffer queue. */
|
|
static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
|
|
{
|
|
int clean_idx = rx_ring->lbq_clean_idx;
|
|
struct bq_desc *lbq_desc;
|
|
struct bq_element *bq;
|
|
u64 map;
|
|
int i;
|
|
|
|
while (rx_ring->lbq_free_cnt > 16) {
|
|
for (i = 0; i < 16; i++) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"lbq: try cleaning clean_idx = %d.\n",
|
|
clean_idx);
|
|
lbq_desc = &rx_ring->lbq[clean_idx];
|
|
bq = lbq_desc->bq;
|
|
if (lbq_desc->p.lbq_page == NULL) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"lbq: getting new page for index %d.\n",
|
|
lbq_desc->index);
|
|
lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
|
|
if (lbq_desc->p.lbq_page == NULL) {
|
|
QPRINTK(qdev, RX_STATUS, ERR,
|
|
"Couldn't get a page.\n");
|
|
return;
|
|
}
|
|
map = pci_map_page(qdev->pdev,
|
|
lbq_desc->p.lbq_page,
|
|
0, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(qdev->pdev, map)) {
|
|
QPRINTK(qdev, RX_STATUS, ERR,
|
|
"PCI mapping failed.\n");
|
|
return;
|
|
}
|
|
pci_unmap_addr_set(lbq_desc, mapaddr, map);
|
|
pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
|
|
bq->addr_lo = /*lbq_desc->addr_lo = */
|
|
cpu_to_le32(map);
|
|
bq->addr_hi = /*lbq_desc->addr_hi = */
|
|
cpu_to_le32(map >> 32);
|
|
}
|
|
clean_idx++;
|
|
if (clean_idx == rx_ring->lbq_len)
|
|
clean_idx = 0;
|
|
}
|
|
|
|
rx_ring->lbq_clean_idx = clean_idx;
|
|
rx_ring->lbq_prod_idx += 16;
|
|
if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
|
|
rx_ring->lbq_prod_idx = 0;
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"lbq: updating prod idx = %d.\n",
|
|
rx_ring->lbq_prod_idx);
|
|
ql_write_db_reg(rx_ring->lbq_prod_idx,
|
|
rx_ring->lbq_prod_idx_db_reg);
|
|
rx_ring->lbq_free_cnt -= 16;
|
|
}
|
|
}
|
|
|
|
/* Process (refill) a small buffer queue. */
|
|
static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
|
|
{
|
|
int clean_idx = rx_ring->sbq_clean_idx;
|
|
struct bq_desc *sbq_desc;
|
|
struct bq_element *bq;
|
|
u64 map;
|
|
int i;
|
|
|
|
while (rx_ring->sbq_free_cnt > 16) {
|
|
for (i = 0; i < 16; i++) {
|
|
sbq_desc = &rx_ring->sbq[clean_idx];
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"sbq: try cleaning clean_idx = %d.\n",
|
|
clean_idx);
|
|
bq = sbq_desc->bq;
|
|
if (sbq_desc->p.skb == NULL) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"sbq: getting new skb for index %d.\n",
|
|
sbq_desc->index);
|
|
sbq_desc->p.skb =
|
|
netdev_alloc_skb(qdev->ndev,
|
|
rx_ring->sbq_buf_size);
|
|
if (sbq_desc->p.skb == NULL) {
|
|
QPRINTK(qdev, PROBE, ERR,
|
|
"Couldn't get an skb.\n");
|
|
rx_ring->sbq_clean_idx = clean_idx;
|
|
return;
|
|
}
|
|
skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
|
|
map = pci_map_single(qdev->pdev,
|
|
sbq_desc->p.skb->data,
|
|
rx_ring->sbq_buf_size /
|
|
2, PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(qdev->pdev, map)) {
|
|
QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
|
|
rx_ring->sbq_clean_idx = clean_idx;
|
|
return;
|
|
}
|
|
pci_unmap_addr_set(sbq_desc, mapaddr, map);
|
|
pci_unmap_len_set(sbq_desc, maplen,
|
|
rx_ring->sbq_buf_size / 2);
|
|
bq->addr_lo = cpu_to_le32(map);
|
|
bq->addr_hi = cpu_to_le32(map >> 32);
|
|
}
|
|
|
|
clean_idx++;
|
|
if (clean_idx == rx_ring->sbq_len)
|
|
clean_idx = 0;
|
|
}
|
|
rx_ring->sbq_clean_idx = clean_idx;
|
|
rx_ring->sbq_prod_idx += 16;
|
|
if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
|
|
rx_ring->sbq_prod_idx = 0;
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"sbq: updating prod idx = %d.\n",
|
|
rx_ring->sbq_prod_idx);
|
|
ql_write_db_reg(rx_ring->sbq_prod_idx,
|
|
rx_ring->sbq_prod_idx_db_reg);
|
|
|
|
rx_ring->sbq_free_cnt -= 16;
|
|
}
|
|
}
|
|
|
|
static void ql_update_buffer_queues(struct ql_adapter *qdev,
|
|
struct rx_ring *rx_ring)
|
|
{
|
|
ql_update_sbq(qdev, rx_ring);
|
|
ql_update_lbq(qdev, rx_ring);
|
|
}
|
|
|
|
/* Unmaps tx buffers. Can be called from send() if a pci mapping
|
|
* fails at some stage, or from the interrupt when a tx completes.
|
|
*/
|
|
static void ql_unmap_send(struct ql_adapter *qdev,
|
|
struct tx_ring_desc *tx_ring_desc, int mapped)
|
|
{
|
|
int i;
|
|
for (i = 0; i < mapped; i++) {
|
|
if (i == 0 || (i == 7 && mapped > 7)) {
|
|
/*
|
|
* Unmap the skb->data area, or the
|
|
* external sglist (AKA the Outbound
|
|
* Address List (OAL)).
|
|
* If its the zeroeth element, then it's
|
|
* the skb->data area. If it's the 7th
|
|
* element and there is more than 6 frags,
|
|
* then its an OAL.
|
|
*/
|
|
if (i == 7) {
|
|
QPRINTK(qdev, TX_DONE, DEBUG,
|
|
"unmapping OAL area.\n");
|
|
}
|
|
pci_unmap_single(qdev->pdev,
|
|
pci_unmap_addr(&tx_ring_desc->map[i],
|
|
mapaddr),
|
|
pci_unmap_len(&tx_ring_desc->map[i],
|
|
maplen),
|
|
PCI_DMA_TODEVICE);
|
|
} else {
|
|
QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
|
|
i);
|
|
pci_unmap_page(qdev->pdev,
|
|
pci_unmap_addr(&tx_ring_desc->map[i],
|
|
mapaddr),
|
|
pci_unmap_len(&tx_ring_desc->map[i],
|
|
maplen), PCI_DMA_TODEVICE);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Map the buffers for this transmit. This will return
|
|
* NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
|
|
*/
|
|
static int ql_map_send(struct ql_adapter *qdev,
|
|
struct ob_mac_iocb_req *mac_iocb_ptr,
|
|
struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
|
|
{
|
|
int len = skb_headlen(skb);
|
|
dma_addr_t map;
|
|
int frag_idx, err, map_idx = 0;
|
|
struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
|
|
int frag_cnt = skb_shinfo(skb)->nr_frags;
|
|
|
|
if (frag_cnt) {
|
|
QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
|
|
}
|
|
/*
|
|
* Map the skb buffer first.
|
|
*/
|
|
map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
|
|
|
|
err = pci_dma_mapping_error(qdev->pdev, map);
|
|
if (err) {
|
|
QPRINTK(qdev, TX_QUEUED, ERR,
|
|
"PCI mapping failed with error: %d\n", err);
|
|
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
tbd->len = cpu_to_le32(len);
|
|
tbd->addr = cpu_to_le64(map);
|
|
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
|
|
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
|
|
map_idx++;
|
|
|
|
/*
|
|
* This loop fills the remainder of the 8 address descriptors
|
|
* in the IOCB. If there are more than 7 fragments, then the
|
|
* eighth address desc will point to an external list (OAL).
|
|
* When this happens, the remainder of the frags will be stored
|
|
* in this list.
|
|
*/
|
|
for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
|
|
tbd++;
|
|
if (frag_idx == 6 && frag_cnt > 7) {
|
|
/* Let's tack on an sglist.
|
|
* Our control block will now
|
|
* look like this:
|
|
* iocb->seg[0] = skb->data
|
|
* iocb->seg[1] = frag[0]
|
|
* iocb->seg[2] = frag[1]
|
|
* iocb->seg[3] = frag[2]
|
|
* iocb->seg[4] = frag[3]
|
|
* iocb->seg[5] = frag[4]
|
|
* iocb->seg[6] = frag[5]
|
|
* iocb->seg[7] = ptr to OAL (external sglist)
|
|
* oal->seg[0] = frag[6]
|
|
* oal->seg[1] = frag[7]
|
|
* oal->seg[2] = frag[8]
|
|
* oal->seg[3] = frag[9]
|
|
* oal->seg[4] = frag[10]
|
|
* etc...
|
|
*/
|
|
/* Tack on the OAL in the eighth segment of IOCB. */
|
|
map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
|
|
sizeof(struct oal),
|
|
PCI_DMA_TODEVICE);
|
|
err = pci_dma_mapping_error(qdev->pdev, map);
|
|
if (err) {
|
|
QPRINTK(qdev, TX_QUEUED, ERR,
|
|
"PCI mapping outbound address list with error: %d\n",
|
|
err);
|
|
goto map_error;
|
|
}
|
|
|
|
tbd->addr = cpu_to_le64(map);
|
|
/*
|
|
* The length is the number of fragments
|
|
* that remain to be mapped times the length
|
|
* of our sglist (OAL).
|
|
*/
|
|
tbd->len =
|
|
cpu_to_le32((sizeof(struct tx_buf_desc) *
|
|
(frag_cnt - frag_idx)) | TX_DESC_C);
|
|
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
|
|
map);
|
|
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
|
|
sizeof(struct oal));
|
|
tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
|
|
map_idx++;
|
|
}
|
|
|
|
map =
|
|
pci_map_page(qdev->pdev, frag->page,
|
|
frag->page_offset, frag->size,
|
|
PCI_DMA_TODEVICE);
|
|
|
|
err = pci_dma_mapping_error(qdev->pdev, map);
|
|
if (err) {
|
|
QPRINTK(qdev, TX_QUEUED, ERR,
|
|
"PCI mapping frags failed with error: %d.\n",
|
|
err);
|
|
goto map_error;
|
|
}
|
|
|
|
tbd->addr = cpu_to_le64(map);
|
|
tbd->len = cpu_to_le32(frag->size);
|
|
pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
|
|
pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
|
|
frag->size);
|
|
|
|
}
|
|
/* Save the number of segments we've mapped. */
|
|
tx_ring_desc->map_cnt = map_idx;
|
|
/* Terminate the last segment. */
|
|
tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
|
|
return NETDEV_TX_OK;
|
|
|
|
map_error:
|
|
/*
|
|
* If the first frag mapping failed, then i will be zero.
|
|
* This causes the unmap of the skb->data area. Otherwise
|
|
* we pass in the number of frags that mapped successfully
|
|
* so they can be umapped.
|
|
*/
|
|
ql_unmap_send(qdev, tx_ring_desc, map_idx);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
static void ql_realign_skb(struct sk_buff *skb, int len)
|
|
{
|
|
void *temp_addr = skb->data;
|
|
|
|
/* Undo the skb_reserve(skb,32) we did before
|
|
* giving to hardware, and realign data on
|
|
* a 2-byte boundary.
|
|
*/
|
|
skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
|
|
skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
|
|
skb_copy_to_linear_data(skb, temp_addr,
|
|
(unsigned int)len);
|
|
}
|
|
|
|
/*
|
|
* This function builds an skb for the given inbound
|
|
* completion. It will be rewritten for readability in the near
|
|
* future, but for not it works well.
|
|
*/
|
|
static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
|
|
struct rx_ring *rx_ring,
|
|
struct ib_mac_iocb_rsp *ib_mac_rsp)
|
|
{
|
|
struct bq_desc *lbq_desc;
|
|
struct bq_desc *sbq_desc;
|
|
struct sk_buff *skb = NULL;
|
|
u32 length = le32_to_cpu(ib_mac_rsp->data_len);
|
|
u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
|
|
|
|
/*
|
|
* Handle the header buffer if present.
|
|
*/
|
|
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
|
|
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
|
|
/*
|
|
* Headers fit nicely into a small buffer.
