forked from Minki/linux
c5637837ba
ib.vm is a legacy way to get vm, after scheduler implemented vm should be get from job, and all ibs from one job share the same vm, no need to keep ib.vm just move vm field to job. this patch as well add job as paramter to ib_schedule so it can get vm from job->vm. v2: agd: sqaush in: drm/amdgpu: check if ring emit_vm_flush exists in vm flush No vm flush on engines that don't support VM. bug: https://bugs.freedesktop.org/show_bug.cgi?id=95195 Signed-off-by: Monk Liu <Monk.Liu@amd.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1687 lines
47 KiB
C
1687 lines
47 KiB
C
/*
|
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Alex Deucher
|
|
*/
|
|
#include <linux/firmware.h>
|
|
#include <drm/drmP.h>
|
|
#include "amdgpu.h"
|
|
#include "amdgpu_ucode.h"
|
|
#include "amdgpu_trace.h"
|
|
#include "vi.h"
|
|
#include "vid.h"
|
|
|
|
#include "oss/oss_3_0_d.h"
|
|
#include "oss/oss_3_0_sh_mask.h"
|
|
|
|
#include "gmc/gmc_8_1_d.h"
|
|
#include "gmc/gmc_8_1_sh_mask.h"
|
|
|
|
#include "gca/gfx_8_0_d.h"
|
|
#include "gca/gfx_8_0_enum.h"
|
|
#include "gca/gfx_8_0_sh_mask.h"
|
|
|
|
#include "bif/bif_5_0_d.h"
|
|
#include "bif/bif_5_0_sh_mask.h"
|
|
|
|
#include "tonga_sdma_pkt_open.h"
|
|
|
|
static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
|
|
static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
|
|
static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
|
|
static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
|
|
|
|
MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
|
|
MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
|
|
MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
|
|
MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
|
|
MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
|
|
MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
|
|
|
|
|
|
static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
|
|
{
|
|
SDMA0_REGISTER_OFFSET,
|
|
SDMA1_REGISTER_OFFSET
|
|
};
|
|
|
|
static const u32 golden_settings_tonga_a11[] =
|
|
{
|
|
mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
|
|
mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
|
|
mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
};
|
|
|
|
static const u32 tonga_mgcg_cgcg_init[] =
|
|
{
|
|
mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
|
|
mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
|
|
};
|
|
|
|
static const u32 golden_settings_fiji_a10[] =
|
|
{
|
|
mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
};
|
|
|
|
static const u32 fiji_mgcg_cgcg_init[] =
|
|
{
|
|
mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
|
|
mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
|
|
};
|
|
|
|
static const u32 golden_settings_polaris11_a11[] =
|
|
{
|
|
mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
};
|
|
|
|
static const u32 golden_settings_polaris10_a11[] =
|
|
{
|
|
mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
|
|
mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
|
|
mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
|
|
mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
|
|
};
|
|
|
|
static const u32 cz_golden_settings_a11[] =
|
|
{
|
|
mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
|
|
mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
|
|
mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
|
|
mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
|
|
mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
|
|
mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
|
|
mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
|
|
mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
|
|
mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
|
|
mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
|
|
mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
|
|
};
|
|
|
|
static const u32 cz_mgcg_cgcg_init[] =
|
|
{
|
|
mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
|
|
mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
|
|
};
|
|
|
|
static const u32 stoney_golden_settings_a11[] =
|
|
{
|
|
mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
|
|
mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
|
|
mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
|
|
mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
|
|
};
|
|
|
|
static const u32 stoney_mgcg_cgcg_init[] =
|
|
{
|
|
mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
|
|
};
|
|
|
|
/*
|
|
* sDMA - System DMA
|
|
* Starting with CIK, the GPU has new asynchronous
|
|
* DMA engines. These engines are used for compute
|
|
* and gfx. There are two DMA engines (SDMA0, SDMA1)
|
|
* and each one supports 1 ring buffer used for gfx
|
|
* and 2 queues used for compute.
|
|
*
|
|
* The programming model is very similar to the CP
|
|
* (ring buffer, IBs, etc.), but sDMA has it's own
|
|
* packet format that is different from the PM4 format
|
|
* used by the CP. sDMA supports copying data, writing
|
|
* embedded data, solid fills, and a number of other
|
|
* things. It also has support for tiling/detiling of
|
|
* buffers.
