linux/drivers/mtd/nand/raw/denali.c
Masahiro Yamada 0e604fc9cf mtd: rawnand: denali: refactor raw page accessors
The Denali IP adopts the syndrome page layout (payload and ECC are
interleaved). The *_page_raw() and *_oob() callbacks are complicated
because they must hide the underlying layout used by the hardware,
and always return contiguous in-band and out-of-band data.

The Denali IP cannot reuse nand_{read,write}_page_raw_syndrome()
in nand_base.c because its hardware ECC engine skips some of first
bytes in OOB. That is why this driver implements specially-crafted
*_page_raw() and *_oob() hooks.

Currently, similar code is duplicated to reorganize the data layout.
For example, denali_read_page_raw() and denali_write_page_raw() look
almost the same. The complexity is partly due to the DMA transfer
used for better performance of *_page_raw() accessors.

On second thought, we do not need to care about their performance
because MTD_OPS_RAW is rarely used.

Let's focus on code cleanups rather than the performance. This commit
removes the internal buffer for DMA, and factors out as much code as
possible.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2019-04-18 08:54:02 +02:00

1265 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* NAND Flash Controller Device Driver
* Copyright © 2009-2010, Intel Corporation and its suppliers.
*
* Copyright (c) 2017 Socionext Inc.
* Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
*/
#include <linux/bitfield.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "denali.h"
#define DENALI_NAND_NAME "denali-nand"
#define DENALI_DEFAULT_OOB_SKIP_BYTES 8
/* for Indexed Addressing */
#define DENALI_INDEXED_CTRL 0x00
#define DENALI_INDEXED_DATA 0x10
#define DENALI_MAP00 (0 << 26) /* direct access to buffer */
#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
#define DENALI_MAP10 (2 << 26) /* high-level control plane */
#define DENALI_MAP11 (3 << 26) /* direct controller access */
/* MAP11 access cycle type */
#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
#define DENALI_BANK(denali) ((denali)->active_bank << 24)
#define DENALI_INVALID_BANK -1
#define DENALI_NR_BANKS 4
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
static struct denali_nand_info *to_denali(struct nand_chip *chip)
{
return container_of(chip, struct denali_nand_info, nand);
}
/*
* Direct Addressing - the slave address forms the control information (command
* type, bank, block, and page address). The slave data is the actual data to
* be transferred. This mode requires 28 bits of address region allocated.
*/
static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
{
return ioread32(denali->host + addr);
}
static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
u32 data)
{
iowrite32(data, denali->host + addr);
}
/*
* Indexed Addressing - address translation module intervenes in passing the
* control information. This mode reduces the required address range. The
* control information and transferred data are latched by the registers in
* the translation module.
*/
static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
{
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
return ioread32(denali->host + DENALI_INDEXED_DATA);
}
static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
u32 data)
{
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
iowrite32(data, denali->host + DENALI_INDEXED_DATA);
}
/*
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
static void denali_detect_max_banks(struct denali_nand_info *denali)
{
uint32_t features = ioread32(denali->reg + FEATURES);
denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
/* the encoding changed from rev 5.0 to 5.1 */
if (denali->revision < 0x0501)
denali->max_banks <<= 1;
}
static void denali_enable_irq(struct denali_nand_info *denali)
