When reading from the flash memory of the device, the ice driver has two interfaces available to it. First, it can use a mediated interface via firmware that allows specifying a module ID. This allows reading from specific modules of the active flash bank. The second interface available is to perform flat reads. This allows complete access to the entire flash. However, using it requires the software to handle calculating module location and interpret pointer addresses. While most data required is accessible through the convenient first interface, certain flash contents are not. This includes the CSS header information associated with the Option ROM and NVM banks, as well as any access to the "inactive" banks used as scratch space for performing flash updates. In order to access all of the relevant flash contents, software must use the flat reads. Rather than forcing all flows to perform flat read calculations, introduce a new abstraction for reading from the flash: ice_read_flash_module. This function provides an abstraction for reading from either the active or inactive flash bank at the requested module. This interface is very similar to the abstraction provided via firmware, but allows access to additional modules, as well as providing a mechanism to request access to both flash banks. At first glance, it might make sense for this abstraction to allow specifying precisely which bank (1st or 2nd) the caller wishes to read. This is simpler to implement but more difficult to use. In practice, most callers only know whether they want the active bank, or the inactive bank. Rather than force callers to determine for themselves which bank to read from, implement ice_read_flash_module in terms of "active" vs "inactive". This significantly simplifies the implementation at the caller level and is a more useful abstraction over the flash contents. Make use of this new interface to refactor reading of the main NVM version information. Instead of using the firmware's mediated ShadowRAM function, use the ice_read_flash_module abstraction. To do this, notice that most reads of the NVM are going to be in 2-byte word chunks. To simplify using ice_read_flash_module for this case, ice_read_nvm_module is introduced. This is a simple wrapper around ice_read_flash_module which takes the correct pointer address for the NVM bank, and forces the 2-byte word format onto the caller. When reading the NVM versions, some fields are read from the Shadow RAM. The Shadow RAM is the first 64KB of flash memory, and is populated during device load. Most fields are copied from a section within the active NVM bank. In order to read this data from both the active and inactive NVM banks, we need to read not from the first 64KB of flash, but instead from the correct offset into the NVM bank. Introduce ice_read_nvm_sr_copy for this purpose. This function wraps around ice_read_nvm_module and has the same interface as the ice_read_sr_word, with the exception of allowing the caller to specify whether to read the active or inactive flash bank. With this change, it is now trivial to refactor ice_get_nvm_ver_info to read using the software mediated ice_read_flash_module interface instead of relying on the firmware mediated interface. This will be used in the following change to implement support for stored versions in the devlink info report. Additionally, the overall ice_read_flash_module interface will be used and extended to support all three major flash banks, and additionally to support reading the flash image security revision information. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Tony Brelinski <tonyx.brelinski@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
1115 lines
32 KiB
C
1115 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2018, Intel Corporation. */
|
|
|
|
#include "ice_common.h"
|
|
|
|
/**
|
|
* ice_aq_read_nvm
|
|
* @hw: pointer to the HW struct
|
|
* @module_typeid: module pointer location in words from the NVM beginning
|
|
* @offset: byte offset from the module beginning
|
|
* @length: length of the section to be read (in bytes from the offset)
|
|
* @data: command buffer (size [bytes] = length)
|
|
* @last_command: tells if this is the last command in a series
|
|
* @read_shadow_ram: tell if this is a shadow RAM read
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Read the NVM using the admin queue commands (0x0701)
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
|
|
void *data, bool last_command, bool read_shadow_ram,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
struct ice_aqc_nvm *cmd;
|
|
|
|
cmd = &desc.params.nvm;
|
|
|
|
if (offset > ICE_AQC_NVM_MAX_OFFSET)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
|
|
|
|
if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
|
|
cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
|
|
|
|
/* If this is the last command in a series, set the proper flag. */
|
|
if (last_command)
|
|
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
|
|
cmd->module_typeid = cpu_to_le16(module_typeid);
|
|
cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
|
|
cmd->offset_high = (offset >> 16) & 0xFF;
|
|
cmd->length = cpu_to_le16(length);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, data, length, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_read_flat_nvm - Read portion of NVM by flat offset
|
|
* @hw: pointer to the HW struct
|
|
* @offset: offset from beginning of NVM
|
|
* @length: (in) number of bytes to read; (out) number of bytes actually read
|
|
* @data: buffer to return data in (sized to fit the specified length)
|
|
* @read_shadow_ram: if true, read from shadow RAM instead of NVM
|
|
*
|
|
* Reads a portion of the NVM, as a flat memory space. This function correctly
|
|
* breaks read requests across Shadow RAM sectors and ensures that no single
|
|
* read request exceeds the maximum 4KB read for a single AdminQ command.