|
|
*/
|
|
|
|
static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
|
|
{
|
|
switch (adev->asic_type) {
|
|
case CHIP_FIJI:
|
|
amdgpu_program_register_sequence(adev,
|
|
fiji_mgcg_cgcg_init,
|
|
(const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
|
|
amdgpu_program_register_sequence(adev,
|
|
golden_settings_fiji_a10,
|
|
(const u32)ARRAY_SIZE(golden_settings_fiji_a10));
|
|
break;
|
|
case CHIP_TONGA:
|
|
amdgpu_program_register_sequence(adev,
|
|
tonga_mgcg_cgcg_init,
|
|
(const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
|
|
amdgpu_program_register_sequence(adev,
|
|
golden_settings_tonga_a11,
|
|
(const u32)ARRAY_SIZE(golden_settings_tonga_a11));
|
|
break;
|
|
case CHIP_POLARIS11:
|
|
amdgpu_program_register_sequence(adev,
|
|
golden_settings_polaris11_a11,
|
|
(const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
|
|
break;
|
|
case CHIP_POLARIS10:
|
|
amdgpu_program_register_sequence(adev,
|
|
golden_settings_polaris10_a11,
|
|
(const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
|
|
break;
|
|
case CHIP_CARRIZO:
|
|
amdgpu_program_register_sequence(adev,
|
|
cz_mgcg_cgcg_init,
|
|
(const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
|
|
amdgpu_program_register_sequence(adev,
|
|
cz_golden_settings_a11,
|
|
(const u32)ARRAY_SIZE(cz_golden_settings_a11));
|
|
break;
|
|
case CHIP_STONEY:
|
|
amdgpu_program_register_sequence(adev,
|
|
stoney_mgcg_cgcg_init,
|
|
(const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
|
|
amdgpu_program_register_sequence(adev,
|
|
stoney_golden_settings_a11,
|
|
(const u32)ARRAY_SIZE(stoney_golden_settings_a11));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_init_microcode - load ucode images from disk
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Use the firmware interface to load the ucode images into
|
|
* the driver (not loaded into hw).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
|
|
{
|
|
const char *chip_name;
|
|
char fw_name[30];
|
|
int err = 0, i;
|
|
struct amdgpu_firmware_info *info = NULL;
|
|
const struct common_firmware_header *header = NULL;
|
|
const struct sdma_firmware_header_v1_0 *hdr;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
switch (adev->asic_type) {
|
|
case CHIP_TONGA:
|
|
chip_name = "tonga";
|
|
break;
|
|
case CHIP_FIJI:
|
|
chip_name = "fiji";
|
|
break;
|
|
case CHIP_POLARIS11:
|
|
chip_name = "polaris11";
|
|
break;
|
|
case CHIP_POLARIS10:
|
|
chip_name = "polaris10";
|
|
break;
|
|
case CHIP_CARRIZO:
|
|
chip_name = "carrizo";
|
|
break;
|
|
case CHIP_STONEY:
|
|
chip_name = "stoney";
|
|
break;
|
|
default: BUG();
|
|
}
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
if (i == 0)
|
|
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
|
|
else
|
|
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
|
|
err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
|
|
if (err)
|
|
goto out;
|
|
err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
|
|
if (err)
|
|
goto out;
|
|
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
|
|
adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
|
|
adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
|
|
if (adev->sdma.instance[i].feature_version >= 20)
|
|
adev->sdma.instance[i].burst_nop = true;
|
|
|
|
if (adev->firmware.smu_load) {
|
|
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
|
|
info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
|
|
info->fw = adev->sdma.instance[i].fw;
|
|
header = (const struct common_firmware_header *)info->fw->data;
|
|
adev->firmware.fw_size +=
|
|
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
|
|
}
|
|
}
|
|
out:
|
|
if (err) {
|
|
printk(KERN_ERR
|
|
"sdma_v3_0: Failed to load firmware \"%s\"\n",
|
|
fw_name);
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
release_firmware(adev->sdma.instance[i].fw);
|
|
adev->sdma.instance[i].fw = NULL;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_get_rptr - get the current read pointer
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Get the current rptr from the hardware (VI+).
|
|
*/
|
|
static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
|
|
{
|
|
u32 rptr;
|
|
|
|
/* XXX check if swapping is necessary on BE */
|
|
rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
|
|
|
|
return rptr;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_get_wptr - get the current write pointer
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Get the current wptr from the hardware (VI+).
|
|
*/
|
|
static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
u32 wptr;
|
|
|
|
if (ring->use_doorbell) {
|
|
/* XXX check if swapping is necessary on BE */
|
|
wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
|
|
} else {
|
|
int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
|
|
|
|
wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
|
|
}
|
|
|
|
return wptr;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_set_wptr - commit the write pointer
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Write the wptr back to the hardware (VI+).
|
|
*/
|
|
static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
|
|
if (ring->use_doorbell) {
|
|
/* XXX check if swapping is necessary on BE */
|
|
adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
|
|
WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
|
|
} else {
|
|
int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
|
|
|
|
WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
|
|
}
|
|
}
|
|
|
|
static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
|
|
{
|
|
struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
if (sdma && sdma->burst_nop && (i == 0))
|
|
amdgpu_ring_write(ring, ring->nop |
|
|
SDMA_PKT_NOP_HEADER_COUNT(count - 1));
|
|
else
|
|
amdgpu_ring_write(ring, ring->nop);
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
* @ib: IB object to schedule
|
|
*
|
|
* Schedule an IB in the DMA ring (VI).