|
|
*/
|
|
sbq_desc = ql_get_curr_sbuf(rx_ring);
|
|
pci_unmap_single(qdev->pdev,
|
|
pci_unmap_addr(sbq_desc, mapaddr),
|
|
pci_unmap_len(sbq_desc, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
skb = sbq_desc->p.skb;
|
|
ql_realign_skb(skb, hdr_len);
|
|
skb_put(skb, hdr_len);
|
|
sbq_desc->p.skb = NULL;
|
|
}
|
|
|
|
/*
|
|
* Handle the data buffer(s).
|
|
*/
|
|
if (unlikely(!length)) { /* Is there data too? */
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"No Data buffer in this packet.\n");
|
|
return skb;
|
|
}
|
|
|
|
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
|
|
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Headers in small, data of %d bytes in small, combine them.\n", length);
|
|
/*
|
|
* Data is less than small buffer size so it's
|
|
* stuffed in a small buffer.
|
|
* For this case we append the data
|
|
* from the "data" small buffer to the "header" small
|
|
* buffer.
|
|
*/
|
|
sbq_desc = ql_get_curr_sbuf(rx_ring);
|
|
pci_dma_sync_single_for_cpu(qdev->pdev,
|
|
pci_unmap_addr
|
|
(sbq_desc, mapaddr),
|
|
pci_unmap_len
|
|
(sbq_desc, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
memcpy(skb_put(skb, length),
|
|
sbq_desc->p.skb->data, length);
|
|
pci_dma_sync_single_for_device(qdev->pdev,
|
|
pci_unmap_addr
|
|
(sbq_desc,
|
|
mapaddr),
|
|
pci_unmap_len
|
|
(sbq_desc,
|
|
maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
} else {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"%d bytes in a single small buffer.\n", length);
|
|
sbq_desc = ql_get_curr_sbuf(rx_ring);
|
|
skb = sbq_desc->p.skb;
|
|
ql_realign_skb(skb, length);
|
|
skb_put(skb, length);
|
|
pci_unmap_single(qdev->pdev,
|
|
pci_unmap_addr(sbq_desc,
|
|
mapaddr),
|
|
pci_unmap_len(sbq_desc,
|
|
maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
sbq_desc->p.skb = NULL;
|
|
}
|
|
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
|
|
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Header in small, %d bytes in large. Chain large to small!\n", length);
|
|
/*
|
|
* The data is in a single large buffer. We
|
|
* chain it to the header buffer's skb and let
|
|
* it rip.
|
|
*/
|
|
lbq_desc = ql_get_curr_lbuf(rx_ring);
|
|
pci_unmap_page(qdev->pdev,
|
|
pci_unmap_addr(lbq_desc,
|
|
mapaddr),
|
|
pci_unmap_len(lbq_desc, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Chaining page to skb.\n");
|
|
skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
|
|
0, length);
|
|
skb->len += length;
|
|
skb->data_len += length;
|
|
skb->truesize += length;
|
|
lbq_desc->p.lbq_page = NULL;
|
|
} else {
|
|
/*
|
|
* The headers and data are in a single large buffer. We
|
|
* copy it to a new skb and let it go. This can happen with
|
|
* jumbo mtu on a non-TCP/UDP frame.
|
|
*/
|
|
lbq_desc = ql_get_curr_lbuf(rx_ring);
|
|
skb = netdev_alloc_skb(qdev->ndev, length);
|
|
if (skb == NULL) {
|
|
QPRINTK(qdev, PROBE, DEBUG,
|
|
"No skb available, drop the packet.\n");
|
|
return NULL;
|
|
}
|
|
pci_unmap_page(qdev->pdev,
|
|
pci_unmap_addr(lbq_desc,
|
|
mapaddr),
|
|
pci_unmap_len(lbq_desc, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
|
|
skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
|
|
0, length);
|
|
skb->len += length;
|
|
skb->data_len += length;
|
|
skb->truesize += length;
|
|
length -= length;
|
|
lbq_desc->p.lbq_page = NULL;
|
|
__pskb_pull_tail(skb,
|
|
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
|
|
VLAN_ETH_HLEN : ETH_HLEN);
|
|
}
|
|
} else {
|
|
/*
|
|
* The data is in a chain of large buffers
|
|
* pointed to by a small buffer. We loop
|
|
* thru and chain them to the our small header
|
|
* buffer's skb.
|
|
* frags: There are 18 max frags and our small
|
|
* buffer will hold 32 of them. The thing is,
|
|
* we'll use 3 max for our 9000 byte jumbo
|
|
* frames. If the MTU goes up we could
|
|
* eventually be in trouble.
|
|
*/
|
|
int size, offset, i = 0;
|
|
struct bq_element *bq, bq_array[8];
|
|
sbq_desc = ql_get_curr_sbuf(rx_ring);
|
|
pci_unmap_single(qdev->pdev,
|
|
pci_unmap_addr(sbq_desc, mapaddr),
|
|
pci_unmap_len(sbq_desc, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
|
|
/*
|
|
* This is an non TCP/UDP IP frame, so
|
|
* the headers aren't split into a small
|
|
* buffer. We have to use the small buffer
|
|
* that contains our sg list as our skb to
|
|
* send upstairs. Copy the sg list here to
|
|
* a local buffer and use it to find the
|
|
* pages to chain.
|
|
*/
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"%d bytes of headers & data in chain of large.\n", length);
|
|
skb = sbq_desc->p.skb;
|
|
bq = &bq_array[0];
|
|
memcpy(bq, skb->data, sizeof(bq_array));
|
|
sbq_desc->p.skb = NULL;
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
} else {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Headers in small, %d bytes of data in chain of large.\n", length);
|
|
bq = (struct bq_element *)sbq_desc->p.skb->data;
|
|
}
|
|
while (length > 0) {
|
|
lbq_desc = ql_get_curr_lbuf(rx_ring);
|
|
if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
|
|
QPRINTK(qdev, RX_STATUS, ERR,
|
|
"Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
|
|
lbq_desc->bq->addr_lo, bq->addr_lo);
|
|
return NULL;
|
|
}
|
|
pci_unmap_page(qdev->pdev,
|
|
pci_unmap_addr(lbq_desc,
|
|
mapaddr),
|
|
pci_unmap_len(lbq_desc,
|
|
maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
|
|
offset = 0;
|
|
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Adding page %d to skb for %d bytes.\n",
|
|
i, size);
|
|
skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
|
|
offset, size);
|
|
skb->len += size;
|
|
skb->data_len += size;
|
|
skb->truesize += size;
|
|
length -= size;
|
|
lbq_desc->p.lbq_page = NULL;
|
|
bq++;
|
|
i++;
|
|
}
|
|
__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
|
|
VLAN_ETH_HLEN : ETH_HLEN);
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
/* Process an inbound completion from an rx ring. */
|
|
static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
|
|
struct rx_ring *rx_ring,
|
|
struct ib_mac_iocb_rsp *ib_mac_rsp)
|
|
{
|
|
struct net_device *ndev = qdev->ndev;
|
|
struct sk_buff *skb = NULL;
|
|
|
|
QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
|
|
|
|
skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
|
|
if (unlikely(!skb)) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"No skb available, drop packet.\n");
|
|
return;
|
|
}
|
|
|
|
prefetch(skb->data);
|
|
skb->dev = ndev;
|
|
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
|
|
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
|
|
IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
|
|
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
|
|
IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
|
|
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
|
|
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
|
|
}
|
|
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
|
|
}
|
|
if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
|
|
QPRINTK(qdev, RX_STATUS, ERR,
|
|
"Bad checksum for this %s packet.\n",
|
|
((ib_mac_rsp->
|
|
flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
} else if (qdev->rx_csum &&
|
|
((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
|
|
((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
|
|
!(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
qdev->stats.rx_packets++;
|
|
qdev->stats.rx_bytes += skb->len;
|
|
skb->protocol = eth_type_trans(skb, ndev);
|
|
if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Passing a VLAN packet upstream.\n");
|
|
vlan_hwaccel_rx(skb, qdev->vlgrp,
|
|
le16_to_cpu(ib_mac_rsp->vlan_id));
|
|
} else {
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Passing a normal packet upstream.\n");
|
|
netif_rx(skb);
|
|
}
|
|
}
|
|
|
|
/* Process an outbound completion from an rx ring. */
|
|
static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
|
|
struct ob_mac_iocb_rsp *mac_rsp)
|
|
{
|
|
struct tx_ring *tx_ring;
|
|
struct tx_ring_desc *tx_ring_desc;
|
|
|
|
QL_DUMP_OB_MAC_RSP(mac_rsp);
|
|
tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
|
|
tx_ring_desc = &tx_ring->q[mac_rsp->tid];
|
|
ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
|
|
qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
|
|
qdev->stats.tx_packets++;
|
|
dev_kfree_skb(tx_ring_desc->skb);
|
|
tx_ring_desc->skb = NULL;
|
|
|
|
if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
|
|
OB_MAC_IOCB_RSP_S |
|
|
OB_MAC_IOCB_RSP_L |
|
|
OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
|
|
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
|
|
QPRINTK(qdev, TX_DONE, WARNING,
|
|
"Total descriptor length did not match transfer length.\n");
|
|
}
|
|
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
|
|
QPRINTK(qdev, TX_DONE, WARNING,
|
|
"Frame too short to be legal, not sent.\n");
|
|
}
|
|
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
|
|
QPRINTK(qdev, TX_DONE, WARNING,
|
|
"Frame too long, but sent anyway.\n");
|
|
}
|
|
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
|
|
QPRINTK(qdev, TX_DONE, WARNING,
|
|
"PCI backplane error. Frame not sent.\n");
|
|
}
|
|
}
|
|
atomic_inc(&tx_ring->tx_count);
|
|
}
|
|
|
|
/* Fire up a handler to reset the MPI processor. */
|
|
void ql_queue_fw_error(struct ql_adapter *qdev)
|
|
{
|
|
netif_stop_queue(qdev->ndev);
|
|
netif_carrier_off(qdev->ndev);
|
|
queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
|
|
}
|
|
|
|
void ql_queue_asic_error(struct ql_adapter *qdev)
|
|
{
|
|
netif_stop_queue(qdev->ndev);
|
|
netif_carrier_off(qdev->ndev);
|
|
ql_disable_interrupts(qdev);
|
|
queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
|
|
}
|
|
|
|
static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
|
|
struct ib_ae_iocb_rsp *ib_ae_rsp)
|
|
{
|
|
switch (ib_ae_rsp->event) {
|
|
case MGMT_ERR_EVENT:
|
|
QPRINTK(qdev, RX_ERR, ERR,
|
|
"Management Processor Fatal Error.\n");
|
|
ql_queue_fw_error(qdev);
|
|
return;
|
|
|
|
case CAM_LOOKUP_ERR_EVENT:
|
|
QPRINTK(qdev, LINK, ERR,
|
|
"Multiple CAM hits lookup occurred.\n");
|
|
QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
|
|
ql_queue_asic_error(qdev);
|
|
return;
|
|
|
|
case SOFT_ECC_ERROR_EVENT:
|
|
QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
|
|
ql_queue_asic_error(qdev);
|
|
break;
|
|
|
|
case PCI_ERR_ANON_BUF_RD:
|
|
QPRINTK(qdev, RX_ERR, ERR,
|
|
"PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
|
|
ib_ae_rsp->q_id);
|
|
ql_queue_asic_error(qdev);
|
|
break;
|
|
|
|
default:
|
|
QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
|
|
ib_ae_rsp->event);
|
|
ql_queue_asic_error(qdev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
|
|
{
|
|
struct ql_adapter *qdev = rx_ring->qdev;
|
|
u32 prod = le32_to_cpu(*rx_ring->prod_idx_sh_reg);
|
|
struct ob_mac_iocb_rsp *net_rsp = NULL;
|
|
int count = 0;
|
|
|
|
/* While there are entries in the completion queue. */
|
|
while (prod != rx_ring->cnsmr_idx) {
|
|
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
|
|
prod, rx_ring->cnsmr_idx);
|
|
|
|
net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
|
|
rmb();
|
|
switch (net_rsp->opcode) {
|
|
|
|
case OPCODE_OB_MAC_TSO_IOCB:
|
|
case OPCODE_OB_MAC_IOCB:
|
|
ql_process_mac_tx_intr(qdev, net_rsp);
|
|
break;
|
|
default:
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
|
|
net_rsp->opcode);
|
|
}
|
|
count++;
|
|
ql_update_cq(rx_ring);
|
|
prod = le32_to_cpu(*rx_ring->prod_idx_sh_reg);
|
|
}
|
|
ql_write_cq_idx(rx_ring);
|
|
if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
|
|
struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
|
|
if (atomic_read(&tx_ring->queue_stopped) &&
|
|
(atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
|
|
/*
|
|
* The queue got stopped because the tx_ring was full.