|
|
*
|
|
* Returns a status code on failure. Note that the data pointer may be
|
|
* partially updated if some reads succeed before a failure.
|
|
*/
|
|
enum ice_status
|
|
ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
|
|
bool read_shadow_ram)
|
|
{
|
|
enum ice_status status;
|
|
u32 inlen = *length;
|
|
u32 bytes_read = 0;
|
|
bool last_cmd;
|
|
|
|
*length = 0;
|
|
|
|
/* Verify the length of the read if this is for the Shadow RAM */
|
|
if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
|
|
ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
|
|
return ICE_ERR_PARAM;
|
|
}
|
|
|
|
do {
|
|
u32 read_size, sector_offset;
|
|
|
|
/* ice_aq_read_nvm cannot read more than 4KB at a time.
|
|
* Additionally, a read from the Shadow RAM may not cross over
|
|
* a sector boundary. Conveniently, the sector size is also
|
|
* 4KB.
|
|
*/
|
|
sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
|
|
read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
|
|
inlen - bytes_read);
|
|
|
|
last_cmd = !(bytes_read + read_size < inlen);
|
|
|
|
status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
|
|
offset, read_size,
|
|
data + bytes_read, last_cmd,
|
|
read_shadow_ram, NULL);
|
|
if (status)
|
|
break;
|
|
|
|
bytes_read += read_size;
|
|
offset += read_size;
|
|
} while (!last_cmd);
|
|
|
|
*length = bytes_read;
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_update_nvm
|
|
* @hw: pointer to the HW struct
|
|
* @module_typeid: module pointer location in words from the NVM beginning
|
|
* @offset: byte offset from the module beginning
|
|
* @length: length of the section to be written (in bytes from the offset)
|
|
* @data: command buffer (size [bytes] = length)
|
|
* @last_command: tells if this is the last command in a series
|
|
* @command_flags: command parameters
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Update the NVM using the admin queue commands (0x0703)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
|
|
u16 length, void *data, bool last_command, u8 command_flags,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
struct ice_aqc_nvm *cmd;
|
|
|
|
cmd = &desc.params.nvm;
|
|
|
|
/* In offset the highest byte must be zeroed. */
|
|
if (offset & 0xFF000000)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
|
|
|
|
cmd->cmd_flags |= command_flags;
|
|
|
|
/* If this is the last command in a series, set the proper flag. */
|
|
if (last_command)
|
|
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
|
|
cmd->module_typeid = cpu_to_le16(module_typeid);
|
|
cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
|
|
cmd->offset_high = (offset >> 16) & 0xFF;
|
|
cmd->length = cpu_to_le16(length);
|
|
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, data, length, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_erase_nvm
|
|
* @hw: pointer to the HW struct
|
|
* @module_typeid: module pointer location in words from the NVM beginning
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Erase the NVM sector using the admin queue commands (0x0702)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
struct ice_aqc_nvm *cmd;
|
|
|
|
cmd = &desc.params.nvm;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
|
|
|
|
cmd->module_typeid = cpu_to_le16(module_typeid);
|
|
cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
|
|
cmd->offset_low = 0;
|
|
cmd->offset_high = 0;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_read_sr_word_aq - Reads Shadow RAM via AQ
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
|
|
* @data: word read from the Shadow RAM
|
|
*
|
|
* Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
|
|
*/
|
|
static enum ice_status
|
|
ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
|
|
{
|
|
u32 bytes = sizeof(u16);
|
|
enum ice_status status;
|
|
__le16 data_local;
|
|
|
|
/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
|
|
* Shadow RAM sector restrictions necessary when reading from the NVM.
