0cb5670baa
We assume that the GPU is idle once receiving the seqno via the last
request's user interrupt. In execlist mode the corresponding context
completed interrupt can be delayed though and until this latter
interrupt arrives we consider the request to be pending on the ELSP
submit port. This can cause a problem during system suspend where this
last request will be seen by the resume code as still pending. Such
pending requests are normally replayed after a GPU reset, but during
resume we reset both SW and HW tracking of the ring head/tail pointers,
so replaying the pending request with its stale tail pointer will leave
the ring in an inconsistent state. A subsequent request submission can
lead then to the GPU executing from uninitialized area in the ring
behind the above stale tail pointer.
Fix this by making sure any pending request on the ELSP port is
completed before suspending. I used a polling wait since the completion
time I measured was <1ms and since normally we only need to wait during
system suspend. GPU idling during runtime suspend is scheduled with a
delay (currently 50-100ms) after the retirement of the last request at
which point the context completed interrupt must have arrived already.
The chance of this bug was increased by
commit 1c777c5d1d
Author: Imre Deak <imre.deak@intel.com>
Date: Wed Oct 12 17:46:37 2016 +0300
drm/i915/hsw: Fix GPU hang during resume from S3-devices state
but it could happen even without the explicit GPU reset, since we
disable interrupts afterwards during the suspend sequence.
v2:
- Do an unlocked poll-wait first. (Chris)
v3-4:
- s/intel_lr_engines_idle/intel_execlists_idle/ and move
i915.enable_execlists check to the new helper. (Chris)
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=98470
Signed-off-by: Imre Deak <imre.deak@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: http://patchwork.freedesktop.org/patch/msgid/1478510405-11799-3-git-send-email-imre.deak@intel.com
2184 lines
66 KiB
C
2184 lines
66 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Ben Widawsky <ben@bwidawsk.net>
|
|
* Michel Thierry <michel.thierry@intel.com>
|
|
* Thomas Daniel <thomas.daniel@intel.com>
|
|
* Oscar Mateo <oscar.mateo@intel.com>
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* DOC: Logical Rings, Logical Ring Contexts and Execlists
|
|
*
|
|
* Motivation:
|
|
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
|
|
* These expanded contexts enable a number of new abilities, especially
|
|
* "Execlists" (also implemented in this file).
|
|
*
|
|
* One of the main differences with the legacy HW contexts is that logical
|
|
* ring contexts incorporate many more things to the context's state, like
|
|
* PDPs or ringbuffer control registers:
|
|
*
|
|
* The reason why PDPs are included in the context is straightforward: as
|
|
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
|
|
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
|
|
* instead, the GPU will do it for you on the context switch.
|
|
*
|
|
* But, what about the ringbuffer control registers (head, tail, etc..)?
|
|
* shouldn't we just need a set of those per engine command streamer? This is
|
|
* where the name "Logical Rings" starts to make sense: by virtualizing the
|
|
* rings, the engine cs shifts to a new "ring buffer" with every context
|
|
* switch. When you want to submit a workload to the GPU you: A) choose your
|
|
* context, B) find its appropriate virtualized ring, C) write commands to it
|
|
* and then, finally, D) tell the GPU to switch to that context.
|
|
*
|
|
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
|
|
* to a contexts is via a context execution list, ergo "Execlists".
|
|
*
|
|
* LRC implementation:
|
|
* Regarding the creation of contexts, we have:
|
|
*
|
|
* - One global default context.
|
|
* - One local default context for each opened fd.
|
|
* - One local extra context for each context create ioctl call.
|
|
*
|
|
* Now that ringbuffers belong per-context (and not per-engine, like before)
|
|
* and that contexts are uniquely tied to a given engine (and not reusable,
|
|
* like before) we need:
|
|
*
|
|
* - One ringbuffer per-engine inside each context.
|
|
* - One backing object per-engine inside each context.
|
|
*
|
|
* The global default context starts its life with these new objects fully
|
|
* allocated and populated. The local default context for each opened fd is
|
|
* more complex, because we don't know at creation time which engine is going
|
|
* to use them. To handle this, we have implemented a deferred creation of LR
|
|
* contexts:
|
|
*
|
|
* The local context starts its life as a hollow or blank holder, that only
|
|
* gets populated for a given engine once we receive an execbuffer. If later
|
|
* on we receive another execbuffer ioctl for the same context but a different
|
|
* engine, we allocate/populate a new ringbuffer and context backing object and
|
|
* so on.