{
int i;
for (i = 0; i < DENALI_NR_BANKS; i++)
iowrite32(U32_MAX, denali->reg + INTR_EN(i));
iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
}
static void denali_disable_irq(struct denali_nand_info *denali)
{
int i;
for (i = 0; i < DENALI_NR_BANKS; i++)
iowrite32(0, denali->reg + INTR_EN(i));
iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
}
static void denali_clear_irq(struct denali_nand_info *denali,
int bank, uint32_t irq_status)
{
/* write one to clear bits */
iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
}
static void denali_clear_irq_all(struct denali_nand_info *denali)
{
int i;
for (i = 0; i < DENALI_NR_BANKS; i++)
denali_clear_irq(denali, i, U32_MAX);
}
static irqreturn_t denali_isr(int irq, void *dev_id)
{
struct denali_nand_info *denali = dev_id;
irqreturn_t ret = IRQ_NONE;
uint32_t irq_status;
int i;
spin_lock(&denali->irq_lock);
for (i = 0; i < DENALI_NR_BANKS; i++) {
irq_status = ioread32(denali->reg + INTR_STATUS(i));
if (irq_status)
ret = IRQ_HANDLED;
denali_clear_irq(denali, i, irq_status);
if (i != denali->active_bank)
continue;
denali->irq_status |= irq_status;
if (denali->irq_status & denali->irq_mask)
complete(&denali->complete);
}
spin_unlock(&denali->irq_lock);
return ret;
}
static void denali_reset_irq(struct denali_nand_info *denali)
{
unsigned long flags;
spin_lock_irqsave(&denali->irq_lock, flags);
denali->irq_status = 0;
denali->irq_mask = 0;
spin_unlock_irqrestore(&denali->irq_lock, flags);
}
static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
uint32_t irq_mask)
{
unsigned long time_left, flags;
uint32_t irq_status;
spin_lock_irqsave(&denali->irq_lock, flags);
irq_status = denali->irq_status;
if (irq_mask & irq_status) {
/* return immediately if the IRQ has already happened. */
spin_unlock_irqrestore(&denali->irq_lock, flags);
return irq_status;
}
denali->irq_mask = irq_mask;
reinit_completion(&denali->complete);
spin_unlock_irqrestore(&denali->irq_lock, flags);
time_left = wait_for_completion_timeout(&denali->complete,
msecs_to_jiffies(1000));
if (!time_left) {
dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
irq_mask);
return 0;
}
return denali->irq_status;
}
static void denali_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct denali_nand_info *denali = mtd_to_denali(mtd);
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
int i;
for (i = 0; i < len; i++)
buf[i] = denali->host_read(denali, addr);
}
static void denali_write_buf(struct nand_chip *chip, const uint8_t *buf,
int len)
{
struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
int i;
for (i = 0; i < len; i++)
denali->host_write(denali, addr, buf[i]);
}
static void denali_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
{
struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
uint16_t *buf16 = (uint16_t *)buf;
int i;
for (i = 0; i < len / 2; i++)
buf16[i] = denali->host_read(denali, addr);
}
static void denali_write_buf16(struct nand_chip *chip, const uint8_t *buf,
int len)
{
struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
const uint16_t *buf16 = (const uint16_t *)buf;
int i;
for (i = 0; i < len / 2; i++)
denali->host_write(denali, addr, buf16[i]);
}
static uint8_t denali_read_byte(struct nand_chip *chip)
{
uint8_t byte;
denali_read_buf(chip, &byte, 1);
return byte;
}
static void denali_write_byte(struct nand_chip *chip, uint8_t byte)
{
denali_write_buf(chip, &byte, 1);
}
static void denali_cmd_ctrl(struct nand_chip *chip, int dat, unsigned int ctrl)
{
struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
uint32_t type;
if (ctrl & NAND_CLE)
type = DENALI_MAP11_CMD;
else if (ctrl & NAND_ALE)
type = DENALI_MAP11_ADDR;
else
return;
/*
* Some commands are followed by chip->legacy.waitfunc.
* irq_status must be cleared here to catch the R/B# interrupt later.