|
|
*/
|
|
static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
|
|
struct amdgpu_ib *ib)
|
|
{
|
|
u32 vmid = ib->vm_id & 0xf;
|
|
u32 next_rptr = ring->wptr + 5;
|
|
|
|
while ((next_rptr & 7) != 2)
|
|
next_rptr++;
|
|
next_rptr += 6;
|
|
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
|
|
amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
|
|
amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
|
|
amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
|
|
amdgpu_ring_write(ring, next_rptr);
|
|
|
|
/* IB packet must end on a 8 DW boundary */
|
|
sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
|
|
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
|
|
SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
|
|
/* base must be 32 byte aligned */
|
|
amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
|
|
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
|
|
amdgpu_ring_write(ring, ib->length_dw);
|
|
amdgpu_ring_write(ring, 0);
|
|
amdgpu_ring_write(ring, 0);
|
|
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
*
|
|
* Emit an hdp flush packet on the requested DMA ring.
|
|
*/
|
|
static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
|
|
{
|
|
u32 ref_and_mask = 0;
|
|
|
|
if (ring == &ring->adev->sdma.instance[0].ring)
|
|
ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
|
|
else
|
|
ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
|
|
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
|
|
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
|
|
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
|
|
amdgpu_ring_write(ring, ref_and_mask); /* reference */
|
|
amdgpu_ring_write(ring, ref_and_mask); /* mask */
|
|
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
|
|
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
|
|
}
|
|
|
|
static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
|
|
{
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
|
|
SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
|
|
amdgpu_ring_write(ring, mmHDP_DEBUG0);
|
|
amdgpu_ring_write(ring, 1);
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
|
|
*
|
|
* @ring: amdgpu ring pointer
|
|
* @fence: amdgpu fence object
|
|
*
|
|
* Add a DMA fence packet to the ring to write
|
|
* the fence seq number and DMA trap packet to generate
|
|
* an interrupt if needed (VI).
|
|
*/
|
|
static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
|
|
unsigned flags)
|
|
{
|
|
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
|
|
/* write the fence */
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
|
|
amdgpu_ring_write(ring, lower_32_bits(addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(addr));
|
|
amdgpu_ring_write(ring, lower_32_bits(seq));
|
|
|
|
/* optionally write high bits as well */
|
|
if (write64bit) {
|
|
addr += 4;
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
|
|
amdgpu_ring_write(ring, lower_32_bits(addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(seq));
|
|
}
|
|
|
|
/* generate an interrupt */
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
|
|
amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
|
|
}
|
|
|
|
unsigned init_cond_exec(struct amdgpu_ring *ring)
|
|
{
|
|
unsigned ret;
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
|
|
amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
|
|
amdgpu_ring_write(ring, 1);
|
|
ret = ring->wptr;/* this is the offset we need patch later */
|
|
amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
|
|
return ret;
|
|
}
|
|
|
|
void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
|
|
{
|
|
unsigned cur;
|
|
BUG_ON(ring->ring[offset] != 0x55aa55aa);
|
|
|
|
cur = ring->wptr - 1;
|
|
if (likely(cur > offset))
|
|
ring->ring[offset] = cur - offset;
|
|
else
|
|
ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
|
|
}
|
|
|
|
|
|
/**
|
|
* sdma_v3_0_gfx_stop - stop the gfx async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Stop the gfx async dma ring buffers (VI).
|
|
*/
|
|
static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
|
|
{
|
|
struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
|
|
struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
|
|
u32 rb_cntl, ib_cntl;
|
|
int i;
|
|
|
|
if ((adev->mman.buffer_funcs_ring == sdma0) ||
|
|
(adev->mman.buffer_funcs_ring == sdma1))
|
|
amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
|
|
WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
|
|
ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
|
|
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
|
|
WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
|
|
}
|
|
sdma0->ready = false;
|
|
sdma1->ready = false;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_rlc_stop - stop the compute async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Stop the compute async dma queues (VI).
|
|
*/
|
|
static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
|
|
{
|
|
/* XXX todo */
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @enable: enable/disable the DMA MEs context switch.
|
|
*
|
|
* Halt or unhalt the async dma engines context switch (VI).
|
|
*/
|
|
static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
|
|
{
|
|
u32 f32_cntl;
|
|
int i;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
|
|
if (enable)
|
|
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
|
|
AUTO_CTXSW_ENABLE, 1);
|
|
else
|
|
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
|
|
AUTO_CTXSW_ENABLE, 0);
|
|
WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_enable - stop the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @enable: enable/disable the DMA MEs.
|
|
*
|
|
* Halt or unhalt the async dma engines (VI).