|
|
*/
|
|
status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
|
|
(__force u8 *)&data_local, true);
|
|
if (status)
|
|
return status;
|
|
|
|
*data = le16_to_cpu(data_local);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_acquire_nvm - Generic request for acquiring the NVM ownership
|
|
* @hw: pointer to the HW structure
|
|
* @access: NVM access type (read or write)
|
|
*
|
|
* This function will request NVM ownership.
|
|
*/
|
|
enum ice_status
|
|
ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
|
|
{
|
|
if (hw->flash.blank_nvm_mode)
|
|
return 0;
|
|
|
|
return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
|
|
}
|
|
|
|
/**
|
|
* ice_release_nvm - Generic request for releasing the NVM ownership
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function will release NVM ownership.
|
|
*/
|
|
void ice_release_nvm(struct ice_hw *hw)
|
|
{
|
|
if (hw->flash.blank_nvm_mode)
|
|
return;
|
|
|
|
ice_release_res(hw, ICE_NVM_RES_ID);
|
|
}
|
|
|
|
/**
|
|
* ice_get_flash_bank_offset - Get offset into requested flash bank
|
|
* @hw: pointer to the HW structure
|
|
* @bank: whether to read from the active or inactive flash bank
|
|
* @module: the module to read from
|
|
*
|
|
* Based on the module, lookup the module offset from the beginning of the
|
|
* flash.
|
|
*
|
|
* Returns the flash offset. Note that a value of zero is invalid and must be
|
|
* treated as an error.
|
|
*/
|
|
static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
|
|
{
|
|
struct ice_bank_info *banks = &hw->flash.banks;
|
|
enum ice_flash_bank active_bank;
|
|
bool second_bank_active;
|
|
u32 offset, size;
|
|
|
|
switch (module) {
|
|
case ICE_SR_1ST_NVM_BANK_PTR:
|
|
offset = banks->nvm_ptr;
|
|
size = banks->nvm_size;
|
|
active_bank = banks->nvm_bank;
|
|
break;
|
|
case ICE_SR_1ST_OROM_BANK_PTR:
|
|
offset = banks->orom_ptr;
|
|
size = banks->orom_size;
|
|
active_bank = banks->orom_bank;
|
|
break;
|
|
case ICE_SR_NETLIST_BANK_PTR:
|
|
offset = banks->netlist_ptr;
|
|
size = banks->netlist_size;
|
|
active_bank = banks->netlist_bank;
|
|
break;
|
|
default:
|
|
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
|
|
return 0;
|
|
}
|
|
|
|
switch (active_bank) {
|
|
case ICE_1ST_FLASH_BANK:
|
|
second_bank_active = false;
|
|
break;
|
|
case ICE_2ND_FLASH_BANK:
|
|
second_bank_active = true;
|
|
break;
|
|
default:
|
|
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
|
|
active_bank);
|
|
return 0;
|
|
}
|
|
|
|
/* The second flash bank is stored immediately following the first
|
|
* bank. Based on whether the 1st or 2nd bank is active, and whether
|
|
* we want the active or inactive bank, calculate the desired offset.
|
|
*/
|
|
switch (bank) {
|
|
case ICE_ACTIVE_FLASH_BANK:
|
|
return offset + (second_bank_active ? size : 0);
|
|
case ICE_INACTIVE_FLASH_BANK:
|
|
return offset + (second_bank_active ? 0 : size);
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_flash_module - Read a word from one of the main NVM modules
|
|
* @hw: pointer to the HW structure
|
|
* @bank: which bank of the module to read
|
|
* @module: the module to read
|
|
* @offset: the offset into the module in bytes
|
|
* @data: storage for the word read from the flash
|
|
* @length: bytes of data to read
|
|
*
|
|
* Read data from the specified flash module. The bank parameter indicates
|
|
* whether or not to read from the active bank or the inactive bank of that
|
|
* module.
|
|
*
|
|
* The word will be read using flat NVM access, and relies on the
|
|
* hw->flash.banks data being setup by ice_determine_active_flash_banks()
|
|
* during initialization.