*/
if (ctrl & NAND_CTRL_CHANGE)
denali_reset_irq(denali);
denali->host_write(denali, DENALI_BANK(denali) | type, dat);
}
static int denali_change_column(struct nand_chip *chip, unsigned int offset,
void *buf, unsigned int len, bool write)
{
if (write)
return nand_change_write_column_op(chip, offset, buf, len,
false);
else
return nand_change_read_column_op(chip, offset, buf, len,
false);
}
static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
{
struct denali_nand_info *denali = to_denali(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int writesize = mtd->writesize;
int oob_skip = denali->oob_skip_bytes;
int ret, i, pos, len;
for (i = 0; i < ecc->steps; i++) {
pos = i * (ecc->size + ecc->bytes);
len = ecc->size;
if (pos >= writesize) {
pos += oob_skip;
} else if (pos + len > writesize) {
/* This chunk overwraps the BBM area. Must be split */
ret = denali_change_column(chip, pos, buf,
writesize - pos, write);
if (ret)
return ret;
buf += writesize - pos;
len -= writesize - pos;
pos = writesize + oob_skip;
}
ret = denali_change_column(chip, pos, buf, len, write);
if (ret)
return ret;
buf += len;
}
return 0;
}
static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
{
struct denali_nand_info *denali = to_denali(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int writesize = mtd->writesize;
int oobsize = mtd->oobsize;
int oob_skip = denali->oob_skip_bytes;
int ret, i, pos, len;
/* BBM at the beginning of the OOB area */
ret = denali_change_column(chip, writesize, buf, oob_skip, write);
if (ret)
return ret;
buf += oob_skip;
for (i = 0; i < ecc->steps; i++) {
pos = ecc->size + i * (ecc->size + ecc->bytes);
if (i == ecc->steps - 1)
/* The last chunk includes OOB free */
len = writesize + oobsize - pos - oob_skip;
else
len = ecc->bytes;
if (pos >= writesize) {
pos += oob_skip;
} else if (pos + len > writesize) {
/* This chunk overwraps the BBM area. Must be split */
ret = denali_change_column(chip, pos, buf,
writesize - pos, write);
if (ret)
return ret;
buf += writesize - pos;
len -= writesize - pos;
pos = writesize + oob_skip;
}
ret = denali_change_column(chip, pos, buf, len, write);
if (ret)
return ret;
buf += len;
}
return 0;
}
static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
int page)
{
int ret;
if (!buf && !oob_buf)
return -EINVAL;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
if (buf) {
ret = denali_payload_xfer(chip, buf, false);
if (ret)
return ret;
}
if (oob_buf) {
ret = denali_oob_xfer(chip, oob_buf, false);
if (ret)
return ret;
}
return 0;
}
static int denali_write_raw(struct nand_chip *chip, const void *buf,
const void *oob_buf, int page)
{
int ret;
if (!buf && !oob_buf)
return -EINVAL;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
if (buf) {
ret = denali_payload_xfer(chip, (void *)buf, true);
if (ret)
return ret;
}
if (oob_buf) {
ret = denali_oob_xfer(chip, (void *)oob_buf, true);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
page);
}
static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
page);
}
static int denali_read_oob(struct nand_chip *chip, int page)
{
return denali_read_raw(chip, NULL, chip->oob_poi, page);
}
static int denali_write_oob(struct nand_chip *chip, int page)
{
return denali_write_raw(chip, NULL, chip->oob_poi, page);
}
static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
unsigned long uncor_ecc_flags,
unsigned int max_bitflips)
{
struct denali_nand_info *denali = to_denali(chip);
struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
int i, stat;
for (i = 0; i < ecc_steps; i++) {
if (!(uncor_ecc_flags & BIT(i)))
continue;
stat = nand_check_erased_ecc_chunk(buf, ecc_size,
ecc_code, ecc_bytes,
NULL, 0,
chip->ecc.strength);
if (stat < 0) {
ecc_stats->failed++;
} else {
ecc_stats->corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
buf += ecc_size;
ecc_code += ecc_bytes;
}
return max_bitflips;
}
static int denali_hw_ecc_fixup(struct nand_chip *chip,
unsigned long *uncor_ecc_flags)
{
struct denali_nand_info *denali = to_denali(chip);
struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
int bank = denali->active_bank;
uint32_t ecc_cor;
unsigned int max_bitflips;
ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
/*
* This flag is set when uncorrectable error occurs at least in
* one ECC sector. We can not know "how many sectors", or
* "which sector(s)". We need erase-page check for all sectors.
*/
*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
return 0;
}
max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
/*
* The register holds the maximum of per-sector corrected bitflips.
* This is suitable for the return value of the ->read_page() callback.