|
|
* Wake it up, because it's now at least 25% empty.
|
|
*/
|
|
netif_wake_queue(qdev->ndev);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
|
|
{
|
|
struct ql_adapter *qdev = rx_ring->qdev;
|
|
u32 prod = le32_to_cpu(*rx_ring->prod_idx_sh_reg);
|
|
struct ql_net_rsp_iocb *net_rsp;
|
|
int count = 0;
|
|
|
|
/* While there are entries in the completion queue. */
|
|
while (prod != rx_ring->cnsmr_idx) {
|
|
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
|
|
prod, rx_ring->cnsmr_idx);
|
|
|
|
net_rsp = rx_ring->curr_entry;
|
|
rmb();
|
|
switch (net_rsp->opcode) {
|
|
case OPCODE_IB_MAC_IOCB:
|
|
ql_process_mac_rx_intr(qdev, rx_ring,
|
|
(struct ib_mac_iocb_rsp *)
|
|
net_rsp);
|
|
break;
|
|
|
|
case OPCODE_IB_AE_IOCB:
|
|
ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
|
|
net_rsp);
|
|
break;
|
|
default:
|
|
{
|
|
QPRINTK(qdev, RX_STATUS, DEBUG,
|
|
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
|
|
net_rsp->opcode);
|
|
}
|
|
}
|
|
count++;
|
|
ql_update_cq(rx_ring);
|
|
prod = le32_to_cpu(*rx_ring->prod_idx_sh_reg);
|
|
if (count == budget)
|
|
break;
|
|
}
|
|
ql_update_buffer_queues(qdev, rx_ring);
|
|
ql_write_cq_idx(rx_ring);
|
|
return count;
|
|
}
|
|
|
|
static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
|
|
{
|
|
struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
|
|
struct ql_adapter *qdev = rx_ring->qdev;
|
|
int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
|
|
|
|
QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
|
|
rx_ring->cq_id);
|
|
|
|
if (work_done < budget) {
|
|
__netif_rx_complete(napi);
|
|
ql_enable_completion_interrupt(qdev, rx_ring->irq);
|
|
}
|
|
return work_done;
|
|
}
|
|
|
|
static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
|
|
{
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
qdev->vlgrp = grp;
|
|
if (grp) {
|
|
QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
|
|
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
|
|
NIC_RCV_CFG_VLAN_MATCH_AND_NON);
|
|
} else {
|
|
QPRINTK(qdev, IFUP, DEBUG,
|
|
"Turning off VLAN in NIC_RCV_CFG.\n");
|
|
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
|
|
}
|
|
}
|
|
|
|
static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
|
|
{
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
u32 enable_bit = MAC_ADDR_E;
|
|
|
|
spin_lock(&qdev->hw_lock);
|
|
if (ql_set_mac_addr_reg
|
|
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
|
|
}
|
|
spin_unlock(&qdev->hw_lock);
|
|
}
|
|
|
|
static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
|
|
{
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
u32 enable_bit = 0;
|
|
|
|
spin_lock(&qdev->hw_lock);
|
|
if (ql_set_mac_addr_reg
|
|
(qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
|
|
}
|
|
spin_unlock(&qdev->hw_lock);
|
|
|
|
}
|
|
|
|
/* Worker thread to process a given rx_ring that is dedicated
|
|
* to outbound completions.
|
|
*/
|
|
static void ql_tx_clean(struct work_struct *work)
|
|
{
|
|
struct rx_ring *rx_ring =
|
|
container_of(work, struct rx_ring, rx_work.work);
|
|
ql_clean_outbound_rx_ring(rx_ring);
|
|
ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
|
|
|
|
}
|
|
|
|
/* Worker thread to process a given rx_ring that is dedicated
|
|
* to inbound completions.
|
|
*/
|
|
static void ql_rx_clean(struct work_struct *work)
|
|
{
|
|
struct rx_ring *rx_ring =
|
|
container_of(work, struct rx_ring, rx_work.work);
|
|
ql_clean_inbound_rx_ring(rx_ring, 64);
|
|
ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
|
|
}
|
|
|
|
/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
|
|
static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
|
|
{
|
|
struct rx_ring *rx_ring = dev_id;
|
|
queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
|
|
&rx_ring->rx_work, 0);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
|
|
static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
|
|
{
|
|
struct rx_ring *rx_ring = dev_id;
|
|
netif_rx_schedule(&rx_ring->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* This handles a fatal error, MPI activity, and the default
|
|
* rx_ring in an MSI-X multiple vector environment.
|
|
* In MSI/Legacy environment it also process the rest of
|
|
* the rx_rings.
|
|
*/
|
|
static irqreturn_t qlge_isr(int irq, void *dev_id)
|
|
{
|
|
struct rx_ring *rx_ring = dev_id;
|
|
struct ql_adapter *qdev = rx_ring->qdev;
|
|
struct intr_context *intr_context = &qdev->intr_context[0];
|
|
u32 var;
|
|
int i;
|
|
int work_done = 0;
|
|
|
|
spin_lock(&qdev->hw_lock);
|
|
if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
|
|
QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
|
|
spin_unlock(&qdev->hw_lock);
|
|
return IRQ_NONE;
|
|
}
|
|
spin_unlock(&qdev->hw_lock);
|
|
|
|
var = ql_disable_completion_interrupt(qdev, intr_context->intr);
|
|
|
|
/*
|
|
* Check for fatal error.
|
|
*/
|
|
if (var & STS_FE) {
|
|
ql_queue_asic_error(qdev);
|
|
QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
|
|
var = ql_read32(qdev, ERR_STS);
|
|
QPRINTK(qdev, INTR, ERR,
|
|
"Resetting chip. Error Status Register = 0x%x\n", var);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Check MPI processor activity.
|
|
*/
|
|
if (var & STS_PI) {
|
|
/*
|
|
* We've got an async event or mailbox completion.
|
|
* Handle it and clear the source of the interrupt.
|
|
*/
|
|
QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
|
|
ql_disable_completion_interrupt(qdev, intr_context->intr);
|
|
queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
|
|
&qdev->mpi_work, 0);
|
|
work_done++;
|
|
}
|
|
|
|
/*
|
|
* Check the default queue and wake handler if active.
|
|
*/
|
|
rx_ring = &qdev->rx_ring[0];
|
|
if (le32_to_cpu(*rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
|
|
QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
|
|
ql_disable_completion_interrupt(qdev, intr_context->intr);
|
|
queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
|
|
&rx_ring->rx_work, 0);
|
|
work_done++;
|
|
}
|
|
|
|
if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
|
|
/*
|
|
* Start the DPC for each active queue.
|
|
*/
|
|
for (i = 1; i < qdev->rx_ring_count; i++) {
|
|
rx_ring = &qdev->rx_ring[i];
|
|
if (le32_to_cpu(*rx_ring->prod_idx_sh_reg) !=
|
|
rx_ring->cnsmr_idx) {
|
|
QPRINTK(qdev, INTR, INFO,
|
|
"Waking handler for rx_ring[%d].\n", i);
|
|
ql_disable_completion_interrupt(qdev,
|
|
intr_context->
|
|
intr);
|
|
if (i < qdev->rss_ring_first_cq_id)
|
|
queue_delayed_work_on(rx_ring->cpu,
|
|
qdev->q_workqueue,
|
|
&rx_ring->rx_work,
|
|
0);
|
|
else
|
|
netif_rx_schedule(&rx_ring->napi);
|
|
work_done++;
|
|
}
|
|
}
|
|
}
|
|
ql_enable_completion_interrupt(qdev, intr_context->intr);
|
|
return work_done ? IRQ_HANDLED : IRQ_NONE;
|
|
}
|
|
|
|
static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
|
|
{
|
|
|
|
if (skb_is_gso(skb)) {
|
|
int err;
|
|
if (skb_header_cloned(skb)) {
|
|
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
|
|
mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
|
|
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
|
|
mac_iocb_ptr->total_hdrs_len =
|
|
cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
|
|
mac_iocb_ptr->net_trans_offset =
|
|
cpu_to_le16(skb_network_offset(skb) |
|
|
skb_transport_offset(skb)
|
|
<< OB_MAC_TRANSPORT_HDR_SHIFT);
|
|
mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
|
|
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
|
|
if (likely(skb->protocol == htons(ETH_P_IP))) {
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
iph->check = 0;
|
|
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
|
|
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
|
|
iph->daddr, 0,
|
|
IPPROTO_TCP,
|
|
0);
|
|
} else if (skb->protocol == htons(ETH_P_IPV6)) {
|
|
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
|
|
tcp_hdr(skb)->check =
|
|
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ql_hw_csum_setup(struct sk_buff *skb,
|
|
struct ob_mac_tso_iocb_req *mac_iocb_ptr)
|
|
{
|
|
int len;
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
u16 *check;
|
|
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
|
|
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
|
|
mac_iocb_ptr->net_trans_offset =
|
|
cpu_to_le16(skb_network_offset(skb) |
|
|
skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
|
|
|
|
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
|
|
len = (ntohs(iph->tot_len) - (iph->ihl << 2));
|
|
if (likely(iph->protocol == IPPROTO_TCP)) {
|
|
check = &(tcp_hdr(skb)->check);
|
|
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
|
|
mac_iocb_ptr->total_hdrs_len =
|
|
cpu_to_le16(skb_transport_offset(skb) +
|
|
(tcp_hdr(skb)->doff << 2));
|
|
} else {
|
|
check = &(udp_hdr(skb)->check);
|
|
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
|
|
mac_iocb_ptr->total_hdrs_len =
|
|
cpu_to_le16(skb_transport_offset(skb) +
|
|
sizeof(struct udphdr));
|
|
}
|
|
*check = ~csum_tcpudp_magic(iph->saddr,
|
|
iph->daddr, len, iph->protocol, 0);
|
|
}
|
|
|
|
static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct tx_ring_desc *tx_ring_desc;
|
|
struct ob_mac_iocb_req *mac_iocb_ptr;
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
int tso;
|
|
struct tx_ring *tx_ring;
|
|
u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
|
|
|
|
tx_ring = &qdev->tx_ring[tx_ring_idx];
|
|
|
|
if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
|
|
QPRINTK(qdev, TX_QUEUED, INFO,
|
|
"%s: shutting down tx queue %d du to lack of resources.\n",
|
|
__func__, tx_ring_idx);
|
|
netif_stop_queue(ndev);
|
|
atomic_inc(&tx_ring->queue_stopped);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
|
|
mac_iocb_ptr = tx_ring_desc->queue_entry;
|
|
memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
|
|
if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
|
|
QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
|
|
mac_iocb_ptr->tid = tx_ring_desc->index;
|
|
/* We use the upper 32-bits to store the tx queue for this IO.
|
|
* When we get the completion we can use it to establish the context.