|
|
*/
|
|
static enum ice_status
|
|
ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
|
|
u32 offset, u8 *data, u32 length)
|
|
{
|
|
enum ice_status status;
|
|
u32 start;
|
|
|
|
start = ice_get_flash_bank_offset(hw, bank, module);
|
|
if (!start) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
|
|
module);
|
|
return ICE_ERR_PARAM;
|
|
}
|
|
|
|
status = ice_acquire_nvm(hw, ICE_RES_READ);
|
|
if (status)
|
|
return status;
|
|
|
|
status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
|
|
|
|
ice_release_nvm(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_read_nvm_module - Read from the active main NVM module
|
|
* @hw: pointer to the HW structure
|
|
* @bank: whether to read from active or inactive NVM module
|
|
* @offset: offset into the NVM module to read, in words
|
|
* @data: storage for returned word value
|
|
*
|
|
* Read the specified word from the active NVM module. This includes the CSS
|
|
* header at the start of the NVM module.
|
|
*/
|
|
static enum ice_status
|
|
ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
|
|
{
|
|
enum ice_status status;
|
|
__le16 data_local;
|
|
|
|
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
|
|
(__force u8 *)&data_local, sizeof(u16));
|
|
if (!status)
|
|
*data = le16_to_cpu(data_local);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
|
|
* @hw: pointer to the HW structure
|
|
* @bank: whether to read from the active or inactive NVM module
|
|
* @offset: offset into the Shadow RAM copy to read, in words
|
|
* @data: storage for returned word value
|
|
*
|
|
* Read the specified word from the copy of the Shadow RAM found in the
|
|
* specified NVM module.
|
|
*/
|
|
static enum ice_status
|
|
ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
|
|
{
|
|
return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data);
|
|
}
|
|
|
|
/**
|
|
* ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
|
|
* @data: word read from the Shadow RAM
|
|
*
|
|
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
|
|
*/
|
|
enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
|
|
{
|
|
enum ice_status status;
|
|
|
|
status = ice_acquire_nvm(hw, ICE_RES_READ);
|
|
if (!status) {
|
|
status = ice_read_sr_word_aq(hw, offset, data);
|
|
ice_release_nvm(hw);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
|
|
* @hw: pointer to hardware structure
|
|
* @module_tlv: pointer to module TLV to return
|
|
* @module_tlv_len: pointer to module TLV length to return
|
|
* @module_type: module type requested
|
|
*
|
|
* Finds the requested sub module TLV type from the Preserved Field
|
|
* Area (PFA) and returns the TLV pointer and length. The caller can
|
|
* use these to read the variable length TLV value.
|
|
*/
|
|
enum ice_status
|
|
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
|
|
u16 module_type)
|
|
{
|
|
enum ice_status status;
|
|
u16 pfa_len, pfa_ptr;
|
|
u16 next_tlv;
|
|
|
|
status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
|
|
return status;
|
|
}
|
|
status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
|
|
return status;
|
|
}
|
|
/* Starting with first TLV after PFA length, iterate through the list
|
|
* of TLVs to find the requested one.
|
|
*/
|
|
next_tlv = pfa_ptr + 1;
|
|
while (next_tlv < pfa_ptr + pfa_len) {
|
|
u16 tlv_sub_module_type;
|
|
u16 tlv_len;
|
|
|
|
/* Read TLV type */
|
|
status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
|
|
break;
|
|
}
|
|
/* Read TLV length */
|
|
status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
|
|
break;
|
|
}
|
|
if (tlv_sub_module_type == module_type) {
|
|
if (tlv_len) {
|
|
*module_tlv = next_tlv;
|
|
*module_tlv_len = tlv_len;
|
|
return 0;
|
|
}
|
|
return ICE_ERR_INVAL_SIZE;
|
|
}
|
|
/* Check next TLV, i.e. current TLV pointer + length + 2 words
|
|
* (for current TLV's type and length)
|
|
*/
|
|
next_tlv = next_tlv + tlv_len + 2;
|
|
}
|
|
/* Module does not exist */
|
|
return ICE_ERR_DOES_NOT_EXIST;
|
|
}
|
|
|
|
/**
|
|
* ice_read_pba_string - Reads part number string from NVM
|
|
* @hw: pointer to hardware structure
|
|
* @pba_num: stores the part number string from the NVM
|
|
* @pba_num_size: part number string buffer length
|
|
*
|
|
* Reads the part number string from the NVM.