|
|
*/
|
|
static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
|
|
{
|
|
u32 f32_cntl;
|
|
int i;
|
|
|
|
if (enable == false) {
|
|
sdma_v3_0_gfx_stop(adev);
|
|
sdma_v3_0_rlc_stop(adev);
|
|
}
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
|
|
if (enable)
|
|
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
|
|
else
|
|
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
|
|
WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_gfx_resume - setup and start the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Set up the gfx DMA ring buffers and enable them (VI).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
|
|
{
|
|
struct amdgpu_ring *ring;
|
|
u32 rb_cntl, ib_cntl;
|
|
u32 rb_bufsz;
|
|
u32 wb_offset;
|
|
u32 doorbell;
|
|
int i, j, r;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
ring = &adev->sdma.instance[i].ring;
|
|
wb_offset = (ring->rptr_offs * 4);
|
|
|
|
mutex_lock(&adev->srbm_mutex);
|
|
for (j = 0; j < 16; j++) {
|
|
vi_srbm_select(adev, 0, 0, 0, j);
|
|
/* SDMA GFX */
|
|
WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
|
|
WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
|
|
}
|
|
vi_srbm_select(adev, 0, 0, 0, 0);
|
|
mutex_unlock(&adev->srbm_mutex);
|
|
|
|
WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
|
|
adev->gfx.config.gb_addr_config & 0x70);
|
|
|
|
WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
|
|
|
|
/* Set ring buffer size in dwords */
|
|
rb_bufsz = order_base_2(ring->ring_size / 4);
|
|
rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
|
|
#ifdef __BIG_ENDIAN
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
|
|
RPTR_WRITEBACK_SWAP_ENABLE, 1);
|
|
#endif
|
|
WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
|
|
|
|
/* Initialize the ring buffer's read and write pointers */
|
|
WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
|
|
WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
|
|
|
|
/* set the wb address whether it's enabled or not */
|
|
WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
|
|
upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
|
|
WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
|
|
lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
|
|
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
|
|
|
|
WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
|
|
WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
|
|
|
|
ring->wptr = 0;
|
|
WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
|
|
|
|
doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
|
|
|
|
if (ring->use_doorbell) {
|
|
doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
|
|
OFFSET, ring->doorbell_index);
|
|
doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
|
|
} else {
|
|
doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
|
|
}
|
|
WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
|
|
|
|
/* enable DMA RB */
|
|
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
|
|
WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
|
|
|
|
ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
|
|
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
|
|
#ifdef __BIG_ENDIAN
|
|
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
|
|
#endif
|
|
/* enable DMA IBs */
|
|
WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
|
|
|
|
ring->ready = true;
|
|
|
|
r = amdgpu_ring_test_ring(ring);
|
|
if (r) {
|
|
ring->ready = false;
|
|
return r;
|
|
}
|
|
|
|
if (adev->mman.buffer_funcs_ring == ring)
|
|
amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_rlc_resume - setup and start the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Set up the compute DMA queues and enable them (VI).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
|
|
{
|
|
/* XXX todo */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_load_microcode - load the sDMA ME ucode
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Loads the sDMA0/1 ucode.
|
|
* Returns 0 for success, -EINVAL if the ucode is not available.
|
|
*/
|
|
static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
|
|
{
|
|
const struct sdma_firmware_header_v1_0 *hdr;
|
|
const __le32 *fw_data;
|
|
u32 fw_size;
|
|
int i, j;
|
|
|
|
/* halt the MEs */
|
|
sdma_v3_0_enable(adev, false);
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
if (!adev->sdma.instance[i].fw)
|
|
return -EINVAL;
|
|
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
|
|
amdgpu_ucode_print_sdma_hdr(&hdr->header);
|
|
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
|
|
fw_data = (const __le32 *)
|
|
(adev->sdma.instance[i].fw->data +
|
|
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
|
|
WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
|
|
for (j = 0; j < fw_size; j++)
|
|
WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
|
|
WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_start - setup and start the async dma engines
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Set up the DMA engines and enable them (VI).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v3_0_start(struct amdgpu_device *adev)
|
|
{
|
|
int r, i;
|
|
|
|
if (!adev->pp_enabled) {
|
|
if (!adev->firmware.smu_load) {
|
|
r = sdma_v3_0_load_microcode(adev);
|
|
if (r)
|
|
return r;
|
|
} else {
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
|
|
(i == 0) ?
|
|
AMDGPU_UCODE_ID_SDMA0 :
|
|
AMDGPU_UCODE_ID_SDMA1);
|
|
if (r)
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* unhalt the MEs */
|
|
sdma_v3_0_enable(adev, true);
|
|
/* enable sdma ring preemption */
|
|
sdma_v3_0_ctx_switch_enable(adev, true);
|
|
|
|
/* start the gfx rings and rlc compute queues */
|
|
r = sdma_v3_0_gfx_resume(adev);
|
|
if (r)