|
|
*
|
|
* Finally, regarding local contexts created using the ioctl call: as they are
|
|
* only allowed with the render ring, we can allocate & populate them right
|
|
* away (no need to defer anything, at least for now).
|
|
*
|
|
* Execlists implementation:
|
|
* Execlists are the new method by which, on gen8+ hardware, workloads are
|
|
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
|
|
* This method works as follows:
|
|
*
|
|
* When a request is committed, its commands (the BB start and any leading or
|
|
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
|
|
* for the appropriate context. The tail pointer in the hardware context is not
|
|
* updated at this time, but instead, kept by the driver in the ringbuffer
|
|
* structure. A structure representing this request is added to a request queue
|
|
* for the appropriate engine: this structure contains a copy of the context's
|
|
* tail after the request was written to the ring buffer and a pointer to the
|
|
* context itself.
|
|
*
|
|
* If the engine's request queue was empty before the request was added, the
|
|
* queue is processed immediately. Otherwise the queue will be processed during
|
|
* a context switch interrupt. In any case, elements on the queue will get sent
|
|
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
|
|
* globally unique 20-bits submission ID.
|
|
*
|
|
* When execution of a request completes, the GPU updates the context status
|
|
* buffer with a context complete event and generates a context switch interrupt.
|
|
* During the interrupt handling, the driver examines the events in the buffer:
|
|
* for each context complete event, if the announced ID matches that on the head
|
|
* of the request queue, then that request is retired and removed from the queue.
|
|
*
|
|
* After processing, if any requests were retired and the queue is not empty
|
|
* then a new execution list can be submitted. The two requests at the front of
|
|
* the queue are next to be submitted but since a context may not occur twice in
|
|
* an execution list, if subsequent requests have the same ID as the first then
|
|
* the two requests must be combined. This is done simply by discarding requests
|
|
* at the head of the queue until either only one requests is left (in which case
|
|
* we use a NULL second context) or the first two requests have unique IDs.
|
|
*
|
|
* By always executing the first two requests in the queue the driver ensures
|
|
* that the GPU is kept as busy as possible. In the case where a single context
|
|
* completes but a second context is still executing, the request for this second
|
|
* context will be at the head of the queue when we remove the first one. This
|
|
* request will then be resubmitted along with a new request for a different context,
|
|
* which will cause the hardware to continue executing the second request and queue
|
|
* the new request (the GPU detects the condition of a context getting preempted
|
|
* with the same context and optimizes the context switch flow by not doing
|
|
* preemption, but just sampling the new tail pointer).
|
|
*
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "intel_mocs.h"
|
|
|
|
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
|
|
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
|
|
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
|
|
|
|
#define RING_EXECLIST_QFULL (1 << 0x2)
|
|
#define RING_EXECLIST1_VALID (1 << 0x3)
|
|
#define RING_EXECLIST0_VALID (1 << 0x4)
|
|
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
|
|
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
|
|
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
|
|
|
|
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
|
|
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
|
|
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
|
|
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
|
|
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
|
|
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
|
|
|
|
#define GEN8_CTX_STATUS_COMPLETED_MASK \
|
|
(GEN8_CTX_STATUS_ACTIVE_IDLE | \
|
|
GEN8_CTX_STATUS_PREEMPTED | \
|
|
GEN8_CTX_STATUS_ELEMENT_SWITCH)
|
|
|
|
#define CTX_LRI_HEADER_0 0x01
|
|
#define CTX_CONTEXT_CONTROL 0x02
|
|
#define CTX_RING_HEAD 0x04
|
|
#define CTX_RING_TAIL 0x06
|
|
#define CTX_RING_BUFFER_START 0x08
|
|
#define CTX_RING_BUFFER_CONTROL 0x0a
|
|
#define CTX_BB_HEAD_U 0x0c
|
|
#define CTX_BB_HEAD_L 0x0e
|
|
#define CTX_BB_STATE 0x10
|
|
#define CTX_SECOND_BB_HEAD_U 0x12