|
|
*/
|
|
enum ice_status
|
|
ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
|
|
{
|
|
u16 pba_tlv, pba_tlv_len;
|
|
enum ice_status status;
|
|
u16 pba_word, pba_size;
|
|
u16 i;
|
|
|
|
status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
|
|
ICE_SR_PBA_BLOCK_PTR);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
|
|
return status;
|
|
}
|
|
|
|
/* pba_size is the next word */
|
|
status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
|
|
return status;
|
|
}
|
|
|
|
if (pba_tlv_len < pba_size) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
|
|
return ICE_ERR_INVAL_SIZE;
|
|
}
|
|
|
|
/* Subtract one to get PBA word count (PBA Size word is included in
|
|
* total size)
|
|
*/
|
|
pba_size--;
|
|
if (pba_num_size < (((u32)pba_size * 2) + 1)) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
|
|
return ICE_ERR_PARAM;
|
|
}
|
|
|
|
for (i = 0; i < pba_size; i++) {
|
|
status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
|
|
return status;
|
|
}
|
|
|
|
pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
|
|
pba_num[(i * 2) + 1] = pba_word & 0xFF;
|
|
}
|
|
pba_num[(pba_size * 2)] = '\0';
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_nvm_ver_info - Read NVM version information
|
|
* @hw: pointer to the HW struct
|
|
* @bank: whether to read from the active or inactive flash bank
|
|
* @nvm: pointer to NVM info structure
|
|
*
|
|
* Read the NVM EETRACK ID and map version of the main NVM image bank, filling
|
|
* in the NVM info structure.
|
|
*/
|
|
static enum ice_status
|
|
ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
|
|
{
|
|
u16 eetrack_lo, eetrack_hi, ver;
|
|
enum ice_status status;
|
|
|
|
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
|
|
return status;
|
|
}
|
|
|
|
nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
|
|
nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
|
|
|
|
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
|
|
return status;
|
|
}
|
|
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
|
|
return status;
|
|
}
|
|
|
|
nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_get_orom_ver_info - Read Option ROM version information
|
|
* @hw: pointer to the HW struct
|
|
* @orom: pointer to Option ROM info structure
|
|
*
|
|
* Read the Combo Image version data from the Boot Configuration TLV and fill
|
|
* in the option ROM version data.
|
|
*/
|
|
static enum ice_status
|
|
ice_get_orom_ver_info(struct ice_hw *hw, struct ice_orom_info *orom)
|
|
{
|
|
u16 combo_hi, combo_lo, boot_cfg_tlv, boot_cfg_tlv_len;
|
|
enum ice_status status;
|
|
u32 combo_ver;
|
|
|
|
status = ice_get_pfa_module_tlv(hw, &boot_cfg_tlv, &boot_cfg_tlv_len,
|
|
ICE_SR_BOOT_CFG_PTR);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read Boot Configuration Block TLV.\n");
|
|
return status;
|
|
}
|
|
|
|
/* Boot Configuration Block must have length at least 2 words
|
|
* (Combo Image Version High and Combo Image Version Low)
|
|
*/
|
|
if (boot_cfg_tlv_len < 2) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Invalid Boot Configuration Block TLV size.\n");
|
|
return ICE_ERR_INVAL_SIZE;
|
|
}
|
|
|
|
status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF),
|
|
&combo_hi);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER hi.\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF + 1),
|
|
&combo_lo);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER lo.\n");
|
|
return status;
|
|
}
|
|
|
|
combo_ver = ((u32)combo_hi << 16) | combo_lo;
|
|
|
|
orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >>
|
|
ICE_OROM_VER_SHIFT);
|
|
orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
|
|
orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >>
|
|
ICE_OROM_VER_BUILD_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_get_netlist_ver_info
|
|
* @hw: pointer to the HW struct
|
|
* @ver: pointer to netlist version info structure
|
|
*
|
|
* Get the netlist version information
|
|
*/
|
|
static enum ice_status
|
|
ice_get_netlist_ver_info(struct ice_hw *hw, struct ice_netlist_info *ver)
|
|
{
|
|
enum ice_status ret;
|
|
u32 id_blk_start;
|
|
__le16 raw_data;
|