|
|
return r;
|
|
r = sdma_v3_0_rlc_resume(adev);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_test_ring - simple async dma engine test
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
*
|
|
* Test the DMA engine by writing using it to write an
|
|
* value to memory. (VI).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
unsigned i;
|
|
unsigned index;
|
|
int r;
|
|
u32 tmp;
|
|
u64 gpu_addr;
|
|
|
|
r = amdgpu_wb_get(adev, &index);
|
|
if (r) {
|
|
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
|
|
return r;
|
|
}
|
|
|
|
gpu_addr = adev->wb.gpu_addr + (index * 4);
|
|
tmp = 0xCAFEDEAD;
|
|
adev->wb.wb[index] = cpu_to_le32(tmp);
|
|
|
|
r = amdgpu_ring_alloc(ring, 5);
|
|
if (r) {
|
|
DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
|
|
amdgpu_wb_free(adev, index);
|
|
return r;
|
|
}
|
|
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
|
|
amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
|
|
amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
|
|
amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
|
|
amdgpu_ring_write(ring, 0xDEADBEEF);
|
|
amdgpu_ring_commit(ring);
|
|
|
|
for (i = 0; i < adev->usec_timeout; i++) {
|
|
tmp = le32_to_cpu(adev->wb.wb[index]);
|
|
if (tmp == 0xDEADBEEF)
|
|
break;
|
|
DRM_UDELAY(1);
|
|
}
|
|
|
|
if (i < adev->usec_timeout) {
|
|
DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
|
|
} else {
|
|
DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
|
|
ring->idx, tmp);
|
|
r = -EINVAL;
|
|
}
|
|
amdgpu_wb_free(adev, index);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_test_ib - test an IB on the DMA engine
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
*
|
|
* Test a simple IB in the DMA ring (VI).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
struct amdgpu_ib ib;
|
|
struct fence *f = NULL;
|
|
unsigned i;
|
|
unsigned index;
|
|
int r;
|
|
u32 tmp = 0;
|
|
u64 gpu_addr;
|
|
|
|
r = amdgpu_wb_get(adev, &index);
|
|
if (r) {
|
|
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
|
|
return r;
|
|
}
|
|
|
|
gpu_addr = adev->wb.gpu_addr + (index * 4);
|
|
tmp = 0xCAFEDEAD;
|
|
adev->wb.wb[index] = cpu_to_le32(tmp);
|
|
memset(&ib, 0, sizeof(ib));
|
|
r = amdgpu_ib_get(adev, NULL, 256, &ib);
|
|
if (r) {
|
|
DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
|
|
goto err0;
|
|
}
|
|
|
|
ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
|
|
ib.ptr[1] = lower_32_bits(gpu_addr);
|
|
ib.ptr[2] = upper_32_bits(gpu_addr);
|
|
ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
|
|
ib.ptr[4] = 0xDEADBEEF;
|
|
ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
|
|
ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
|
|
ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
|
|
ib.length_dw = 8;
|
|
|
|
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
|
|
if (r)
|
|
goto err1;
|
|
|
|
r = fence_wait(f, false);
|
|
if (r) {
|
|
DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
|
|
goto err1;
|
|
}
|
|
for (i = 0; i < adev->usec_timeout; i++) {
|
|
tmp = le32_to_cpu(adev->wb.wb[index]);
|
|
if (tmp == 0xDEADBEEF)
|
|
break;
|
|
DRM_UDELAY(1);
|
|
}
|
|
if (i < adev->usec_timeout) {
|
|
DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
|
|
ring->idx, i);
|
|
goto err1;
|
|
} else {
|
|
DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
|
|
r = -EINVAL;
|
|
}
|
|
err1:
|
|
fence_put(f);
|
|
amdgpu_ib_free(adev, &ib, NULL);
|
|
fence_put(f);
|
|
err0:
|
|
amdgpu_wb_free(adev, index);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
|
|
*
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @src: src addr to copy from
|
|
* @count: number of page entries to update
|
|
*
|
|
* Update PTEs by copying them from the GART using sDMA (CIK).
|
|
*/
|
|
static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
|
|
uint64_t pe, uint64_t src,
|
|
unsigned count)
|
|
{
|
|
while (count) {
|
|
unsigned bytes = count * 8;
|
|
if (bytes > 0x1FFFF8)
|
|
bytes = 0x1FFFF8;
|
|
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
|
|
ib->ptr[ib->length_dw++] = bytes;
|
|
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(src);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(src);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
|
|
pe += bytes;
|
|
src += bytes;
|
|
count -= bytes / 8;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_vm_write_pte - update PTEs by writing them manually
|
|
*
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @addr: dst addr to write into pe
|
|
* @count: number of page entries to update
|
|
* @incr: increase next addr by incr bytes
|
|
* @flags: access flags
|
|
*
|
|
* Update PTEs by writing them manually using sDMA (CIK).
|
|
*/
|
|
static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
|
|
const dma_addr_t *pages_addr, uint64_t pe,
|
|
uint64_t addr, unsigned count,
|
|
uint32_t incr, uint32_t flags)
|
|
{
|
|
uint64_t value;
|
|
unsigned ndw;
|
|
|
|
while (count) {
|
|
ndw = count * 2;
|
|
if (ndw > 0xFFFFE)
|
|
ndw = 0xFFFFE;
|
|
|
|
/* for non-physically contiguous pages (system) */
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
|
|
ib->ptr[ib->length_dw++] = pe;
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = ndw;
|
|
for (; ndw > 0; ndw -= 2, --count, pe += 8) {
|
|
value = amdgpu_vm_map_gart(pages_addr, addr);
|
|
addr += incr;
|
|
value |= flags;
|
|
ib->ptr[ib->length_dw++] = value;
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
|
|
*
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @addr: dst addr to write into pe
|
|
* @count: number of page entries to update
|
|
* @incr: increase next addr by incr bytes
|
|
* @flags: access flags
|
|
*
|
|
* Update the page tables using sDMA (CIK).