|
|
*/
|
|
mac_iocb_ptr->txq_idx = tx_ring_idx;
|
|
tx_ring_desc->skb = skb;
|
|
|
|
mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
|
|
|
|
if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
|
|
QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
|
|
vlan_tx_tag_get(skb));
|
|
mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
|
|
mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
|
|
}
|
|
tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
|
|
if (tso < 0) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
|
|
ql_hw_csum_setup(skb,
|
|
(struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
|
|
}
|
|
QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
|
|
tx_ring->prod_idx++;
|
|
if (tx_ring->prod_idx == tx_ring->wq_len)
|
|
tx_ring->prod_idx = 0;
|
|
wmb();
|
|
|
|
ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
|
|
ndev->trans_start = jiffies;
|
|
QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
|
|
tx_ring->prod_idx, skb->len);
|
|
|
|
atomic_dec(&tx_ring->tx_count);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void ql_free_shadow_space(struct ql_adapter *qdev)
|
|
{
|
|
if (qdev->rx_ring_shadow_reg_area) {
|
|
pci_free_consistent(qdev->pdev,
|
|
PAGE_SIZE,
|
|
qdev->rx_ring_shadow_reg_area,
|
|
qdev->rx_ring_shadow_reg_dma);
|
|
qdev->rx_ring_shadow_reg_area = NULL;
|
|
}
|
|
if (qdev->tx_ring_shadow_reg_area) {
|
|
pci_free_consistent(qdev->pdev,
|
|
PAGE_SIZE,
|
|
qdev->tx_ring_shadow_reg_area,
|
|
qdev->tx_ring_shadow_reg_dma);
|
|
qdev->tx_ring_shadow_reg_area = NULL;
|
|
}
|
|
}
|
|
|
|
static int ql_alloc_shadow_space(struct ql_adapter *qdev)
|
|
{
|
|
qdev->rx_ring_shadow_reg_area =
|
|
pci_alloc_consistent(qdev->pdev,
|
|
PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
|
|
if (qdev->rx_ring_shadow_reg_area == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Allocation of RX shadow space failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
qdev->tx_ring_shadow_reg_area =
|
|
pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
|
|
&qdev->tx_ring_shadow_reg_dma);
|
|
if (qdev->tx_ring_shadow_reg_area == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Allocation of TX shadow space failed.\n");
|
|
goto err_wqp_sh_area;
|
|
}
|
|
return 0;
|
|
|
|
err_wqp_sh_area:
|
|
pci_free_consistent(qdev->pdev,
|
|
PAGE_SIZE,
|
|
qdev->rx_ring_shadow_reg_area,
|
|
qdev->rx_ring_shadow_reg_dma);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
|
|
{
|
|
struct tx_ring_desc *tx_ring_desc;
|
|
int i;
|
|
struct ob_mac_iocb_req *mac_iocb_ptr;
|
|
|
|
mac_iocb_ptr = tx_ring->wq_base;
|
|
tx_ring_desc = tx_ring->q;
|
|
for (i = 0; i < tx_ring->wq_len; i++) {
|
|
tx_ring_desc->index = i;
|
|
tx_ring_desc->skb = NULL;
|
|
tx_ring_desc->queue_entry = mac_iocb_ptr;
|
|
mac_iocb_ptr++;
|
|
tx_ring_desc++;
|
|
}
|
|
atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
|
|
atomic_set(&tx_ring->queue_stopped, 0);
|
|
}
|
|
|
|
static void ql_free_tx_resources(struct ql_adapter *qdev,
|
|
struct tx_ring *tx_ring)
|
|
{
|
|
if (tx_ring->wq_base) {
|
|
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
|
|
tx_ring->wq_base, tx_ring->wq_base_dma);
|
|
tx_ring->wq_base = NULL;
|
|
}
|
|
kfree(tx_ring->q);
|
|
tx_ring->q = NULL;
|
|
}
|
|
|
|
static int ql_alloc_tx_resources(struct ql_adapter *qdev,
|
|
struct tx_ring *tx_ring)
|
|
{
|
|
tx_ring->wq_base =
|
|
pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
|
|
&tx_ring->wq_base_dma);
|
|
|
|
if ((tx_ring->wq_base == NULL)
|
|
|| tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
|
|
QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
tx_ring->q =
|
|
kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
|
|
if (tx_ring->q == NULL)
|
|
goto err;
|
|
|
|
return 0;
|
|
err:
|
|
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
|
|
tx_ring->wq_base, tx_ring->wq_base_dma);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
|
|
{
|
|
int i;
|
|
struct bq_desc *lbq_desc;
|
|
|
|
for (i = 0; i < rx_ring->lbq_len; i++) {
|
|
lbq_desc = &rx_ring->lbq[i];
|
|
if (lbq_desc->p.lbq_page) {
|
|
pci_unmap_page(qdev->pdev,
|
|
pci_unmap_addr(lbq_desc, mapaddr),
|
|
pci_unmap_len(lbq_desc, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
put_page(lbq_desc->p.lbq_page);
|
|
lbq_desc->p.lbq_page = NULL;
|
|
}
|
|
lbq_desc->bq->addr_lo = 0;
|
|
lbq_desc->bq->addr_hi = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate and map a page for each element of the lbq.
|
|
*/
|
|
static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
|
|
struct rx_ring *rx_ring)
|
|
{
|
|
int i;
|
|
struct bq_desc *lbq_desc;
|
|
u64 map;
|
|
struct bq_element *bq = rx_ring->lbq_base;
|
|
|
|
for (i = 0; i < rx_ring->lbq_len; i++) {
|
|
lbq_desc = &rx_ring->lbq[i];
|
|
memset(lbq_desc, 0, sizeof(lbq_desc));
|
|
lbq_desc->bq = bq;
|
|
lbq_desc->index = i;
|
|
lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
|
|
if (unlikely(!lbq_desc->p.lbq_page)) {
|
|
QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
|
|
goto mem_error;
|
|
} else {
|
|
map = pci_map_page(qdev->pdev,
|
|
lbq_desc->p.lbq_page,
|
|
0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(qdev->pdev, map)) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"PCI mapping failed.\n");
|
|
goto mem_error;
|
|
}
|
|
pci_unmap_addr_set(lbq_desc, mapaddr, map);
|
|
pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
|
|
bq->addr_lo = cpu_to_le32(map);
|
|
bq->addr_hi = cpu_to_le32(map >> 32);
|
|
}
|
|
bq++;
|
|
}
|
|
return 0;
|
|
mem_error:
|
|
ql_free_lbq_buffers(qdev, rx_ring);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
|
|
{
|
|
int i;
|
|
struct bq_desc *sbq_desc;
|
|
|
|
for (i = 0; i < rx_ring->sbq_len; i++) {
|
|
sbq_desc = &rx_ring->sbq[i];
|
|
if (sbq_desc == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
|
|
return;
|
|
}
|
|
if (sbq_desc->p.skb) {
|
|
pci_unmap_single(qdev->pdev,
|
|
pci_unmap_addr(sbq_desc, mapaddr),
|
|
pci_unmap_len(sbq_desc, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb(sbq_desc->p.skb);
|
|
sbq_desc->p.skb = NULL;
|
|
}
|
|
if (sbq_desc->bq == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
|
|
i);
|
|
return;
|
|
}
|
|
sbq_desc->bq->addr_lo = 0;
|
|
sbq_desc->bq->addr_hi = 0;
|
|
}
|
|
}
|
|
|
|
/* Allocate and map an skb for each element of the sbq. */
|
|
static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
|
|
struct rx_ring *rx_ring)
|
|
{
|
|
int i;
|
|
struct bq_desc *sbq_desc;
|
|
struct sk_buff *skb;
|
|
u64 map;
|
|
struct bq_element *bq = rx_ring->sbq_base;
|
|
|
|
for (i = 0; i < rx_ring->sbq_len; i++) {
|
|
sbq_desc = &rx_ring->sbq[i];
|
|
memset(sbq_desc, 0, sizeof(sbq_desc));
|
|
sbq_desc->index = i;
|
|
sbq_desc->bq = bq;
|
|
skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
|
|
if (unlikely(!skb)) {
|
|
/* Better luck next round */
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"small buff alloc failed for %d bytes at index %d.\n",
|
|
rx_ring->sbq_buf_size, i);
|
|
goto mem_err;
|
|
}
|
|
skb_reserve(skb, QLGE_SB_PAD);
|
|
sbq_desc->p.skb = skb;
|
|
/*
|
|
* Map only half the buffer. Because the
|
|
* other half may get some data copied to it
|
|
* when the completion arrives.
|
|
*/
|
|
map = pci_map_single(qdev->pdev,
|
|
skb->data,
|
|
rx_ring->sbq_buf_size / 2,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(qdev->pdev, map)) {
|
|
QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
|
|
goto mem_err;
|
|
}
|
|
pci_unmap_addr_set(sbq_desc, mapaddr, map);
|
|
pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
|
|
bq->addr_lo = /*sbq_desc->addr_lo = */
|
|
cpu_to_le32(map);
|
|
bq->addr_hi = /*sbq_desc->addr_hi = */
|
|
cpu_to_le32(map >> 32);
|
|
bq++;
|
|
}
|
|
return 0;
|
|
mem_err:
|
|
ql_free_sbq_buffers(qdev, rx_ring);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void ql_free_rx_resources(struct ql_adapter *qdev,
|
|
struct rx_ring *rx_ring)
|
|
{
|
|
if (rx_ring->sbq_len)
|
|
ql_free_sbq_buffers(qdev, rx_ring);
|
|
if (rx_ring->lbq_len)
|
|
ql_free_lbq_buffers(qdev, rx_ring);
|
|
|
|
/* Free the small buffer queue. */
|
|
if (rx_ring->sbq_base) {
|
|
pci_free_consistent(qdev->pdev,
|
|
rx_ring->sbq_size,
|
|
rx_ring->sbq_base, rx_ring->sbq_base_dma);
|
|
rx_ring->sbq_base = NULL;
|
|
}
|
|
|
|
/* Free the small buffer queue control blocks. */
|
|
kfree(rx_ring->sbq);
|
|
rx_ring->sbq = NULL;
|
|
|
|
/* Free the large buffer queue. */
|
|
if (rx_ring->lbq_base) {
|
|
pci_free_consistent(qdev->pdev,
|
|
rx_ring->lbq_size,
|
|
rx_ring->lbq_base, rx_ring->lbq_base_dma);
|
|
rx_ring->lbq_base = NULL;
|
|
}
|
|
|
|
/* Free the large buffer queue control blocks. */
|
|
kfree(rx_ring->lbq);
|
|
rx_ring->lbq = NULL;
|
|
|
|
/* Free the rx queue. */
|
|
if (rx_ring->cq_base) {
|
|
pci_free_consistent(qdev->pdev,
|
|
rx_ring->cq_size,
|
|
rx_ring->cq_base, rx_ring->cq_base_dma);
|
|
rx_ring->cq_base = NULL;
|
|
}
|
|
}
|
|
|
|
/* Allocate queues and buffers for this completions queue based
|
|
* on the values in the parameter structure. */
|
|
static int ql_alloc_rx_resources(struct ql_adapter *qdev,
|
|
struct rx_ring *rx_ring)
|
|
{
|
|
|
|
/*
|
|
* Allocate the completion queue for this rx_ring.
|
|
*/
|
|
rx_ring->cq_base =
|
|
pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
|
|
&rx_ring->cq_base_dma);
|
|
|
|
if (rx_ring->cq_base == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (rx_ring->sbq_len) {
|
|
/*
|
|
* Allocate small buffer queue.
|
|
*/
|
|
rx_ring->sbq_base =
|
|
pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
|
|
&rx_ring->sbq_base_dma);
|
|
|
|
if (rx_ring->sbq_base == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Small buffer queue allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
|
|
/*
|
|
* Allocate small buffer queue control blocks.
|
|
*/
|
|
rx_ring->sbq =
|
|
kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
|
|
GFP_KERNEL);
|
|
if (rx_ring->sbq == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Small buffer queue control block allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
|
|
if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Small buffer allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
}
|
|
|
|
if (rx_ring->lbq_len) {
|
|
/*
|
|
* Allocate large buffer queue.
|
|
*/
|
|
rx_ring->lbq_base =
|
|
pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
|
|
&rx_ring->lbq_base_dma);
|
|
|
|
if (rx_ring->lbq_base == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Large buffer queue allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
/*
|
|
* Allocate large buffer queue control blocks.
|
|
*/
|
|
rx_ring->lbq =
|
|
kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
|
|
GFP_KERNEL);
|
|
if (rx_ring->lbq == NULL) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Large buffer queue control block allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
|
|
/*
|
|
* Allocate the buffers.
|
|
*/
|
|
if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Large buffer allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_mem:
|
|
ql_free_rx_resources(qdev, rx_ring);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void ql_tx_ring_clean(struct ql_adapter *qdev)
|
|
{
|
|
struct tx_ring *tx_ring;
|
|
struct tx_ring_desc *tx_ring_desc;
|
|
int i, j;
|
|
|
|
/*
|
|
* Loop through all queues and free
|
|
* any resources.