* Unfortunately, we can not know the total number of corrected bits in
* the page. Increase the stats by max_bitflips. (compromised solution)
*/
ecc_stats->corrected += max_bitflips;
return max_bitflips;
}
static int denali_sw_ecc_fixup(struct nand_chip *chip,
unsigned long *uncor_ecc_flags, uint8_t *buf)
{
struct denali_nand_info *denali = to_denali(chip);
struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
unsigned int ecc_size = chip->ecc.size;
unsigned int bitflips = 0;
unsigned int max_bitflips = 0;
uint32_t err_addr, err_cor_info;
unsigned int err_byte, err_sector, err_device;
uint8_t err_cor_value;
unsigned int prev_sector = 0;
uint32_t irq_status;
denali_reset_irq(denali);
do {
err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
err_cor_info);
err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
err_cor_info);
/* reset the bitflip counter when crossing ECC sector */
if (err_sector != prev_sector)
bitflips = 0;
if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
/*
* Check later if this is a real ECC error, or
* an erased sector.
*/
*uncor_ecc_flags |= BIT(err_sector);
} else if (err_byte < ecc_size) {
/*
* If err_byte is larger than ecc_size, means error
* happened in OOB, so we ignore it. It's no need for
* us to correct it err_device is represented the NAND
* error bits are happened in if there are more than
* one NAND connected.
*/
int offset;
unsigned int flips_in_byte;
offset = (err_sector * ecc_size + err_byte) *
denali->devs_per_cs + err_device;
/* correct the ECC error */
flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
buf[offset] ^= err_cor_value;
ecc_stats->corrected += flips_in_byte;
bitflips += flips_in_byte;
max_bitflips = max(max_bitflips, bitflips);
}
prev_sector = err_sector;
} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
/*
* Once handle all ECC errors, controller will trigger an
* ECC_TRANSACTION_DONE interrupt.
*/
irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
return -EIO;
return max_bitflips;
}
static void denali_setup_dma64(struct denali_nand_info *denali,
dma_addr_t dma_addr, int page, int write)
{
uint32_t mode;
const int page_count = 1;
mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
/* DMA is a three step process */
/*
* 1. setup transfer type, interrupt when complete,
* burst len = 64 bytes, the number of pages
*/
denali->host_write(denali, mode,
0x01002000 | (64 << 16) | (write << 8) | page_count);
/* 2. set memory low address */
denali->host_write(denali, mode, lower_32_bits(dma_addr));
/* 3. set memory high address */
denali->host_write(denali, mode, upper_32_bits(dma_addr));
}
static void denali_setup_dma32(struct denali_nand_info *denali,
dma_addr_t dma_addr, int page, int write)
{
uint32_t mode;
const int page_count = 1;
mode = DENALI_MAP10 | DENALI_BANK(denali);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
denali->host_write(denali, mode | page,
0x2000 | (write << 8) | page_count);
/* 2. set memory high address bits 23:8 */
denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes */
denali->host_write(denali, mode | 0x14000, 0x2400);
}
static int denali_pio_read(struct denali_nand_info *denali, void *buf,
size_t size, int page)
{
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
uint32_t *buf32 = (uint32_t *)buf;
uint32_t irq_status, ecc_err_mask;
int i;
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
ecc_err_mask = INTR__ECC_UNCOR_ERR;
else
ecc_err_mask = INTR__ECC_ERR;
denali_reset_irq(denali);
for (i = 0; i < size / 4; i++)
*buf32++ = denali->host_read(denali, addr);
irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
if (!(irq_status & INTR__PAGE_XFER_INC))
return -EIO;
if (irq_status & INTR__ERASED_PAGE)
memset(buf, 0xff, size);
return irq_status & ecc_err_mask ? -EBADMSG : 0;
}
static int denali_pio_write(struct denali_nand_info *denali,
const void *buf, size_t size, int page)
{
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
const uint32_t *buf32 = (uint32_t *)buf;
uint32_t irq_status;
int i;
denali_reset_irq(denali);
for (i = 0; i < size / 4; i++)
denali->host_write(denali, addr, *buf32++);
irq_status = denali_wait_for_irq(denali,
INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
if (!(irq_status & INTR__PROGRAM_COMP))
return -EIO;
return 0;
}
static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
size_t size, int page, int write)
{
if (write)
return denali_pio_write(denali, buf, size, page);
else
return denali_pio_read(denali, buf, size, page);
}
static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
size_t size, int page, int write)
{
dma_addr_t dma_addr;
uint32_t irq_mask, irq_status, ecc_err_mask;
enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
int ret = 0;
dma_addr = dma_map_single(denali->dev, buf, size, dir);
if (dma_mapping_error(denali->dev, dma_addr)) {
dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
return denali_pio_xfer(denali, buf, size, page, write);
}
if (write) {
/*
* INTR__PROGRAM_COMP is never asserted for the DMA transfer.