|
u16 data, i;
|
|
u16 *buff;
|
|
|
|
ret = ice_acquire_nvm(hw, ICE_RES_READ);
|
|
if (ret)
|
|
return ret;
|
|
buff = kcalloc(ICE_AQC_NVM_NETLIST_ID_BLK_LEN, sizeof(*buff),
|
|
GFP_KERNEL);
|
|
if (!buff) {
|
|
ret = ICE_ERR_NO_MEMORY;
|
|
goto exit_no_mem;
|
|
}
|
|
|
|
/* read module length */
|
|
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
|
|
ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN_OFFSET * 2,
|
|
ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN, &raw_data,
|
|
false, false, NULL);
|
|
if (ret)
|
|
goto exit_error;
|
|
|
|
data = le16_to_cpu(raw_data);
|
|
/* exit if length is = 0 */
|
|
if (!data)
|
|
goto exit_error;
|
|
|
|
/* read node count */
|
|
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
|
|
ICE_AQC_NVM_NETLIST_NODE_COUNT_OFFSET * 2,
|
|
ICE_AQC_NVM_NETLIST_NODE_COUNT_LEN, &raw_data,
|
|
false, false, NULL);
|
|
if (ret)
|
|
goto exit_error;
|
|
data = le16_to_cpu(raw_data) & ICE_AQC_NVM_NETLIST_NODE_COUNT_M;
|
|
|
|
/* netlist ID block starts from offset 4 + node count * 2 */
|
|
id_blk_start = ICE_AQC_NVM_NETLIST_ID_BLK_START_OFFSET + data * 2;
|
|
|
|
/* read the entire netlist ID block */
|
|
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
|
|
id_blk_start * 2,
|
|
ICE_AQC_NVM_NETLIST_ID_BLK_LEN * 2, buff, false,
|
|
false, NULL);
|
|
if (ret)
|
|
goto exit_error;
|
|
|
|
for (i = 0; i < ICE_AQC_NVM_NETLIST_ID_BLK_LEN; i++)
|
|
buff[i] = le16_to_cpu(((__force __le16 *)buff)[i]);
|
|
|
|
ver->major = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16) |
|
|
buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_LOW];
|
|
ver->minor = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16) |
|
|
buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_LOW];
|
|
ver->type = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_HIGH] << 16) |
|
|
buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_LOW];
|
|
ver->rev = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_HIGH] << 16) |
|
|
buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_LOW];
|
|
ver->cust_ver = buff[ICE_AQC_NVM_NETLIST_ID_BLK_CUST_VER];
|
|
/* Read the left most 4 bytes of SHA */
|
|
ver->hash = buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 15] << 16 |
|
|
buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 14];
|
|
|
|
exit_error:
|
|
kfree(buff);
|
|
exit_no_mem:
|
|
ice_release_nvm(hw);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_discover_flash_size - Discover the available flash size.
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* The device flash could be up to 16MB in size. However, it is possible that
|
|
* the actual size is smaller. Use bisection to determine the accessible size
|
|
* of flash memory.
|
|
*/
|
|
static enum ice_status ice_discover_flash_size(struct ice_hw *hw)
|
|
{
|
|
u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
|
|
enum ice_status status;
|
|
|
|
status = ice_acquire_nvm(hw, ICE_RES_READ);
|
|
if (status)
|
|
return status;
|
|
|
|
while ((max_size - min_size) > 1) {
|
|
u32 offset = (max_size + min_size) / 2;
|
|
u32 len = 1;
|
|
u8 data;
|
|
|
|
status = ice_read_flat_nvm(hw, offset, &len, &data, false);
|
|
if (status == ICE_ERR_AQ_ERROR &&
|
|
hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
|
|
ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
|
|
__func__, offset);
|
|
status = 0;
|
|
max_size = offset;
|
|
} else if (!status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
|
|
__func__, offset);
|
|
min_size = offset;
|
|
} else {
|
|
/* an unexpected error occurred */
|
|
goto err_read_flat_nvm;
|
|
}
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
|
|
|
|
hw->flash.flash_size = max_size;
|
|
|
|
err_read_flat_nvm:
|
|
ice_release_nvm(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
|
|
* @hw: pointer to the HW structure
|
|
* @offset: the word offset of the Shadow RAM word to read
|
|
* @pointer: pointer value read from Shadow RAM
|
|
*
|
|
* Read the given Shadow RAM word, and convert it to a pointer value specified
|
|
* in bytes. This function assumes the specified offset is a valid pointer
|
|
* word.