|
|
*/
|
|
for (j = 0; j < qdev->tx_ring_count; j++) {
|
|
tx_ring = &qdev->tx_ring[j];
|
|
for (i = 0; i < tx_ring->wq_len; i++) {
|
|
tx_ring_desc = &tx_ring->q[i];
|
|
if (tx_ring_desc && tx_ring_desc->skb) {
|
|
QPRINTK(qdev, IFDOWN, ERR,
|
|
"Freeing lost SKB %p, from queue %d, index %d.\n",
|
|
tx_ring_desc->skb, j,
|
|
tx_ring_desc->index);
|
|
ql_unmap_send(qdev, tx_ring_desc,
|
|
tx_ring_desc->map_cnt);
|
|
dev_kfree_skb(tx_ring_desc->skb);
|
|
tx_ring_desc->skb = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ql_free_ring_cb(struct ql_adapter *qdev)
|
|
{
|
|
kfree(qdev->ring_mem);
|
|
}
|
|
|
|
static int ql_alloc_ring_cb(struct ql_adapter *qdev)
|
|
{
|
|
/* Allocate space for tx/rx ring control blocks. */
|
|
qdev->ring_mem_size =
|
|
(qdev->tx_ring_count * sizeof(struct tx_ring)) +
|
|
(qdev->rx_ring_count * sizeof(struct rx_ring));
|
|
qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
|
|
if (qdev->ring_mem == NULL) {
|
|
return -ENOMEM;
|
|
} else {
|
|
qdev->rx_ring = qdev->ring_mem;
|
|
qdev->tx_ring = qdev->ring_mem +
|
|
(qdev->rx_ring_count * sizeof(struct rx_ring));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ql_free_mem_resources(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < qdev->tx_ring_count; i++)
|
|
ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
|
|
for (i = 0; i < qdev->rx_ring_count; i++)
|
|
ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
|
|
ql_free_shadow_space(qdev);
|
|
}
|
|
|
|
static int ql_alloc_mem_resources(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
|
|
/* Allocate space for our shadow registers and such. */
|
|
if (ql_alloc_shadow_space(qdev))
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < qdev->rx_ring_count; i++) {
|
|
if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"RX resource allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
}
|
|
/* Allocate tx queue resources */
|
|
for (i = 0; i < qdev->tx_ring_count; i++) {
|
|
if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"TX resource allocation failed.\n");
|
|
goto err_mem;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
err_mem:
|
|
ql_free_mem_resources(qdev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Set up the rx ring control block and pass it to the chip.
|
|
* The control block is defined as
|
|
* "Completion Queue Initialization Control Block", or cqicb.
|
|
*/
|
|
static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
|
|
{
|
|
struct cqicb *cqicb = &rx_ring->cqicb;
|
|
void *shadow_reg = qdev->rx_ring_shadow_reg_area +
|
|
(rx_ring->cq_id * sizeof(u64) * 4);
|
|
u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
|
|
(rx_ring->cq_id * sizeof(u64) * 4);
|
|
void __iomem *doorbell_area =
|
|
qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
|
|
int err = 0;
|
|
u16 bq_len;
|
|
|
|
/* Set up the shadow registers for this ring. */
|
|
rx_ring->prod_idx_sh_reg = shadow_reg;
|
|
rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
|
|
shadow_reg += sizeof(u64);
|
|
shadow_reg_dma += sizeof(u64);
|
|
rx_ring->lbq_base_indirect = shadow_reg;
|
|
rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
|
|
shadow_reg += sizeof(u64);
|
|
shadow_reg_dma += sizeof(u64);
|
|
rx_ring->sbq_base_indirect = shadow_reg;
|
|
rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
|
|
|
|
/* PCI doorbell mem area + 0x00 for consumer index register */
|
|
rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
|
|
rx_ring->cnsmr_idx = 0;
|
|
rx_ring->curr_entry = rx_ring->cq_base;
|
|
|
|
/* PCI doorbell mem area + 0x04 for valid register */
|
|
rx_ring->valid_db_reg = doorbell_area + 0x04;
|
|
|
|
/* PCI doorbell mem area + 0x18 for large buffer consumer */
|
|
rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
|
|
|
|
/* PCI doorbell mem area + 0x1c */
|
|
rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
|
|
|
|
memset((void *)cqicb, 0, sizeof(struct cqicb));
|
|
cqicb->msix_vect = rx_ring->irq;
|
|
|
|
bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
|
|
cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
|
|
|
|
cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
|
|
cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
|
|
|
|
cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
|
|
cqicb->prod_idx_addr_hi =
|
|
cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
|
|
|
|
/*
|
|
* Set up the control block load flags.
|
|
*/
|
|
cqicb->flags = FLAGS_LC | /* Load queue base address */
|
|
FLAGS_LV | /* Load MSI-X vector */
|
|
FLAGS_LI; /* Load irq delay values */
|
|
if (rx_ring->lbq_len) {
|
|
cqicb->flags |= FLAGS_LL; /* Load lbq values */
|
|
*((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
|
|
cqicb->lbq_addr_lo =
|
|
cpu_to_le32(rx_ring->lbq_base_indirect_dma);
|
|
cqicb->lbq_addr_hi =
|
|
cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
|
|
bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
|
|
(u16) rx_ring->lbq_buf_size;
|
|
cqicb->lbq_buf_size = cpu_to_le16(bq_len);
|
|
bq_len = (rx_ring->lbq_len == 65536) ? 0 :
|
|
(u16) rx_ring->lbq_len;
|
|
cqicb->lbq_len = cpu_to_le16(bq_len);
|
|
rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
|
|
rx_ring->lbq_curr_idx = 0;
|
|
rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
|
|
rx_ring->lbq_free_cnt = 16;
|
|
}
|
|
if (rx_ring->sbq_len) {
|
|
cqicb->flags |= FLAGS_LS; /* Load sbq values */
|
|
*((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
|
|
cqicb->sbq_addr_lo =
|
|
cpu_to_le32(rx_ring->sbq_base_indirect_dma);
|
|
cqicb->sbq_addr_hi =
|
|
cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
|
|
cqicb->sbq_buf_size =
|
|
cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
|
|
bq_len = (rx_ring->sbq_len == 65536) ? 0 :
|
|
(u16) rx_ring->sbq_len;
|
|
cqicb->sbq_len = cpu_to_le16(bq_len);
|
|
rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
|
|
rx_ring->sbq_curr_idx = 0;
|
|
rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
|
|
rx_ring->sbq_free_cnt = 16;
|
|
}
|
|
switch (rx_ring->type) {
|
|
case TX_Q:
|
|
/* If there's only one interrupt, then we use
|
|
* worker threads to process the outbound
|
|
* completion handling rx_rings. We do this so
|
|
* they can be run on multiple CPUs. There is
|
|
* room to play with this more where we would only
|
|
* run in a worker if there are more than x number
|
|
* of outbound completions on the queue and more
|
|
* than one queue active. Some threshold that
|
|
* would indicate a benefit in spite of the cost
|
|
* of a context switch.
|
|
* If there's more than one interrupt, then the
|
|
* outbound completions are processed in the ISR.
|
|
*/
|
|
if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
|
|
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
|
|
else {
|
|
/* With all debug warnings on we see a WARN_ON message
|
|
* when we free the skb in the interrupt context.
|
|
*/
|
|
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
|
|
}
|
|
cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
|
|
cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
|
|
break;
|
|
case DEFAULT_Q:
|
|
INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
|
|
cqicb->irq_delay = 0;
|
|
cqicb->pkt_delay = 0;
|
|
break;
|
|
case RX_Q:
|
|
/* Inbound completion handling rx_rings run in
|
|
* separate NAPI contexts.
|
|
*/
|
|
netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
|
|
64);
|
|
cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
|
|
cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
|
|
break;
|
|
default:
|
|
QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
|
|
rx_ring->type);
|
|
}
|
|
QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
|
|
err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
|
|
CFG_LCQ, rx_ring->cq_id);
|
|
if (err) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
|
|
return err;
|
|
}
|
|
QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
|
|
/*
|
|
* Advance the producer index for the buffer queues.
|
|
*/
|
|
wmb();
|
|
if (rx_ring->lbq_len)
|
|
ql_write_db_reg(rx_ring->lbq_prod_idx,
|
|
rx_ring->lbq_prod_idx_db_reg);
|
|
if (rx_ring->sbq_len)
|
|
ql_write_db_reg(rx_ring->sbq_prod_idx,
|
|
rx_ring->sbq_prod_idx_db_reg);
|
|
return err;
|
|
}
|
|
|
|
static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
|
|
{
|
|
struct wqicb *wqicb = (struct wqicb *)tx_ring;
|
|
void __iomem *doorbell_area =
|
|
qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
|
|
void *shadow_reg = qdev->tx_ring_shadow_reg_area +
|
|
(tx_ring->wq_id * sizeof(u64));
|
|
u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
|
|
(tx_ring->wq_id * sizeof(u64));
|
|
int err = 0;
|
|
|
|
/*
|
|
* Assign doorbell registers for this tx_ring.
|
|
*/
|
|
/* TX PCI doorbell mem area for tx producer index */
|
|
tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
|
|
tx_ring->prod_idx = 0;
|
|
/* TX PCI doorbell mem area + 0x04 */
|
|
tx_ring->valid_db_reg = doorbell_area + 0x04;
|
|
|
|
/*
|
|
* Assign shadow registers for this tx_ring.
|
|
*/
|
|
tx_ring->cnsmr_idx_sh_reg = shadow_reg;
|
|
tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
|
|
|
|
wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
|
|
wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
|
|
Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
|
|
wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
|
|
wqicb->rid = 0;
|
|
wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
|
|
wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
|
|
|
|
wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
|
|
wqicb->cnsmr_idx_addr_hi =
|
|
cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
|
|
|
|
ql_init_tx_ring(qdev, tx_ring);
|
|
|
|
err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
|
|
(u16) tx_ring->wq_id);
|
|
if (err) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
|
|
return err;
|
|
}
|
|
QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
|
|
return err;
|
|
}
|
|
|
|
static void ql_disable_msix(struct ql_adapter *qdev)
|
|
{
|
|
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
|
|
pci_disable_msix(qdev->pdev);
|
|
clear_bit(QL_MSIX_ENABLED, &qdev->flags);
|
|
kfree(qdev->msi_x_entry);
|
|
qdev->msi_x_entry = NULL;
|
|
} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
|
|
pci_disable_msi(qdev->pdev);
|
|
clear_bit(QL_MSI_ENABLED, &qdev->flags);
|
|
}
|
|
}
|
|
|
|
static void ql_enable_msix(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
|
|
qdev->intr_count = 1;
|
|
/* Get the MSIX vectors. */
|
|
if (irq_type == MSIX_IRQ) {
|
|
/* Try to alloc space for the msix struct,
|
|
* if it fails then go to MSI/legacy.
|
|
*/
|
|
qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
|
|
sizeof(struct msix_entry),
|
|
GFP_KERNEL);
|
|
if (!qdev->msi_x_entry) {
|
|
irq_type = MSI_IRQ;
|
|
goto msi;
|
|
}
|
|
|
|
for (i = 0; i < qdev->rx_ring_count; i++)
|
|
qdev->msi_x_entry[i].entry = i;
|
|
|
|
if (!pci_enable_msix
|
|
(qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
|
|
set_bit(QL_MSIX_ENABLED, &qdev->flags);
|
|
qdev->intr_count = qdev->rx_ring_count;
|
|
QPRINTK(qdev, IFUP, INFO,
|
|
"MSI-X Enabled, got %d vectors.\n",
|
|
qdev->intr_count);
|
|
return;
|
|
} else {
|
|
kfree(qdev->msi_x_entry);
|
|
qdev->msi_x_entry = NULL;
|
|
QPRINTK(qdev, IFUP, WARNING,
|
|
"MSI-X Enable failed, trying MSI.\n");
|
|
irq_type = MSI_IRQ;
|
|
}
|
|
}
|
|
msi:
|
|
if (irq_type == MSI_IRQ) {
|
|
if (!pci_enable_msi(qdev->pdev)) {
|
|
set_bit(QL_MSI_ENABLED, &qdev->flags);
|
|
QPRINTK(qdev, IFUP, INFO,
|
|
"Running with MSI interrupts.\n");
|
|
return;
|
|
}
|
|
}
|
|
irq_type = LEG_IRQ;
|
|
QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
|
|
}
|
|
|
|
/*
|
|
* Here we build the intr_context structures based on
|
|
* our rx_ring count and intr vector count.
|
|
* The intr_context structure is used to hook each vector
|
|
* to possibly different handlers.
|
|
*/
|
|
static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
|
|
{
|
|
int i = 0;
|
|
struct intr_context *intr_context = &qdev->intr_context[0];
|
|
|
|
ql_enable_msix(qdev);
|
|
|
|
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
|
|
/* Each rx_ring has it's
|
|
* own intr_context since we have separate
|
|
* vectors for each queue.
|
|
* This only true when MSI-X is enabled.