* We can use INTR__DMA_CMD_COMP instead. This flag is asserted
* when the page program is completed.
*/
irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
ecc_err_mask = 0;
} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
irq_mask = INTR__DMA_CMD_COMP;
ecc_err_mask = INTR__ECC_UNCOR_ERR;
} else {
irq_mask = INTR__DMA_CMD_COMP;
ecc_err_mask = INTR__ECC_ERR;
}
iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
/*
* The ->setup_dma() hook kicks DMA by using the data/command
* interface, which belongs to a different AXI port from the
* register interface. Read back the register to avoid a race.
*/
ioread32(denali->reg + DMA_ENABLE);
denali_reset_irq(denali);
denali->setup_dma(denali, dma_addr, page, write);
irq_status = denali_wait_for_irq(denali, irq_mask);
if (!(irq_status & INTR__DMA_CMD_COMP))
ret = -EIO;
else if (irq_status & ecc_err_mask)
ret = -EBADMSG;
iowrite32(0, denali->reg + DMA_ENABLE);
dma_unmap_single(denali->dev, dma_addr, size, dir);
if (irq_status & INTR__ERASED_PAGE)
memset(buf, 0xff, size);
return ret;
}
static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
int page, int write)
{
struct denali_nand_info *denali = to_denali(chip);
if (denali->dma_avail)
return denali_dma_xfer(denali, buf, size, page, write);
else
return denali_pio_xfer(denali, buf, size, page, write);
}
static int denali_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct denali_nand_info *denali = mtd_to_denali(mtd);
unsigned long uncor_ecc_flags = 0;
int stat = 0;
int ret;
ret = denali_page_xfer(chip, buf, mtd->writesize, page, 0);
if (ret && ret != -EBADMSG)
return ret;
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags);
else if (ret == -EBADMSG)
stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf);
if (stat < 0)
return stat;
if (uncor_ecc_flags) {
ret = denali_read_oob(chip, page);
if (ret)
return ret;
stat = denali_check_erased_page(chip, buf,
uncor_ecc_flags, stat);
}
return stat;
}
static int denali_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, 1);
}
static void denali_select_chip(struct nand_chip *chip, int cs)
{
struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
denali->active_bank = cs;
}
static int denali_waitfunc(struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
uint32_t irq_status;
/* R/B# pin transitioned from low to high? */
irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
}
static int denali_setup_data_interface(struct nand_chip *chip, int chipnr,
const struct nand_data_interface *conf)
{
struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
const struct nand_sdr_timings *timings;
unsigned long t_x, mult_x;
int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
int addr_2_data_mask;
uint32_t tmp;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return PTR_ERR(timings);
/* clk_x period in picoseconds */
t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
if (!t_x)
return -EINVAL;
/*
* The bus interface clock, clk_x, is phase aligned with the core clock.
* The clk_x is an integral multiple N of the core clk. The value N is
* configured at IP delivery time, and its available value is 4, 5, 6.
*/
mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
if (mult_x < 4 || mult_x > 6)
return -EINVAL;
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
/* tREA -> ACC_CLKS */
acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
tmp = ioread32(denali->reg + ACC_CLKS);
tmp &= ~ACC_CLKS__VALUE;
tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
iowrite32(tmp, denali->reg + ACC_CLKS);
/* tRWH -> RE_2_WE */
re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
tmp = ioread32(denali->reg + RE_2_WE);
tmp &= ~RE_2_WE__VALUE;
tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
iowrite32(tmp, denali->reg + RE_2_WE);
/* tRHZ -> RE_2_RE */
re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
tmp = ioread32(denali->reg + RE_2_RE);
tmp &= ~RE_2_RE__VALUE;
tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
iowrite32(tmp, denali->reg + RE_2_RE);
/*
* tCCS, tWHR -> WE_2_RE
*
* With WE_2_RE properly set, the Denali controller automatically takes
* care of the delay; the driver need not set NAND_WAIT_TCCS.