|
|
*
|
|
* Each pointer word specifies whether it is stored in word size or 4KB
|
|
* sector size by using the highest bit. The reported pointer value will be in
|
|
* bytes, intended for flat NVM reads.
|
|
*/
|
|
static enum ice_status
|
|
ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
|
|
{
|
|
enum ice_status status;
|
|
u16 value;
|
|
|
|
status = ice_read_sr_word(hw, offset, &value);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Determine if the pointer is in 4KB or word units */
|
|
if (value & ICE_SR_NVM_PTR_4KB_UNITS)
|
|
*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
|
|
else
|
|
*pointer = value * 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_sr_area_size - Read an area size from a Shadow RAM word
|
|
* @hw: pointer to the HW structure
|
|
* @offset: the word offset of the Shadow RAM to read
|
|
* @size: size value read from the Shadow RAM
|
|
*
|
|
* Read the given Shadow RAM word, and convert it to an area size value
|
|
* specified in bytes. This function assumes the specified offset is a valid
|
|
* area size word.
|
|
*
|
|
* Each area size word is specified in 4KB sector units. This function reports
|
|
* the size in bytes, intended for flat NVM reads.
|
|
*/
|
|
static enum ice_status
|
|
ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
|
|
{
|
|
enum ice_status status;
|
|
u16 value;
|
|
|
|
status = ice_read_sr_word(hw, offset, &value);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Area sizes are always specified in 4KB units */
|
|
*size = value * 4 * 1024;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_determine_active_flash_banks - Discover active bank for each module
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Read the Shadow RAM control word and determine which banks are active for
|
|
* the NVM, OROM, and Netlist modules. Also read and calculate the associated
|
|
* pointer and size. These values are then cached into the ice_flash_info
|
|
* structure for later use in order to calculate the correct offset to read
|
|
* from the active module.
|
|
*/
|
|
static enum ice_status
|
|
ice_determine_active_flash_banks(struct ice_hw *hw)
|
|
{
|
|
struct ice_bank_info *banks = &hw->flash.banks;
|
|
enum ice_status status;
|
|
u16 ctrl_word;
|
|
|
|
status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
|
|
return status;
|
|
}
|
|
|
|
/* Check that the control word indicates validity */
|
|
if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
|
|
return ICE_ERR_CFG;
|
|
}
|
|
|
|
if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
|
|
banks->nvm_bank = ICE_1ST_FLASH_BANK;
|
|
else
|
|
banks->nvm_bank = ICE_2ND_FLASH_BANK;
|
|
|
|
if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
|
|
banks->orom_bank = ICE_1ST_FLASH_BANK;
|
|
else
|
|
banks->orom_bank = ICE_2ND_FLASH_BANK;
|
|
|
|
if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
|
|
banks->netlist_bank = ICE_1ST_FLASH_BANK;
|
|
else
|
|
banks->netlist_bank = ICE_2ND_FLASH_BANK;
|
|
|
|
status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
|
|
return status;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_init_nvm - initializes NVM setting
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* This function reads and populates NVM settings such as Shadow RAM size,
|
|
* max_timeout, and blank_nvm_mode
|
|
*/
|
|
enum ice_status ice_init_nvm(struct ice_hw *hw)
|
|
{
|
|
struct ice_flash_info *flash = &hw->flash;
|
|
enum ice_status status;
|
|
u32 fla, gens_stat;
|
|
u8 sr_size;
|
|
|
|
/* The SR size is stored regardless of the NVM programming mode
|
|
* as the blank mode may be used in the factory line.