|
|
#define CTX_SECOND_BB_HEAD_L 0x14
|
|
#define CTX_SECOND_BB_STATE 0x16
|
|
#define CTX_BB_PER_CTX_PTR 0x18
|
|
#define CTX_RCS_INDIRECT_CTX 0x1a
|
|
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
|
|
#define CTX_LRI_HEADER_1 0x21
|
|
#define CTX_CTX_TIMESTAMP 0x22
|
|
#define CTX_PDP3_UDW 0x24
|
|
#define CTX_PDP3_LDW 0x26
|
|
#define CTX_PDP2_UDW 0x28
|
|
#define CTX_PDP2_LDW 0x2a
|
|
#define CTX_PDP1_UDW 0x2c
|
|
#define CTX_PDP1_LDW 0x2e
|
|
#define CTX_PDP0_UDW 0x30
|
|
#define CTX_PDP0_LDW 0x32
|
|
#define CTX_LRI_HEADER_2 0x41
|
|
#define CTX_R_PWR_CLK_STATE 0x42
|
|
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
|
|
|
|
#define GEN8_CTX_VALID (1<<0)
|
|
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
|
|
#define GEN8_CTX_FORCE_RESTORE (1<<2)
|
|
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
|
|
#define GEN8_CTX_PRIVILEGE (1<<8)
|
|
|
|
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
|
|
(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
|
|
(reg_state)[(pos)+1] = (val); \
|
|
} while (0)
|
|
|
|
#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
|
|
const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
|
|
reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
|
|
reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
|
|
} while (0)
|
|
|
|
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
|
|
reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
|
|
reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
|
|
} while (0)
|
|
|
|
enum {
|
|
FAULT_AND_HANG = 0,
|
|
FAULT_AND_HALT, /* Debug only */
|
|
FAULT_AND_STREAM,
|
|
FAULT_AND_CONTINUE /* Unsupported */
|
|
};
|
|
#define GEN8_CTX_ID_SHIFT 32
|
|
#define GEN8_CTX_ID_WIDTH 21
|
|
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
|
|
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
|
|
|
|
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
|
|
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
|
|
|
|
#define WA_TAIL_DWORDS 2
|
|
|
|
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine);
|
|
static int intel_lr_context_pin(struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine);
|
|
static void execlists_init_reg_state(u32 *reg_state,
|
|
struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine,
|
|
struct intel_ring *ring);
|
|
|
|
/**
|
|
* intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
|
|
* @dev_priv: i915 device private
|
|
* @enable_execlists: value of i915.enable_execlists module parameter.
|
|
*
|
|
* Only certain platforms support Execlists (the prerequisites being
|
|
* support for Logical Ring Contexts and Aliasing PPGTT or better).
|
|
*
|
|
* Return: 1 if Execlists is supported and has to be enabled.
|
|
*/
|
|
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
|
|
{
|
|
/* On platforms with execlist available, vGPU will only
|
|
* support execlist mode, no ring buffer mode.
|
|
*/
|
|
if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
|
|
return 1;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
return 1;
|
|
|
|
if (enable_execlists == 0)
|
|
return 0;
|
|
|
|
if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
|
|
USES_PPGTT(dev_priv) &&
|
|
i915.use_mmio_flip >= 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
engine->disable_lite_restore_wa =
|
|
IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
|
|
(engine->id == VCS || engine->id == VCS2);
|
|
|
|
engine->ctx_desc_template = GEN8_CTX_VALID;
|
|
if (IS_GEN8(dev_priv))
|
|
engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
|
|
engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
|
|
|
|
/* TODO: WaDisableLiteRestore when we start using semaphore
|
|
* signalling between Command Streamers */
|
|
/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
|
|
|
|
/* WaEnableForceRestoreInCtxtDescForVCS:skl */
|
|
/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
|
|
if (engine->disable_lite_restore_wa)
|
|
engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
|
|
}
|
|
|
|
/**
|
|
* intel_lr_context_descriptor_update() - calculate & cache the descriptor
|
|
* descriptor for a pinned context
|
|
* @ctx: Context to work on
|
|
* @engine: Engine the descriptor will be used with
|
|
*
|
|
* The context descriptor encodes various attributes of a context,
|
|
* including its GTT address and some flags. Because it's fairly
|
|
* expensive to calculate, we'll just do it once and cache the result,
|
|
* which remains valid until the context is unpinned.