*/
we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
/* tADL -> ADDR_2_DATA */
/* for older versions, ADDR_2_DATA is only 6 bit wide */
addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
if (denali->revision < 0x0501)
addr_2_data_mask >>= 1;
addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
/* tREH, tWH -> RDWR_EN_HI_CNT */
rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
t_x);
rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
tmp &= ~RDWR_EN_HI_CNT__VALUE;
tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
/* tRP, tWP -> RDWR_EN_LO_CNT */
rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
t_x);
rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
tmp &= ~RDWR_EN_LO_CNT__VALUE;
tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
/* tCS, tCEA -> CS_SETUP_CNT */
cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
0);
cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
tmp = ioread32(denali->reg + CS_SETUP_CNT);
tmp &= ~CS_SETUP_CNT__VALUE;
tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
iowrite32(tmp, denali->reg + CS_SETUP_CNT);
return 0;
}
static void denali_hw_init(struct denali_nand_info *denali)
{
/*
* The REVISION register may not be reliable. Platforms are allowed to
* override it.
*/
if (!denali->revision)
denali->revision = swab16(ioread32(denali->reg + REVISION));
/*
* Set how many bytes should be skipped before writing data in OOB.
* If a non-zero value has already been set (by firmware or something),
* just use it. Otherwise, set the driver default.
*/
denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
if (!denali->oob_skip_bytes) {
denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
iowrite32(denali->oob_skip_bytes,
denali->reg + SPARE_AREA_SKIP_BYTES);
}
denali_detect_max_banks(denali);
iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
}
int denali_calc_ecc_bytes(int step_size, int strength)
{
/* BCH code. Denali requires ecc.bytes to be multiple of 2 */
return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
}
EXPORT_SYMBOL(denali_calc_ecc_bytes);
static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = denali->oob_skip_bytes;
oobregion->length = chip->ecc.total;
return 0;
}
static int denali_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
oobregion->length = mtd->oobsize - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
.ecc = denali_ooblayout_ecc,
.free = denali_ooblayout_free,
};
static int denali_multidev_fixup(struct nand_chip *chip)
{
struct denali_nand_info *denali = to_denali(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_memory_organization *memorg;
memorg = nanddev_get_memorg(&chip->base);
/*
* Support for multi device:
* When the IP configuration is x16 capable and two x8 chips are
* connected in parallel, DEVICES_CONNECTED should be set to 2.
* In this case, the core framework knows nothing about this fact,
* so we should tell it the _logical_ pagesize and anything necessary.
*/
denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
/*
* On some SoCs, DEVICES_CONNECTED is not auto-detected.
* For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
*/
if (denali->devs_per_cs == 0) {
denali->devs_per_cs = 1;
iowrite32(1, denali->reg + DEVICES_CONNECTED);
}
if (denali->devs_per_cs == 1)
return 0;
if (denali->devs_per_cs != 2) {
dev_err(denali->dev, "unsupported number of devices %d\n",
denali->devs_per_cs);
return -EINVAL;
}
/* 2 chips in parallel */
memorg->pagesize <<= 1;
memorg->oobsize <<= 1;
mtd->size <<= 1;
mtd->erasesize <<= 1;
mtd->writesize <<= 1;
mtd->oobsize <<= 1;
chip->page_shift += 1;
chip->phys_erase_shift += 1;
chip->bbt_erase_shift += 1;
chip->chip_shift += 1;
chip->pagemask <<= 1;
chip->ecc.size <<= 1;
chip->ecc.bytes <<= 1;
chip->ecc.strength <<= 1;
denali->oob_skip_bytes <<= 1;
return 0;
}
static int denali_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct denali_nand_info *denali = mtd_to_denali(mtd);
int ret;
if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
denali->dma_avail = 1;