|
|
*/
|
|
gens_stat = rd32(hw, GLNVM_GENS);
|
|
sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
|
|
|
|
/* Switching to words (sr_size contains power of 2) */
|
|
flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
|
|
|
|
/* Check if we are in the normal or blank NVM programming mode */
|
|
fla = rd32(hw, GLNVM_FLA);
|
|
if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
|
|
flash->blank_nvm_mode = false;
|
|
} else {
|
|
/* Blank programming mode */
|
|
flash->blank_nvm_mode = true;
|
|
ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
|
|
return ICE_ERR_NVM_BLANK_MODE;
|
|
}
|
|
|
|
status = ice_discover_flash_size(hw);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_determine_active_flash_banks(hw);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
|
|
return status;
|
|
}
|
|
|
|
status = ice_get_orom_ver_info(hw, &flash->orom);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
|
|
return status;
|
|
}
|
|
|
|
/* read the netlist version information */
|
|
status = ice_get_netlist_ver_info(hw, &flash->netlist);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_nvm_validate_checksum
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Verify NVM PFA checksum validity (0x0706)
|
|
*/
|
|
enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
|
|
{
|
|
struct ice_aqc_nvm_checksum *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
status = ice_acquire_nvm(hw, ICE_RES_READ);
|
|
if (status)
|
|
return status;
|
|
|
|
cmd = &desc.params.nvm_checksum;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
|
|
cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
ice_release_nvm(hw);
|
|
|
|
if (!status)
|
|
if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
|
|
status = ICE_ERR_NVM_CHECKSUM;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_nvm_write_activate
|
|
* @hw: pointer to the HW struct
|
|
* @cmd_flags: NVM activate admin command bits (banks to be validated)
|
|
*
|
|
* Update the control word with the required banks' validity bits
|
|
* and dumps the Shadow RAM to flash (0x0707)
|
|
*/
|
|
enum ice_status ice_nvm_write_activate(struct ice_hw *hw, u8 cmd_flags)
|
|
{
|
|
struct ice_aqc_nvm *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.nvm;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
|
|
|
|
cmd->cmd_flags = cmd_flags;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_nvm_update_empr
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Update empr (0x0709). This command allows SW to
|
|
* request an EMPR to activate new FW.
|
|
*/
|
|
enum ice_status ice_aq_nvm_update_empr(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/* ice_nvm_set_pkg_data
|
|
* @hw: pointer to the HW struct
|
|
* @del_pkg_data_flag: If is set then the current pkg_data store by FW
|
|
* is deleted.
|
|
* If bit is set to 1, then buffer should be size 0.
|
|
* @data: pointer to buffer
|
|
* @length: length of the buffer
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set package data (0x070A). This command is equivalent to the reception
|
|
* of a PLDM FW Update GetPackageData cmd. This command should be sent
|
|
* as part of the NVM update as the first cmd in the flow.
|
|
*/
|
|
|
|
enum ice_status
|
|
ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
|
|
u16 length, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_nvm_pkg_data *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
if (length != 0 && !data)
|
|
return ICE_ERR_PARAM;
|
|
|
|
cmd = &desc.params.pkg_data;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
if (del_pkg_data_flag)
|
|
cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, data, length, cd);
|
|
}
|
|
|
|
/* ice_nvm_pass_component_tbl
|
|
* @hw: pointer to the HW struct
|
|
* @data: pointer to buffer
|
|
* @length: length of the buffer
|
|
* @transfer_flag: parameter for determining stage of the update
|
|
* @comp_response: a pointer to the response from the 0x070B AQC.
|
|
* @comp_response_code: a pointer to the response code from the 0x070B AQC.
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Pass component table (0x070B). This command is equivalent to the reception
|
|
* of a PLDM FW Update PassComponentTable cmd. This command should be sent once
|
|
* per component. It can be only sent after Set Package Data cmd and before
|
|
* actual update. FW will assume these commands are going to be sent until
|
|
* the TransferFlag is set to End or StartAndEnd.
|
|
*/
|
|
|
|
enum ice_status
|
|
ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
|
|
u8 transfer_flag, u8 *comp_response,
|
|
u8 *comp_response_code, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_nvm_pass_comp_tbl *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
if (!data || !comp_response || !comp_response_code)
|
|
return ICE_ERR_PARAM;
|
|
|
|
cmd = &desc.params.pass_comp_tbl;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc,
|
|
ice_aqc_opc_nvm_pass_component_tbl);
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->transfer_flag = transfer_flag;
|
|
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
|
|
|
|
if (!status) {
|
|
*comp_response = cmd->component_response;
|
|
*comp_response_code = cmd->component_response_code;
|
|
}
|
|
return status;
|
|
}
|