|
|
*/
|
|
static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
|
|
uint64_t pe,
|
|
uint64_t addr, unsigned count,
|
|
uint32_t incr, uint32_t flags)
|
|
{
|
|
uint64_t value;
|
|
unsigned ndw;
|
|
|
|
while (count) {
|
|
ndw = count;
|
|
if (ndw > 0x7FFFF)
|
|
ndw = 0x7FFFF;
|
|
|
|
if (flags & AMDGPU_PTE_VALID)
|
|
value = addr;
|
|
else
|
|
value = 0;
|
|
|
|
/* for physically contiguous pages (vram) */
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
|
|
ib->ptr[ib->length_dw++] = pe; /* dst addr */
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = flags; /* mask */
|
|
ib->ptr[ib->length_dw++] = 0;
|
|
ib->ptr[ib->length_dw++] = value; /* value */
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(value);
|
|
ib->ptr[ib->length_dw++] = incr; /* increment size */
|
|
ib->ptr[ib->length_dw++] = 0;
|
|
ib->ptr[ib->length_dw++] = ndw; /* number of entries */
|
|
|
|
pe += ndw * 8;
|
|
addr += ndw * incr;
|
|
count -= ndw;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
|
|
*
|
|
* @ib: indirect buffer to fill with padding
|
|
*
|
|
*/
|
|
static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
|
|
{
|
|
struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
|
|
u32 pad_count;
|
|
int i;
|
|
|
|
pad_count = (8 - (ib->length_dw & 0x7)) % 8;
|
|
for (i = 0; i < pad_count; i++)
|
|
if (sdma && sdma->burst_nop && (i == 0))
|
|
ib->ptr[ib->length_dw++] =
|
|
SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
|
|
SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
|
|
else
|
|
ib->ptr[ib->length_dw++] =
|
|
SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
|
|
*
|
|
* @ring: amdgpu_ring pointer
|
|
*
|
|
* Make sure all previous operations are completed (CIK).
|
|
*/
|
|
static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
|
|
{
|
|
uint32_t seq = ring->fence_drv.sync_seq;
|
|
uint64_t addr = ring->fence_drv.gpu_addr;
|
|
|
|
/* wait for idle */
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
|
|
SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
|
|
amdgpu_ring_write(ring, addr & 0xfffffffc);
|
|
amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
|
|
amdgpu_ring_write(ring, seq); /* reference */
|
|
amdgpu_ring_write(ring, 0xfffffff); /* mask */
|
|
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
|
|
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
|
|
*
|
|
* @ring: amdgpu_ring pointer
|
|
* @vm: amdgpu_vm pointer
|
|
*
|
|
* Update the page table base and flush the VM TLB
|
|
* using sDMA (VI).
|
|
*/
|
|
static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
|
|
unsigned vm_id, uint64_t pd_addr)
|
|
{
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
|
|
SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
|
|
if (vm_id < 8) {
|
|
amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
|
|
} else {
|
|
amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
|
|
}
|
|
amdgpu_ring_write(ring, pd_addr >> 12);
|
|
|
|
/* flush TLB */
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
|
|
SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
|
|
amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
|
|
amdgpu_ring_write(ring, 1 << vm_id);
|
|
|
|
/* wait for flush */
|
|
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
|
|
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
|
|
amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
|
|
amdgpu_ring_write(ring, 0);
|
|
amdgpu_ring_write(ring, 0); /* reference */
|
|
amdgpu_ring_write(ring, 0); /* mask */
|
|
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
|
|
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
|
|
}
|
|
|
|
static int sdma_v3_0_early_init(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
switch (adev->asic_type) {
|
|
case CHIP_STONEY:
|
|
adev->sdma.num_instances = 1;
|
|
break;
|
|
default:
|
|
adev->sdma.num_instances = SDMA_MAX_INSTANCE;
|
|
break;
|
|
}
|
|
|
|
sdma_v3_0_set_ring_funcs(adev);
|
|
sdma_v3_0_set_buffer_funcs(adev);
|
|
sdma_v3_0_set_vm_pte_funcs(adev);
|
|
sdma_v3_0_set_irq_funcs(adev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v3_0_sw_init(void *handle)
|
|
{
|
|
struct amdgpu_ring *ring;
|
|
int r, i;
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
/* SDMA trap event */
|
|
r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
|
|
if (r)
|
|
return r;
|
|
|
|
/* SDMA Privileged inst */
|
|
r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
|
|
if (r)
|
|
return r;
|
|
|
|
/* SDMA Privileged inst */
|
|
r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
|
|
if (r)
|
|
return r;
|
|
|
|
r = sdma_v3_0_init_microcode(adev);
|
|
if (r) {
|
|
DRM_ERROR("Failed to load sdma firmware!\n");
|
|
return r;
|
|
}
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
ring = &adev->sdma.instance[i].ring;
|
|
ring->ring_obj = NULL;
|
|
ring->use_doorbell = true;
|
|
ring->doorbell_index = (i == 0) ?
|
|
AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
|
|
|
|
sprintf(ring->name, "sdma%d", i);
|
|
r = amdgpu_ring_init(adev, ring, 1024,
|
|
SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
|
|
&adev->sdma.trap_irq,
|
|
(i == 0) ?