|
|
*/
|
|
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
|
|
qdev->rx_ring[i].irq = i;
|
|
intr_context->intr = i;
|
|
intr_context->qdev = qdev;
|
|
/*
|
|
* We set up each vectors enable/disable/read bits so
|
|
* there's no bit/mask calculations in the critical path.
|
|
*/
|
|
intr_context->intr_en_mask =
|
|
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
|
|
INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
|
|
| i;
|
|
intr_context->intr_dis_mask =
|
|
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
|
|
INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
|
|
INTR_EN_IHD | i;
|
|
intr_context->intr_read_mask =
|
|
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
|
|
INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
|
|
i;
|
|
|
|
if (i == 0) {
|
|
/*
|
|
* Default queue handles bcast/mcast plus
|
|
* async events. Needs buffers.
|
|
*/
|
|
intr_context->handler = qlge_isr;
|
|
sprintf(intr_context->name, "%s-default-queue",
|
|
qdev->ndev->name);
|
|
} else if (i < qdev->rss_ring_first_cq_id) {
|
|
/*
|
|
* Outbound queue is for outbound completions only.
|
|
*/
|
|
intr_context->handler = qlge_msix_tx_isr;
|
|
sprintf(intr_context->name, "%s-txq-%d",
|
|
qdev->ndev->name, i);
|
|
} else {
|
|
/*
|
|
* Inbound queues handle unicast frames only.
|
|
*/
|
|
intr_context->handler = qlge_msix_rx_isr;
|
|
sprintf(intr_context->name, "%s-rxq-%d",
|
|
qdev->ndev->name, i);
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* All rx_rings use the same intr_context since
|
|
* there is only one vector.
|
|
*/
|
|
intr_context->intr = 0;
|
|
intr_context->qdev = qdev;
|
|
/*
|
|
* We set up each vectors enable/disable/read bits so
|
|
* there's no bit/mask calculations in the critical path.
|
|
*/
|
|
intr_context->intr_en_mask =
|
|
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
|
|
intr_context->intr_dis_mask =
|
|
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
|
|
INTR_EN_TYPE_DISABLE;
|
|
intr_context->intr_read_mask =
|
|
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
|
|
/*
|
|
* Single interrupt means one handler for all rings.
|
|
*/
|
|
intr_context->handler = qlge_isr;
|
|
sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
|
|
for (i = 0; i < qdev->rx_ring_count; i++)
|
|
qdev->rx_ring[i].irq = 0;
|
|
}
|
|
}
|
|
|
|
static void ql_free_irq(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
struct intr_context *intr_context = &qdev->intr_context[0];
|
|
|
|
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
|
|
if (intr_context->hooked) {
|
|
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
|
|
free_irq(qdev->msi_x_entry[i].vector,
|
|
&qdev->rx_ring[i]);
|
|
QPRINTK(qdev, IFDOWN, ERR,
|
|
"freeing msix interrupt %d.\n", i);
|
|
} else {
|
|
free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
|
|
QPRINTK(qdev, IFDOWN, ERR,
|
|
"freeing msi interrupt %d.\n", i);
|
|
}
|
|
}
|
|
}
|
|
ql_disable_msix(qdev);
|
|
}
|
|
|
|
static int ql_request_irq(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
int status = 0;
|
|
struct pci_dev *pdev = qdev->pdev;
|
|
struct intr_context *intr_context = &qdev->intr_context[0];
|
|
|
|
ql_resolve_queues_to_irqs(qdev);
|
|
|
|
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
|
|
atomic_set(&intr_context->irq_cnt, 0);
|
|
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
|
|
status = request_irq(qdev->msi_x_entry[i].vector,
|
|
intr_context->handler,
|
|
0,
|
|
intr_context->name,
|
|
&qdev->rx_ring[i]);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed request for MSIX interrupt %d.\n",
|
|
i);
|
|
goto err_irq;
|
|
} else {
|
|
QPRINTK(qdev, IFUP, INFO,
|
|
"Hooked intr %d, queue type %s%s%s, with name %s.\n",
|
|
i,
|
|
qdev->rx_ring[i].type ==
|
|
DEFAULT_Q ? "DEFAULT_Q" : "",
|
|
qdev->rx_ring[i].type ==
|
|
TX_Q ? "TX_Q" : "",
|
|
qdev->rx_ring[i].type ==
|
|
RX_Q ? "RX_Q" : "", intr_context->name);
|
|
}
|
|
} else {
|
|
QPRINTK(qdev, IFUP, DEBUG,
|
|
"trying msi or legacy interrupts.\n");
|
|
QPRINTK(qdev, IFUP, DEBUG,
|
|
"%s: irq = %d.\n", __func__, pdev->irq);
|
|
QPRINTK(qdev, IFUP, DEBUG,
|
|
"%s: context->name = %s.\n", __func__,
|
|
intr_context->name);
|
|
QPRINTK(qdev, IFUP, DEBUG,
|
|
"%s: dev_id = 0x%p.\n", __func__,
|
|
&qdev->rx_ring[0]);
|
|
status =
|
|
request_irq(pdev->irq, qlge_isr,
|
|
test_bit(QL_MSI_ENABLED,
|
|
&qdev->
|
|
flags) ? 0 : IRQF_SHARED,
|
|
intr_context->name, &qdev->rx_ring[0]);
|
|
if (status)
|
|
goto err_irq;
|
|
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Hooked intr %d, queue type %s%s%s, with name %s.\n",
|
|
i,
|
|
qdev->rx_ring[0].type ==
|
|
DEFAULT_Q ? "DEFAULT_Q" : "",
|
|
qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
|
|
qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
|
|
intr_context->name);
|
|
}
|
|
intr_context->hooked = 1;
|
|
}
|
|
return status;
|
|
err_irq:
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
|
|
ql_free_irq(qdev);
|
|
return status;
|
|
}
|
|
|
|
static int ql_start_rss(struct ql_adapter *qdev)
|
|
{
|
|
struct ricb *ricb = &qdev->ricb;
|
|
int status = 0;
|
|
int i;
|
|
u8 *hash_id = (u8 *) ricb->hash_cq_id;
|
|
|
|
memset((void *)ricb, 0, sizeof(ricb));
|
|
|
|
ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
|
|
ricb->flags =
|
|
(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
|
|
RSS_RT6);
|
|
ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
|
|
|
|
/*
|
|
* Fill out the Indirection Table.
|
|
*/
|
|
for (i = 0; i < 32; i++)
|
|
hash_id[i] = i & 1;
|
|
|
|
/*
|
|
* Random values for the IPv6 and IPv4 Hash Keys.
|
|
*/
|
|
get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
|
|
get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
|
|
|
|
QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
|
|
|
|
status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
|
|
return status;
|
|
}
|
|
QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
|
|
return status;
|
|
}
|
|
|
|
/* Initialize the frame-to-queue routing. */
|
|
static int ql_route_initialize(struct ql_adapter *qdev)
|
|
{
|
|
int status = 0;
|
|
int i;
|
|
|
|
/* Clear all the entries in the routing table. */
|
|
for (i = 0; i < 16; i++) {
|
|
status = ql_set_routing_reg(qdev, i, 0, 0);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed to init routing register for CAM packets.\n");
|
|
return status;
|
|
}
|
|
}
|
|
|
|
status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed to init routing register for error packets.\n");
|
|
return status;
|
|
}
|
|
status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed to init routing register for broadcast packets.\n");
|
|
return status;
|
|
}
|
|
/* If we have more than one inbound queue, then turn on RSS in the
|
|
* routing block.
|
|
*/
|
|
if (qdev->rss_ring_count > 1) {
|
|
status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
|
|
RT_IDX_RSS_MATCH, 1);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed to init routing register for MATCH RSS packets.\n");
|
|
return status;
|
|
}
|
|
}
|
|
|
|
status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
|
|
RT_IDX_CAM_HIT, 1);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed to init routing register for CAM packets.\n");
|
|
return status;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int ql_adapter_initialize(struct ql_adapter *qdev)
|
|
{
|
|
u32 value, mask;
|
|
int i;
|
|
int status = 0;
|
|
|
|
/*
|
|
* Set up the System register to halt on errors.
|
|
*/
|
|
value = SYS_EFE | SYS_FAE;
|
|
mask = value << 16;
|
|
ql_write32(qdev, SYS, mask | value);
|
|
|
|
/* Set the default queue. */
|
|
value = NIC_RCV_CFG_DFQ;
|
|
mask = NIC_RCV_CFG_DFQ_MASK;
|
|
ql_write32(qdev, NIC_RCV_CFG, (mask | value));
|
|
|
|
/* Set the MPI interrupt to enabled. */
|
|
ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
|
|
|
|
/* Enable the function, set pagesize, enable error checking. */
|
|
value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
|
|
FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
|
|
|
|
/* Set/clear header splitting. */
|
|
mask = FSC_VM_PAGESIZE_MASK |
|
|
FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
|
|
ql_write32(qdev, FSC, mask | value);
|
|
|
|
ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
|
|
min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
|
|
|
|
/* Start up the rx queues. */
|
|
for (i = 0; i < qdev->rx_ring_count; i++) {
|
|
status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed to start rx ring[%d].\n", i);
|
|
return status;
|
|
}
|
|
}
|
|
|
|
/* If there is more than one inbound completion queue
|
|
* then download a RICB to configure RSS.
|
|
*/
|
|
if (qdev->rss_ring_count > 1) {
|
|
status = ql_start_rss(qdev);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
|
|
return status;
|
|
}
|
|
}
|
|
|
|
/* Start up the tx queues. */
|
|
for (i = 0; i < qdev->tx_ring_count; i++) {
|
|
status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Failed to start tx ring[%d].\n", i);
|
|
return status;
|
|
}
|
|
}
|
|
|
|
status = ql_port_initialize(qdev);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
|
|
return status;
|
|
}
|
|
|
|
status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
|
|
MAC_ADDR_TYPE_CAM_MAC, qdev->func);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
|
|
return status;
|
|
}
|
|
|
|
status = ql_route_initialize(qdev);
|
|
if (status) {
|
|
QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
|
|
return status;
|
|
}
|
|
|
|
/* Start NAPI for the RSS queues. */
|
|
for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
|
|
QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
|
|
i);
|
|
napi_enable(&qdev->rx_ring[i].napi);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Issue soft reset to chip. */
|
|
static int ql_adapter_reset(struct ql_adapter *qdev)
|
|
{
|
|
u32 value;
|
|
int max_wait_time;
|
|
int status = 0;
|
|
int resetCnt = 0;
|
|
|
|
#define MAX_RESET_CNT 1
|
|
issueReset:
|
|
resetCnt++;
|
|
QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
|
|
ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
|
|
/* Wait for reset to complete. */
|
|
max_wait_time = 3;
|
|
QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
|
|
max_wait_time);
|
|
do {
|
|
value = ql_read32(qdev, RST_FO);
|
|
if ((value & RST_FO_FR) == 0)
|
|
break;
|
|
|
|
ssleep(1);
|
|
} while ((--max_wait_time));
|
|
if (value & RST_FO_FR) {
|
|
QPRINTK(qdev, IFDOWN, ERR,
|
|
"Stuck in SoftReset: FSC_SR:0x%08x\n", value);
|
|
if (resetCnt < MAX_RESET_CNT)
|
|
goto issueReset;
|
|
}
|
|
if (max_wait_time == 0) {
|
|
status = -ETIMEDOUT;
|
|
QPRINTK(qdev, IFDOWN, ERR,
|
|
"ETIMEOUT!!! errored out of resetting the chip!\n");
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void ql_display_dev_info(struct net_device *ndev)
|
|
{
|
|
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
|
|
|
|
QPRINTK(qdev, PROBE, INFO,
|
|
"Function #%d, NIC Roll %d, NIC Rev = %d, "
|
|
"XG Roll = %d, XG Rev = %d.\n",
|
|
qdev->func,
|
|
qdev->chip_rev_id & 0x0000000f,
|
|
qdev->chip_rev_id >> 4 & 0x0000000f,
|
|
qdev->chip_rev_id >> 8 & 0x0000000f,
|
|
qdev->chip_rev_id >> 12 & 0x0000000f);
|
|
QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
|
|
}
|
|
|
|
static int ql_adapter_down(struct ql_adapter *qdev)
|
|
{
|
|
struct net_device *ndev = qdev->ndev;
|
|
int i, status = 0;
|
|
struct rx_ring *rx_ring;
|
|
|
|
netif_stop_queue(ndev);
|
|
netif_carrier_off(ndev);
|
|
|
|
cancel_delayed_work_sync(&qdev->asic_reset_work);
|
|
cancel_delayed_work_sync(&qdev->mpi_reset_work);
|
|
cancel_delayed_work_sync(&qdev->mpi_work);
|
|
|
|
/* The default queue at index 0 is always processed in
|
|
* a workqueue.