|
|
*
|
|
* This is what a descriptor looks like, from LSB to MSB::
|
|
*
|
|
* bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
|
|
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
|
|
* bits 32-52: ctx ID, a globally unique tag
|
|
* bits 53-54: mbz, reserved for use by hardware
|
|
* bits 55-63: group ID, currently unused and set to 0
|
|
*/
|
|
static void
|
|
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
|
u64 desc;
|
|
|
|
BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
|
|
|
|
desc = ctx->desc_template; /* bits 3-4 */
|
|
desc |= engine->ctx_desc_template; /* bits 0-11 */
|
|
desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
|
|
/* bits 12-31 */
|
|
desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
|
|
|
|
ce->lrc_desc = desc;
|
|
}
|
|
|
|
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
return ctx->engine[engine->id].lrc_desc;
|
|
}
|
|
|
|
static inline void
|
|
execlists_context_status_change(struct drm_i915_gem_request *rq,
|
|
unsigned long status)
|
|
{
|
|
/*
|
|
* Only used when GVT-g is enabled now. When GVT-g is disabled,
|
|
* The compiler should eliminate this function as dead-code.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
|
|
return;
|
|
|
|
atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
|
|
}
|
|
|
|
static void
|
|
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
|
|
{
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
|
|
}
|
|
|
|
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
|
|
{
|
|
struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
|
|
struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
|
|
u32 *reg_state = ce->lrc_reg_state;
|
|
|
|
reg_state[CTX_RING_TAIL+1] = rq->tail;
|
|
|
|
/* True 32b PPGTT with dynamic page allocation: update PDP
|
|
* registers and point the unallocated PDPs to scratch page.
|
|
* PML4 is allocated during ppgtt init, so this is not needed
|
|
* in 48-bit mode.
|
|
*/
|
|
if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
|
|
execlists_update_context_pdps(ppgtt, reg_state);
|
|
|
|
return ce->lrc_desc;
|
|
}
|
|
|
|
static void execlists_submit_ports(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
struct execlist_port *port = engine->execlist_port;
|
|
u32 __iomem *elsp =
|
|
dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
|
|
u64 desc[2];
|
|
|
|
if (!port[0].count)
|
|
execlists_context_status_change(port[0].request,
|
|
INTEL_CONTEXT_SCHEDULE_IN);
|
|
desc[0] = execlists_update_context(port[0].request);
|
|
engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
|
|
|
|
if (port[1].request) {
|
|
GEM_BUG_ON(port[1].count);
|
|
execlists_context_status_change(port[1].request,
|
|
INTEL_CONTEXT_SCHEDULE_IN);
|
|
desc[1] = execlists_update_context(port[1].request);
|
|
port[1].count = 1;
|
|
} else {
|
|
desc[1] = 0;
|
|
}
|
|
GEM_BUG_ON(desc[0] == desc[1]);
|
|
|
|
/* You must always write both descriptors in the order below. */
|
|
writel(upper_32_bits(desc[1]), elsp);
|
|
writel(lower_32_bits(desc[1]), elsp);
|
|
|
|
writel(upper_32_bits(desc[0]), elsp);
|
|
/* The context is automatically loaded after the following */
|
|
writel(lower_32_bits(desc[0]), elsp);
|
|
}
|
|
|
|
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
|
|
{
|
|
return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
|
|
ctx->execlists_force_single_submission);
|
|
}
|
|
|
|
static bool can_merge_ctx(const struct i915_gem_context *prev,
|
|
const struct i915_gem_context *next)
|
|
{
|
|
if (prev != next)
|
|
return false;
|
|
|
|
if (ctx_single_port_submission(prev))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void execlists_dequeue(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_request *cursor, *last;
|
|
struct execlist_port *port = engine->execlist_port;
|
|
bool submit = false;
|
|
|
|
last = port->request;
|
|
if (last)
|
|
/* WaIdleLiteRestore:bdw,skl
|
|
* Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
|
|
* as we resubmit the request. See gen8_emit_breadcrumb()
|
|
* for where we prepare the padding after the end of the
|
|
* request.
|
|
*/
|
|
last->tail = last->wa_tail;
|
|
|
|
GEM_BUG_ON(port[1].request);
|
|
|
|
/* Hardware submission is through 2 ports. Conceptually each port
|
|
* has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
|
|
* static for a context, and unique to each, so we only execute
|
|
* requests belonging to a single context from each ring. RING_HEAD
|
|
* is maintained by the CS in the context image, it marks the place
|
|
* where it got up to last time, and through RING_TAIL we tell the CS
|
|
* where we want to execute up to this time.