|
|
AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
|
|
AMDGPU_RING_TYPE_SDMA);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int sdma_v3_0_sw_fini(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
int i;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++)
|
|
amdgpu_ring_fini(&adev->sdma.instance[i].ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v3_0_hw_init(void *handle)
|
|
{
|
|
int r;
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
sdma_v3_0_init_golden_registers(adev);
|
|
|
|
r = sdma_v3_0_start(adev);
|
|
if (r)
|
|
return r;
|
|
|
|
return r;
|
|
}
|
|
|
|
static int sdma_v3_0_hw_fini(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
sdma_v3_0_ctx_switch_enable(adev, false);
|
|
sdma_v3_0_enable(adev, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v3_0_suspend(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
return sdma_v3_0_hw_fini(adev);
|
|
}
|
|
|
|
static int sdma_v3_0_resume(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
return sdma_v3_0_hw_init(adev);
|
|
}
|
|
|
|
static bool sdma_v3_0_is_idle(void *handle)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
u32 tmp = RREG32(mmSRBM_STATUS2);
|
|
|
|
if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
|
|
SRBM_STATUS2__SDMA1_BUSY_MASK))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int sdma_v3_0_wait_for_idle(void *handle)
|
|
{
|
|
unsigned i;
|
|
u32 tmp;
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
for (i = 0; i < adev->usec_timeout; i++) {
|
|
tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
|
|
SRBM_STATUS2__SDMA1_BUSY_MASK);
|
|
|
|
if (!tmp)
|
|
return 0;
|
|
udelay(1);
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int sdma_v3_0_soft_reset(void *handle)
|
|
{
|
|
u32 srbm_soft_reset = 0;
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
u32 tmp = RREG32(mmSRBM_STATUS2);
|
|
|
|
if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
|
|
/* sdma0 */
|
|
tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
|
|
tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
|
|
WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
|
|
srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
|
|
}
|
|
if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
|
|
/* sdma1 */
|
|
tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
|
|
tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
|
|
WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
|
|
srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
|
|
}
|
|
|
|
if (srbm_soft_reset) {
|
|
tmp = RREG32(mmSRBM_SOFT_RESET);
|
|
tmp |= srbm_soft_reset;
|
|
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
|
|
WREG32(mmSRBM_SOFT_RESET, tmp);
|
|
tmp = RREG32(mmSRBM_SOFT_RESET);
|
|
|
|
udelay(50);
|
|
|
|
tmp &= ~srbm_soft_reset;
|
|
WREG32(mmSRBM_SOFT_RESET, tmp);
|
|
tmp = RREG32(mmSRBM_SOFT_RESET);
|
|
|
|
/* Wait a little for things to settle down */
|
|
udelay(50);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
unsigned type,
|
|
enum amdgpu_interrupt_state state)
|
|
{
|
|
u32 sdma_cntl;
|
|
|
|
switch (type) {
|
|
case AMDGPU_SDMA_IRQ_TRAP0:
|
|
switch (state) {
|
|
case AMDGPU_IRQ_STATE_DISABLE:
|
|
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
|
|
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
|
|
WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
|
|
break;
|
|
case AMDGPU_IRQ_STATE_ENABLE:
|
|
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
|
|
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
|
|
WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case AMDGPU_SDMA_IRQ_TRAP1:
|
|
switch (state) {
|
|
case AMDGPU_IRQ_STATE_DISABLE:
|
|
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
|
|
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
|
|
WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
|
|
break;
|
|
case AMDGPU_IRQ_STATE_ENABLE:
|
|
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
|
|
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
|
|
WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
u8 instance_id, queue_id;
|
|
|
|
instance_id = (entry->ring_id & 0x3) >> 0;
|
|
queue_id = (entry->ring_id & 0xc) >> 2;
|
|
DRM_DEBUG("IH: SDMA trap\n");
|
|
switch (instance_id) {
|
|
case 0:
|
|
switch (queue_id) {
|
|
case 0:
|
|
amdgpu_fence_process(&adev->sdma.instance[0].ring);
|
|
break;
|
|
case 1:
|
|
/* XXX compute */
|
|
break;
|
|
case 2:
|
|
/* XXX compute */
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
switch (queue_id) {
|
|
case 0:
|
|
amdgpu_fence_process(&adev->sdma.instance[1].ring);
|
|
break;
|
|
case 1:
|
|
/* XXX compute */
|
|
break;
|
|
case 2:
|
|
/* XXX compute */
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
DRM_ERROR("Illegal instruction in SDMA command stream\n");
|
|
schedule_work(&adev->reset_work);
|
|
return 0;
|
|
}
|
|
|
|
static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
|
|
struct amdgpu_device *adev,
|
|
bool enable)
|
|
{
|
|
uint32_t temp, data;
|
|
int i;
|
|
|
|
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
|
|
data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
|
|
if (data != temp)
|
|
WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
|
|
}
|
|
} else {
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
|
|
data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
|
|
SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
|
|
|
|
if (data != temp)
|
|
WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
|
|
struct amdgpu_device *adev,
|
|
bool enable)
|
|
{
|