|
|
*/
|
|
cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
|
|
|
|
/* The rest of the rx_rings are processed in
|
|
* a workqueue only if it's a single interrupt
|
|
* environment (MSI/Legacy).
|
|
*/
|
|
for (i = 1; i < qdev->rx_ring_count; i++) {
|
|
rx_ring = &qdev->rx_ring[i];
|
|
/* Only the RSS rings use NAPI on multi irq
|
|
* environment. Outbound completion processing
|
|
* is done in interrupt context.
|
|
*/
|
|
if (i >= qdev->rss_ring_first_cq_id) {
|
|
napi_disable(&rx_ring->napi);
|
|
} else {
|
|
cancel_delayed_work_sync(&rx_ring->rx_work);
|
|
}
|
|
}
|
|
|
|
clear_bit(QL_ADAPTER_UP, &qdev->flags);
|
|
|
|
ql_disable_interrupts(qdev);
|
|
|
|
ql_tx_ring_clean(qdev);
|
|
|
|
spin_lock(&qdev->hw_lock);
|
|
status = ql_adapter_reset(qdev);
|
|
if (status)
|
|
QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
|
|
qdev->func);
|
|
spin_unlock(&qdev->hw_lock);
|
|
return status;
|
|
}
|
|
|
|
static int ql_adapter_up(struct ql_adapter *qdev)
|
|
{
|
|
int err = 0;
|
|
|
|
spin_lock(&qdev->hw_lock);
|
|
err = ql_adapter_initialize(qdev);
|
|
if (err) {
|
|
QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
|
|
spin_unlock(&qdev->hw_lock);
|
|
goto err_init;
|
|
}
|
|
spin_unlock(&qdev->hw_lock);
|
|
set_bit(QL_ADAPTER_UP, &qdev->flags);
|
|
ql_enable_interrupts(qdev);
|
|
ql_enable_all_completion_interrupts(qdev);
|
|
if ((ql_read32(qdev, STS) & qdev->port_init)) {
|
|
netif_carrier_on(qdev->ndev);
|
|
netif_start_queue(qdev->ndev);
|
|
}
|
|
|
|
return 0;
|
|
err_init:
|
|
ql_adapter_reset(qdev);
|
|
return err;
|
|
}
|
|
|
|
static int ql_cycle_adapter(struct ql_adapter *qdev)
|
|
{
|
|
int status;
|
|
|
|
status = ql_adapter_down(qdev);
|
|
if (status)
|
|
goto error;
|
|
|
|
status = ql_adapter_up(qdev);
|
|
if (status)
|
|
goto error;
|
|
|
|
return status;
|
|
error:
|
|
QPRINTK(qdev, IFUP, ALERT,
|
|
"Driver up/down cycle failed, closing device\n");
|
|
rtnl_lock();
|
|
dev_close(qdev->ndev);
|
|
rtnl_unlock();
|
|
return status;
|
|
}
|
|
|
|
static void ql_release_adapter_resources(struct ql_adapter *qdev)
|
|
{
|
|
ql_free_mem_resources(qdev);
|
|
ql_free_irq(qdev);
|
|
}
|
|
|
|
static int ql_get_adapter_resources(struct ql_adapter *qdev)
|
|
{
|
|
int status = 0;
|
|
|
|
if (ql_alloc_mem_resources(qdev)) {
|
|
QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
|
|
return -ENOMEM;
|
|
}
|
|
status = ql_request_irq(qdev);
|
|
if (status)
|
|
goto err_irq;
|
|
return status;
|
|
err_irq:
|
|
ql_free_mem_resources(qdev);
|
|
return status;
|
|
}
|
|
|
|
static int qlge_close(struct net_device *ndev)
|
|
{
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
/*
|
|
* Wait for device to recover from a reset.
|
|
* (Rarely happens, but possible.)
|
|
*/
|
|
while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
|
|
msleep(1);
|
|
ql_adapter_down(qdev);
|
|
ql_release_adapter_resources(qdev);
|
|
ql_free_ring_cb(qdev);
|
|
return 0;
|
|
}
|
|
|
|
static int ql_configure_rings(struct ql_adapter *qdev)
|
|
{
|
|
int i;
|
|
struct rx_ring *rx_ring;
|
|
struct tx_ring *tx_ring;
|
|
int cpu_cnt = num_online_cpus();
|
|
|
|
/*
|
|
* For each processor present we allocate one
|
|
* rx_ring for outbound completions, and one
|
|
* rx_ring for inbound completions. Plus there is
|
|
* always the one default queue. For the CPU
|
|
* counts we end up with the following rx_rings:
|
|
* rx_ring count =
|
|
* one default queue +
|
|
* (CPU count * outbound completion rx_ring) +
|
|
* (CPU count * inbound (RSS) completion rx_ring)
|
|
* To keep it simple we limit the total number of
|
|
* queues to < 32, so we truncate CPU to 8.
|
|
* This limitation can be removed when requested.
|
|
*/
|
|
|
|
if (cpu_cnt > 8)
|
|
cpu_cnt = 8;
|
|
|
|
/*
|
|
* rx_ring[0] is always the default queue.
|
|
*/
|
|
/* Allocate outbound completion ring for each CPU. */
|
|
qdev->tx_ring_count = cpu_cnt;
|
|
/* Allocate inbound completion (RSS) ring for each CPU. */
|
|
qdev->rss_ring_count = cpu_cnt;
|
|
/* cq_id for the first inbound ring handler. */
|
|
qdev->rss_ring_first_cq_id = cpu_cnt + 1;
|
|
/*
|
|
* qdev->rx_ring_count:
|
|
* Total number of rx_rings. This includes the one
|
|
* default queue, a number of outbound completion
|
|
* handler rx_rings, and the number of inbound
|
|
* completion handler rx_rings.
|
|
*/
|
|
qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
|
|
|
|
if (ql_alloc_ring_cb(qdev))
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < qdev->tx_ring_count; i++) {
|
|
tx_ring = &qdev->tx_ring[i];
|
|
memset((void *)tx_ring, 0, sizeof(tx_ring));
|
|
tx_ring->qdev = qdev;
|
|
tx_ring->wq_id = i;
|
|
tx_ring->wq_len = qdev->tx_ring_size;
|
|
tx_ring->wq_size =
|
|
tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
|
|
|
|
/*
|
|
* The completion queue ID for the tx rings start
|
|
* immediately after the default Q ID, which is zero.
|
|
*/
|
|
tx_ring->cq_id = i + 1;
|
|
}
|
|
|
|
for (i = 0; i < qdev->rx_ring_count; i++) {
|
|
rx_ring = &qdev->rx_ring[i];
|
|
memset((void *)rx_ring, 0, sizeof(rx_ring));
|
|
rx_ring->qdev = qdev;
|
|
rx_ring->cq_id = i;
|
|
rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
|
|
if (i == 0) { /* Default queue at index 0. */
|
|
/*
|
|
* Default queue handles bcast/mcast plus
|
|
* async events. Needs buffers.
|
|
*/
|
|
rx_ring->cq_len = qdev->rx_ring_size;
|
|
rx_ring->cq_size =
|
|
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
|
|
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
|
|
rx_ring->lbq_size =
|
|
rx_ring->lbq_len * sizeof(struct bq_element);
|
|
rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
|
|
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
|
|
rx_ring->sbq_size =
|
|
rx_ring->sbq_len * sizeof(struct bq_element);
|
|
rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
|
|
rx_ring->type = DEFAULT_Q;
|
|
} else if (i < qdev->rss_ring_first_cq_id) {
|
|
/*
|
|
* Outbound queue handles outbound completions only.
|
|
*/
|
|
/* outbound cq is same size as tx_ring it services. */
|
|
rx_ring->cq_len = qdev->tx_ring_size;
|
|
rx_ring->cq_size =
|
|
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
|
|
rx_ring->lbq_len = 0;
|
|
rx_ring->lbq_size = 0;
|
|
rx_ring->lbq_buf_size = 0;
|
|
rx_ring->sbq_len = 0;
|
|
rx_ring->sbq_size = 0;
|
|
rx_ring->sbq_buf_size = 0;
|
|
rx_ring->type = TX_Q;
|
|
} else { /* Inbound completions (RSS) queues */
|
|
/*
|
|
* Inbound queues handle unicast frames only.
|
|
*/
|
|
rx_ring->cq_len = qdev->rx_ring_size;
|
|
rx_ring->cq_size =
|
|
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
|
|
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
|
|
rx_ring->lbq_size =
|
|
rx_ring->lbq_len * sizeof(struct bq_element);
|
|
rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
|
|
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
|
|
rx_ring->sbq_size =
|
|
rx_ring->sbq_len * sizeof(struct bq_element);
|
|
rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
|
|
rx_ring->type = RX_Q;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int qlge_open(struct net_device *ndev)
|
|
{
|
|
int err = 0;
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
err = ql_configure_rings(qdev);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ql_get_adapter_resources(qdev);
|
|
if (err)
|
|
goto error_up;
|
|
|
|
err = ql_adapter_up(qdev);
|
|
if (err)
|
|
goto error_up;
|
|
|
|
return err;
|
|
|
|
error_up:
|
|
ql_release_adapter_resources(qdev);
|
|
ql_free_ring_cb(qdev);
|
|
return err;
|
|
}
|
|
|
|
static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
|
|
{
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
if (ndev->mtu == 1500 && new_mtu == 9000) {
|
|
QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
|
|
} else if (ndev->mtu == 9000 && new_mtu == 1500) {
|
|
QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
|
|
} else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
|
|
(ndev->mtu == 9000 && new_mtu == 9000)) {
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
ndev->mtu = new_mtu;
|
|
return 0;
|
|
}
|
|
|
|
static struct net_device_stats *qlge_get_stats(struct net_device
|
|
*ndev)
|
|
{
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
return &qdev->stats;
|
|
}
|
|
|
|
static void qlge_set_multicast_list(struct net_device *ndev)
|
|
{
|
|
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
|
|
struct dev_mc_list *mc_ptr;
|
|
int i;
|
|
|
|
spin_lock(&qdev->hw_lock);
|
|
/*
|
|
* Set or clear promiscuous mode if a
|
|
* transition is taking place.
|
|
*/
|
|
if (ndev->flags & IFF_PROMISC) {
|
|
if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
|
|
if (ql_set_routing_reg
|
|
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
|
|
QPRINTK(qdev, HW, ERR,
|
|
"Failed to set promiscous mode.\n");
|
|
} else {
|
|
set_bit(QL_PROMISCUOUS, &qdev->flags);
|
|
}
|
|
}
|
|
} else {
|
|
if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
|
|
if (ql_set_routing_reg
|
|
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
|
|
QPRINTK(qdev, HW, ERR,
|
|
"Failed to clear promiscous mode.\n");
|
|
} else {
|
|
clear_bit(QL_PROMISCUOUS, &qdev->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set or clear all multicast mode if a
|
|
* transition is taking place.