if (denali->dma_avail) {
int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
if (ret) {
dev_info(denali->dev,
"Failed to set DMA mask. Disabling DMA.\n");
denali->dma_avail = 0;
}
}
if (denali->dma_avail) {
chip->options |= NAND_USE_BOUNCE_BUFFER;
chip->buf_align = 16;
if (denali->caps & DENALI_CAP_DMA_64BIT)
denali->setup_dma = denali_setup_dma64;
else
denali->setup_dma = denali_setup_dma32;
}
chip->bbt_options |= NAND_BBT_USE_FLASH;
chip->bbt_options |= NAND_BBT_NO_OOB;
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
chip->options |= NAND_NO_SUBPAGE_WRITE;
ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
mtd->oobsize - denali->oob_skip_bytes);
if (ret) {
dev_err(denali->dev, "Failed to setup ECC settings.\n");
return ret;
}
dev_dbg(denali->dev,
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
denali->reg + ECC_CORRECTION);
iowrite32(mtd->erasesize / mtd->writesize,
denali->reg + PAGES_PER_BLOCK);
iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
denali->reg + DEVICE_WIDTH);
iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
denali->reg + TWO_ROW_ADDR_CYCLES);
iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
/* chip->ecc.steps is set by nand_scan_tail(); not available here */
iowrite32(mtd->writesize / chip->ecc.size,
denali->reg + CFG_NUM_DATA_BLOCKS);
mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
if (chip->options & NAND_BUSWIDTH_16) {
chip->legacy.read_buf = denali_read_buf16;
chip->legacy.write_buf = denali_write_buf16;
} else {
chip->legacy.read_buf = denali_read_buf;
chip->legacy.write_buf = denali_write_buf;
}
chip->ecc.read_page = denali_read_page;
chip->ecc.read_page_raw = denali_read_page_raw;
chip->ecc.write_page = denali_write_page;
chip->ecc.write_page_raw = denali_write_page_raw;
chip->ecc.read_oob = denali_read_oob;
chip->ecc.write_oob = denali_write_oob;
ret = denali_multidev_fixup(chip);
if (ret)
return ret;
return 0;
}
static const struct nand_controller_ops denali_controller_ops = {
.attach_chip = denali_attach_chip,
.setup_data_interface = denali_setup_data_interface,
};
int denali_init(struct denali_nand_info *denali)
{
struct nand_chip *chip = &denali->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
u32 features = ioread32(denali->reg + FEATURES);
int ret;
mtd->dev.parent = denali->dev;
denali_hw_init(denali);
init_completion(&denali->complete);
spin_lock_init(&denali->irq_lock);
denali_clear_irq_all(denali);
ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
IRQF_SHARED, DENALI_NAND_NAME, denali);
if (ret) {
dev_err(denali->dev, "Unable to request IRQ\n");
return ret;
}
denali_enable_irq(denali);
denali->active_bank = DENALI_INVALID_BANK;
nand_set_flash_node(chip, denali->dev->of_node);
/* Fallback to the default name if DT did not give "label" property */
if (!mtd->name)
mtd->name = "denali-nand";
chip->legacy.select_chip = denali_select_chip;
chip->legacy.read_byte = denali_read_byte;
chip->legacy.write_byte = denali_write_byte;
chip->legacy.cmd_ctrl = denali_cmd_ctrl;
chip->legacy.waitfunc = denali_waitfunc;
if (features & FEATURES__INDEX_ADDR) {
denali->host_read = denali_indexed_read;
denali->host_write = denali_indexed_write;
} else {
denali->host_read = denali_direct_read;
denali->host_write = denali_direct_write;
}
/* clk rate info is needed for setup_data_interface */
if (!denali->clk_rate || !denali->clk_x_rate)
chip->options |= NAND_KEEP_TIMINGS;
chip->legacy.dummy_controller.ops = &denali_controller_ops;
ret = nand_scan(chip, denali->max_banks);
if (ret)
goto disable_irq;
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
goto cleanup_nand;
}
return 0;
cleanup_nand:
nand_cleanup(chip);
disable_irq:
denali_disable_irq(denali);
return ret;
}
EXPORT_SYMBOL(denali_init);
void denali_remove(struct denali_nand_info *denali)
{
nand_release(&denali->nand);
denali_disable_irq(denali);
}
EXPORT_SYMBOL(denali_remove);
MODULE_DESCRIPTION("Driver core for Denali NAND controller");
MODULE_AUTHOR("Intel Corporation and its suppliers");
MODULE_LICENSE("GPL v2");