|
uint32_t temp, data;
|
|
int i;
|
|
|
|
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
|
|
data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
|
|
|
|
if (temp != data)
|
|
WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
|
|
}
|
|
} else {
|
|
for (i = 0; i < adev->sdma.num_instances; i++) {
|
|
temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
|
|
data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
|
|
|
|
if (temp != data)
|
|
WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int sdma_v3_0_set_clockgating_state(void *handle,
|
|
enum amd_clockgating_state state)
|
|
{
|
|
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
|
|
|
|
switch (adev->asic_type) {
|
|
case CHIP_FIJI:
|
|
case CHIP_CARRIZO:
|
|
case CHIP_STONEY:
|
|
sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
|
|
state == AMD_CG_STATE_GATE ? true : false);
|
|
sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
|
|
state == AMD_CG_STATE_GATE ? true : false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sdma_v3_0_set_powergating_state(void *handle,
|
|
enum amd_powergating_state state)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
|
|
.early_init = sdma_v3_0_early_init,
|
|
.late_init = NULL,
|
|
.sw_init = sdma_v3_0_sw_init,
|
|
.sw_fini = sdma_v3_0_sw_fini,
|
|
.hw_init = sdma_v3_0_hw_init,
|
|
.hw_fini = sdma_v3_0_hw_fini,
|
|
.suspend = sdma_v3_0_suspend,
|
|
.resume = sdma_v3_0_resume,
|
|
.is_idle = sdma_v3_0_is_idle,
|
|
.wait_for_idle = sdma_v3_0_wait_for_idle,
|
|
.soft_reset = sdma_v3_0_soft_reset,
|
|
.set_clockgating_state = sdma_v3_0_set_clockgating_state,
|
|
.set_powergating_state = sdma_v3_0_set_powergating_state,
|
|
};
|
|
|
|
static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
|
|
.get_rptr = sdma_v3_0_ring_get_rptr,
|
|
.get_wptr = sdma_v3_0_ring_get_wptr,
|
|
.set_wptr = sdma_v3_0_ring_set_wptr,
|
|
.parse_cs = NULL,
|
|
.emit_ib = sdma_v3_0_ring_emit_ib,
|
|
.emit_fence = sdma_v3_0_ring_emit_fence,
|
|
.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
|
|
.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
|
|
.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
|
|
.emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
|
|
.test_ring = sdma_v3_0_ring_test_ring,
|
|
.test_ib = sdma_v3_0_ring_test_ib,
|
|
.insert_nop = sdma_v3_0_ring_insert_nop,
|
|
.pad_ib = sdma_v3_0_ring_pad_ib,
|
|
};
|
|
|
|
static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adev->sdma.num_instances; i++)
|
|
adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
|
|
}
|
|
|
|
static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
|
|
.set = sdma_v3_0_set_trap_irq_state,
|
|
.process = sdma_v3_0_process_trap_irq,
|
|
};
|
|
|
|
static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
|
|
.process = sdma_v3_0_process_illegal_inst_irq,
|
|
};
|
|
|
|
static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
|
|
{
|
|
adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
|
|
adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
|
|
adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
* @src_offset: src GPU address
|
|
* @dst_offset: dst GPU address
|
|
* @byte_count: number of bytes to xfer
|
|
*
|
|
* Copy GPU buffers using the DMA engine (VI).
|
|
* Used by the amdgpu ttm implementation to move pages if
|
|
* registered as the asic copy callback.
|
|
*/
|
|
static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
|
|
uint64_t src_offset,
|
|
uint64_t dst_offset,
|
|
uint32_t byte_count)
|
|
{
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
|
|
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
|
|
ib->ptr[ib->length_dw++] = byte_count;
|
|
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
|
|
}
|
|
|
|
/**
|
|
* sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
|
|
*
|
|
* @ring: amdgpu_ring structure holding ring information
|
|
* @src_data: value to write to buffer
|
|
* @dst_offset: dst GPU address
|
|
* @byte_count: number of bytes to xfer
|
|
*
|
|
* Fill GPU buffers using the DMA engine (VI).
|
|
*/
|
|
static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
|
|
uint32_t src_data,
|
|
uint64_t dst_offset,
|
|
uint32_t byte_count)
|
|
{
|
|
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
|
|
ib->ptr[ib->length_dw++] = src_data;
|
|
ib->ptr[ib->length_dw++] = byte_count;
|
|
}
|
|
|
|
static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
|
|
.copy_max_bytes = 0x1fffff,
|
|
.copy_num_dw = 7,
|
|
.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
|
|
|
|
.fill_max_bytes = 0x1fffff,
|
|
.fill_num_dw = 5,
|
|
.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
|
|
};
|
|
|
|
static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
|
|
{
|
|
if (adev->mman.buffer_funcs == NULL) {
|
|
adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
|
|
adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
|
|
}
|
|
}
|
|
|
|
static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
|
|
.copy_pte = sdma_v3_0_vm_copy_pte,
|
|
.write_pte = sdma_v3_0_vm_write_pte,
|
|
.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
|
|
};
|
|
|
|
static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
|
|
{
|
|
unsigned i;
|
|
|
|
if (adev->vm_manager.vm_pte_funcs == NULL) {
|
|
adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
|
|
for (i = 0; i < adev->sdma.num_instances; i++)
|
|
adev->vm_manager.vm_pte_rings[i] =
|
|
&adev->sdma.instance[i].ring;
|
|
|
|
adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
|
|
}
|
|
}
|