|
|
*/
|
|
if ((ndev->flags & IFF_ALLMULTI) ||
|
|
(ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
|
|
if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
|
|
if (ql_set_routing_reg
|
|
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
|
|
QPRINTK(qdev, HW, ERR,
|
|
"Failed to set all-multi mode.\n");
|
|
} else {
|
|
set_bit(QL_ALLMULTI, &qdev->flags);
|
|
}
|
|
}
|
|
} else {
|
|
if (test_bit(QL_ALLMULTI, &qdev->flags)) {
|
|
if (ql_set_routing_reg
|
|
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
|
|
QPRINTK(qdev, HW, ERR,
|
|
"Failed to clear all-multi mode.\n");
|
|
} else {
|
|
clear_bit(QL_ALLMULTI, &qdev->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ndev->mc_count) {
|
|
for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
|
|
i++, mc_ptr = mc_ptr->next)
|
|
if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
|
|
MAC_ADDR_TYPE_MULTI_MAC, i)) {
|
|
QPRINTK(qdev, HW, ERR,
|
|
"Failed to loadmulticast address.\n");
|
|
goto exit;
|
|
}
|
|
if (ql_set_routing_reg
|
|
(qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
|
|
QPRINTK(qdev, HW, ERR,
|
|
"Failed to set multicast match mode.\n");
|
|
} else {
|
|
set_bit(QL_ALLMULTI, &qdev->flags);
|
|
}
|
|
}
|
|
exit:
|
|
spin_unlock(&qdev->hw_lock);
|
|
}
|
|
|
|
static int qlge_set_mac_address(struct net_device *ndev, void *p)
|
|
{
|
|
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
|
|
struct sockaddr *addr = p;
|
|
int ret = 0;
|
|
|
|
if (netif_running(ndev))
|
|
return -EBUSY;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
|
|
|
|
spin_lock(&qdev->hw_lock);
|
|
if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
|
|
MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
|
|
QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
|
|
ret = -1;
|
|
}
|
|
spin_unlock(&qdev->hw_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void qlge_tx_timeout(struct net_device *ndev)
|
|
{
|
|
struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
|
|
queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
|
|
}
|
|
|
|
static void ql_asic_reset_work(struct work_struct *work)
|
|
{
|
|
struct ql_adapter *qdev =
|
|
container_of(work, struct ql_adapter, asic_reset_work.work);
|
|
ql_cycle_adapter(qdev);
|
|
}
|
|
|
|
static void ql_get_board_info(struct ql_adapter *qdev)
|
|
{
|
|
qdev->func =
|
|
(ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
|
|
if (qdev->func) {
|
|
qdev->xg_sem_mask = SEM_XGMAC1_MASK;
|
|
qdev->port_link_up = STS_PL1;
|
|
qdev->port_init = STS_PI1;
|
|
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
|
|
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
|
|
} else {
|
|
qdev->xg_sem_mask = SEM_XGMAC0_MASK;
|
|
qdev->port_link_up = STS_PL0;
|
|
qdev->port_init = STS_PI0;
|
|
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
|
|
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
|
|
}
|
|
qdev->chip_rev_id = ql_read32(qdev, REV_ID);
|
|
}
|
|
|
|
static void ql_release_all(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *ndev = pci_get_drvdata(pdev);
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
if (qdev->workqueue) {
|
|
destroy_workqueue(qdev->workqueue);
|
|
qdev->workqueue = NULL;
|
|
}
|
|
if (qdev->q_workqueue) {
|
|
destroy_workqueue(qdev->q_workqueue);
|
|
qdev->q_workqueue = NULL;
|
|
}
|
|
if (qdev->reg_base)
|
|
iounmap(qdev->reg_base);
|
|
if (qdev->doorbell_area)
|
|
iounmap(qdev->doorbell_area);
|
|
pci_release_regions(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static int __devinit ql_init_device(struct pci_dev *pdev,
|
|
struct net_device *ndev, int cards_found)
|
|
{
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
int pos, err = 0;
|
|
u16 val16;
|
|
|
|
memset((void *)qdev, 0, sizeof(qdev));
|
|
err = pci_enable_device(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "PCI device enable failed.\n");
|
|
return err;
|
|
}
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
|
|
if (pos <= 0) {
|
|
dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
|
|
"aborting.\n");
|
|
goto err_out;
|
|
} else {
|
|
pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
|
|
val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
|
|
val16 |= (PCI_EXP_DEVCTL_CERE |
|
|
PCI_EXP_DEVCTL_NFERE |
|
|
PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
|
|
pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
|
|
}
|
|
|
|
err = pci_request_regions(pdev, DRV_NAME);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "PCI region request failed.\n");
|
|
goto err_out;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
|
|
set_bit(QL_DMA64, &qdev->flags);
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
|
|
} else {
|
|
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
|
|
if (!err)
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
|
|
}
|
|
|
|
if (err) {
|
|
dev_err(&pdev->dev, "No usable DMA configuration.\n");
|
|
goto err_out;
|
|
}
|
|
|
|
pci_set_drvdata(pdev, ndev);
|
|
qdev->reg_base =
|
|
ioremap_nocache(pci_resource_start(pdev, 1),
|
|
pci_resource_len(pdev, 1));
|
|
if (!qdev->reg_base) {
|
|
dev_err(&pdev->dev, "Register mapping failed.\n");
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
qdev->doorbell_area_size = pci_resource_len(pdev, 3);
|
|
qdev->doorbell_area =
|
|
ioremap_nocache(pci_resource_start(pdev, 3),
|
|
pci_resource_len(pdev, 3));
|
|
if (!qdev->doorbell_area) {
|
|
dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
ql_get_board_info(qdev);
|
|
qdev->ndev = ndev;
|
|
qdev->pdev = pdev;
|
|
qdev->msg_enable = netif_msg_init(debug, default_msg);
|
|
spin_lock_init(&qdev->hw_lock);
|
|
spin_lock_init(&qdev->stats_lock);
|
|
|
|
/* make sure the EEPROM is good */
|
|
err = ql_get_flash_params(qdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "Invalid FLASH.\n");
|
|
goto err_out;
|
|
}
|
|
|
|
if (!is_valid_ether_addr(qdev->flash.mac_addr))
|
|
goto err_out;
|
|
|
|
memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
|
|
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
|
|
|
|
/* Set up the default ring sizes. */
|
|
qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
|
|
qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
|
|
|
|
/* Set up the coalescing parameters. */
|
|
qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
|
|
qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
|
|
qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
|
|
qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
|
|
|
|
/*
|
|
* Set up the operating parameters.
|
|
*/
|
|
qdev->rx_csum = 1;
|
|
|
|
qdev->q_workqueue = create_workqueue(ndev->name);
|
|
qdev->workqueue = create_singlethread_workqueue(ndev->name);
|
|
INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
|
|
INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
|
|
INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
|
|
|
|
if (!cards_found) {
|
|
dev_info(&pdev->dev, "%s\n", DRV_STRING);
|
|
dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
|
|
DRV_NAME, DRV_VERSION);
|
|
}
|
|
return 0;
|
|
err_out:
|
|
ql_release_all(pdev);
|
|
pci_disable_device(pdev);
|
|
return err;
|
|
}
|
|
|
|
|
|
static const struct net_device_ops qlge_netdev_ops = {
|
|
.ndo_open = qlge_open,
|
|
.ndo_stop = qlge_close,
|
|
.ndo_start_xmit = qlge_send,
|
|
.ndo_change_mtu = qlge_change_mtu,
|
|
.ndo_get_stats = qlge_get_stats,
|
|
.ndo_set_multicast_list = qlge_set_multicast_list,
|
|
.ndo_set_mac_address = qlge_set_mac_address,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_tx_timeout = qlge_tx_timeout,
|
|
.ndo_vlan_rx_register = ql_vlan_rx_register,
|
|
.ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
|
|
.ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
|
|
};
|
|
|
|
static int __devinit qlge_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *pci_entry)
|
|
{
|
|
struct net_device *ndev = NULL;
|
|
struct ql_adapter *qdev = NULL;
|
|
static int cards_found = 0;
|
|
int err = 0;
|
|
|
|
ndev = alloc_etherdev(sizeof(struct ql_adapter));
|
|
if (!ndev)
|
|
return -ENOMEM;
|
|
|
|
err = ql_init_device(pdev, ndev, cards_found);
|
|
if (err < 0) {
|
|
free_netdev(ndev);
|
|
return err;
|
|
}
|
|
|
|
qdev = netdev_priv(ndev);
|
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
|
ndev->features = (0
|
|
| NETIF_F_IP_CSUM
|
|
| NETIF_F_SG
|
|
| NETIF_F_TSO
|
|
| NETIF_F_TSO6
|
|
| NETIF_F_TSO_ECN
|
|
| NETIF_F_HW_VLAN_TX
|
|
| NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
|
|
|
|
if (test_bit(QL_DMA64, &qdev->flags))
|
|
ndev->features |= NETIF_F_HIGHDMA;
|
|
|
|
/*
|
|
* Set up net_device structure.
|
|
*/
|
|
ndev->tx_queue_len = qdev->tx_ring_size;
|
|
ndev->irq = pdev->irq;
|
|
|
|
ndev->netdev_ops = &qlge_netdev_ops;
|
|
SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
|
|
ndev->watchdog_timeo = 10 * HZ;
|
|
|
|
err = register_netdev(ndev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "net device registration failed.\n");
|
|
ql_release_all(pdev);
|
|
pci_disable_device(pdev);
|
|
return err;
|
|
}
|
|
netif_carrier_off(ndev);
|
|
netif_stop_queue(ndev);
|
|
ql_display_dev_info(ndev);
|
|
cards_found++;
|
|
return 0;
|
|
}
|
|
|
|
static void __devexit qlge_remove(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *ndev = pci_get_drvdata(pdev);
|
|
unregister_netdev(ndev);
|
|
ql_release_all(pdev);
|
|
pci_disable_device(pdev);
|
|
free_netdev(ndev);
|
|
}
|
|
|
|
/*
|
|
* This callback is called by the PCI subsystem whenever
|
|
* a PCI bus error is detected.
|
|
*/
|
|
static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
|
|
enum pci_channel_state state)
|
|
{
|
|
struct net_device *ndev = pci_get_drvdata(pdev);
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
if (netif_running(ndev))
|
|
ql_adapter_down(qdev);
|
|
|
|
pci_disable_device(pdev);
|
|
|
|
/* Request a slot reset. */
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
/*
|
|
* This callback is called after the PCI buss has been reset.
|
|
* Basically, this tries to restart the card from scratch.
|
|
* This is a shortened version of the device probe/discovery code,
|
|
* it resembles the first-half of the () routine.
|
|
*/
|
|
static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *ndev = pci_get_drvdata(pdev);
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
if (pci_enable_device(pdev)) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Cannot re-enable PCI device after reset.\n");
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
netif_carrier_off(ndev);
|
|
netif_stop_queue(ndev);
|
|
ql_adapter_reset(qdev);
|
|
|
|
/* Make sure the EEPROM is good */
|
|
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
|
|
|
|
if (!is_valid_ether_addr(ndev->perm_addr)) {
|
|
QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
static void qlge_io_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *ndev = pci_get_drvdata(pdev);
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
|
|
pci_set_master(pdev);
|
|
|
|
if (netif_running(ndev)) {
|
|
if (ql_adapter_up(qdev)) {
|
|
QPRINTK(qdev, IFUP, ERR,
|
|
"Device initialization failed after reset.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
netif_device_attach(ndev);
|
|
}
|
|
|
|
static struct pci_error_handlers qlge_err_handler = {
|
|
.error_detected = qlge_io_error_detected,
|
|
.slot_reset = qlge_io_slot_reset,
|
|
.resume = qlge_io_resume,
|
|
};
|
|
|
|
static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *ndev = pci_get_drvdata(pdev);
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
int err;
|
|
|
|
netif_device_detach(ndev);
|
|
|
|
if (netif_running(ndev)) {
|
|
err = ql_adapter_down(qdev);
|
|
if (!err)
|
|
return err;
|
|
}
|
|
|
|
err = pci_save_state(pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
pci_disable_device(pdev);
|
|
|
|
pci_set_power_state(pdev, pci_choose_state(pdev, state));
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int qlge_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *ndev = pci_get_drvdata(pdev);
|
|
struct ql_adapter *qdev = netdev_priv(ndev);
|
|
int err;
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
err = pci_enable_device(pdev);
|
|
if (err) {
|
|
QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
|
|
return err;
|
|
}
|
|
pci_set_master(pdev);
|
|
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
|
|
if (netif_running(ndev)) {
|
|
err = ql_adapter_up(qdev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
netif_device_attach(ndev);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static void qlge_shutdown(struct pci_dev *pdev)
|
|
{
|
|
qlge_suspend(pdev, PMSG_SUSPEND);
|
|
}
|
|
|
|
static struct pci_driver qlge_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = qlge_pci_tbl,
|
|
.probe = qlge_probe,
|
|
.remove = __devexit_p(qlge_remove),
|
|
#ifdef CONFIG_PM
|
|
.suspend = qlge_suspend,
|
|
.resume = qlge_resume,
|
|
#endif
|
|
.shutdown = qlge_shutdown,
|
|
.err_handler = &qlge_err_handler
|
|
};
|
|
|
|
static int __init qlge_init_module(void)
|
|
{
|
|
return pci_register_driver(&qlge_driver);
|
|
}
|
|
|
|
static void __exit qlge_exit(void)
|
|
{
|
|
pci_unregister_driver(&qlge_driver);
|
|
}
|
|
|
|
module_init(qlge_init_module);
|
|
module_exit(qlge_exit);
|