|
|
*
|
|
* In this list the requests are in order of execution. Consecutive
|
|
* requests from the same context are adjacent in the ringbuffer. We
|
|
* can combine these requests into a single RING_TAIL update:
|
|
*
|
|
* RING_HEAD...req1...req2
|
|
* ^- RING_TAIL
|
|
* since to execute req2 the CS must first execute req1.
|
|
*
|
|
* Our goal then is to point each port to the end of a consecutive
|
|
* sequence of requests as being the most optimal (fewest wake ups
|
|
* and context switches) submission.
|
|
*/
|
|
|
|
spin_lock(&engine->execlist_lock);
|
|
list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
|
|
/* Can we combine this request with the current port? It has to
|
|
* be the same context/ringbuffer and not have any exceptions
|
|
* (e.g. GVT saying never to combine contexts).
|
|
*
|
|
* If we can combine the requests, we can execute both by
|
|
* updating the RING_TAIL to point to the end of the second
|
|
* request, and so we never need to tell the hardware about
|
|
* the first.
|
|
*/
|
|
if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
|
|
/* If we are on the second port and cannot combine
|
|
* this request with the last, then we are done.
|
|
*/
|
|
if (port != engine->execlist_port)
|
|
break;
|
|
|
|
/* If GVT overrides us we only ever submit port[0],
|
|
* leaving port[1] empty. Note that we also have
|
|
* to be careful that we don't queue the same
|
|
* context (even though a different request) to
|
|
* the second port.
|
|
*/
|
|
if (ctx_single_port_submission(cursor->ctx))
|
|
break;
|
|
|
|
GEM_BUG_ON(last->ctx == cursor->ctx);
|
|
|
|
i915_gem_request_assign(&port->request, last);
|
|
port++;
|
|
}
|
|
last = cursor;
|
|
submit = true;
|
|
}
|
|
if (submit) {
|
|
/* Decouple all the requests submitted from the queue */
|
|
engine->execlist_queue.next = &cursor->execlist_link;
|
|
cursor->execlist_link.prev = &engine->execlist_queue;
|
|
|
|
i915_gem_request_assign(&port->request, last);
|
|
}
|
|
spin_unlock(&engine->execlist_lock);
|
|
|
|
if (submit)
|
|
execlists_submit_ports(engine);
|
|
}
|
|
|
|
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
|
|
{
|
|
return !engine->execlist_port[0].request;
|
|
}
|
|
|
|
/**
|
|
* intel_execlists_idle() - Determine if all engine submission ports are idle
|
|
* @dev_priv: i915 device private
|
|
*
|
|
* Return true if there are no requests pending on any of the submission ports
|
|
* of any engines.
|
|
*/
|
|
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
if (!i915.enable_execlists)
|
|
return true;
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
if (!execlists_elsp_idle(engine))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
|
|
{
|
|
int port;
|
|
|
|
port = 1; /* wait for a free slot */
|
|
if (engine->disable_lite_restore_wa || engine->preempt_wa)
|
|
port = 0; /* wait for GPU to be idle before continuing */
|
|
|
|
return !engine->execlist_port[port].request;
|
|
}
|
|
|
|
/*
|
|
* Check the unread Context Status Buffers and manage the submission of new
|
|
* contexts to the ELSP accordingly.
|
|
*/
|
|
static void intel_lrc_irq_handler(unsigned long data)
|
|
{
|
|
struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
|
|
struct execlist_port *port = engine->execlist_port;
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
|
|
|
|
if (!execlists_elsp_idle(engine)) {
|
|
u32 __iomem *csb_mmio =
|
|
dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
|
|
u32 __iomem *buf =
|
|
dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
|
|
unsigned int csb, head, tail;
|
|
|
|
csb = readl(csb_mmio);
|
|
head = GEN8_CSB_READ_PTR(csb);
|
|
tail = GEN8_CSB_WRITE_PTR(csb);
|
|
if (tail < head)
|
|
tail += GEN8_CSB_ENTRIES;
|
|
while (head < tail) {
|
|
unsigned int idx = ++head % GEN8_CSB_ENTRIES;
|
|
unsigned int status = readl(buf + 2 * idx);
|
|
|
|
if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
|
|
continue;
|
|
|
|
GEM_BUG_ON(port[0].count == 0);
|
|
if (--port[0].count == 0) {
|
|
GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
|
|
execlists_context_status_change(port[0].request,
|
|
INTEL_CONTEXT_SCHEDULE_OUT);
|
|
|
|
i915_gem_request_put(port[0].request);
|
|
port[0] = port[1];
|
|
memset(&port[1], 0, sizeof(port[1]));
|
|
|
|
engine->preempt_wa = false;
|
|
}
|
|
|
|
GEM_BUG_ON(port[0].count == 0 &&
|
|
!(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
|
|
}
|
|
|
|
writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
|
|
GEN8_CSB_WRITE_PTR(csb) << 8),
|
|
csb_mmio);
|
|
}
|
|
|
|
if (execlists_elsp_ready(engine))
|
|
execlists_dequeue(engine);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
|
|
}
|
|
|
|
static void execlists_submit_request(struct drm_i915_gem_request *request)
|
|
{
|
|
struct intel_engine_cs *engine = request->engine;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&engine->execlist_lock, flags);
|
|
|
|
/* We keep the previous context alive until we retire the following
|
|
* request. This ensures that any the context object is still pinned
|
|
* for any residual writes the HW makes into it on the context switch
|
|
* into the next object following the breadcrumb. Otherwise, we may
|
|
* retire the context too early.
|
|
*/
|
|
request->previous_context = engine->last_context;
|
|
engine->last_context = request->ctx;
|
|
|
|
list_add_tail(&request->execlist_link, &engine->execlist_queue);
|
|
if (execlists_elsp_idle(engine))
|
|
tasklet_hi_schedule(&engine->irq_tasklet);
|
|
|
|
spin_unlock_irqrestore(&engine->execlist_lock, flags);
|
|
}
|
|
|
|
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
|
|
{
|
|
struct intel_engine_cs *engine = request->engine;
|
|
struct intel_context *ce = &request->ctx->engine[engine->id];
|
|
int ret;
|
|
|
|
/* Flush enough space to reduce the likelihood of waiting after
|
|
* we start building the request - in which case we will just
|
|
* have to repeat work.
|
|
*/
|
|
request->reserved_space += EXECLISTS_REQUEST_SIZE;
|
|
|
|
if (!ce->state) {
|
|
ret = execlists_context_deferred_alloc(request->ctx, engine);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
request->ring = ce->ring;
|
|
|
|
ret = intel_lr_context_pin(request->ctx, engine);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (i915.enable_guc_submission) {
|
|
/*
|
|
* Check that the GuC has space for the request before
|
|
* going any further, as the i915_add_request() call
|
|
* later on mustn't fail ...
|
|
*/
|
|
ret = i915_guc_wq_reserve(request);
|
|
if (ret)
|
|
goto err_unpin;
|
|
}
|
|
|
|
ret = intel_ring_begin(request, 0);
|
|
if (ret)
|
|
goto err_unreserve;
|
|
|
|
if (!ce->initialised) {
|
|
ret = engine->init_context(request);
|
|
if (ret)
|
|
goto err_unreserve;
|
|
|
|
ce->initialised = true;
|
|
}
|
|
|
|
/* Note that after this point, we have committed to using
|
|
* this request as it is being used to both track the
|
|
* state of engine initialisation and liveness of the
|
|
* golden renderstate above. Think twice before you try
|
|
* to cancel/unwind this request now.
|
|
*/
|
|
|
|
request->reserved_space -= EXECLISTS_REQUEST_SIZE;
|
|
return 0;
|
|
|
|
err_unreserve:
|
|
if (i915.enable_guc_submission)
|
|
i915_guc_wq_unreserve(request);
|
|
err_unpin:
|
|
intel_lr_context_unpin(request->ctx, engine);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_lr_context_pin(struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
|
void *vaddr;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
|
|
|
|
if (ce->pin_count++)
|
|
return 0;
|
|
|
|
ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
|
|
PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
|
|
if (ret)
|
|
goto err;
|
|
|
|
vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
|
|
if (IS_ERR(vaddr)) {
|
|
ret = PTR_ERR(vaddr);
|
|
goto unpin_vma;
|
|
}
|
|
|
|
ret = intel_ring_pin(ce->ring);
|
|
if (ret)
|
|
goto unpin_map;
|
|
|
|
intel_lr_context_descriptor_update(ctx, engine);
|
|
|
|
ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
|
|
ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
|
|
i915_ggtt_offset(ce->ring->vma);
|
|
|
|
ce->state->obj->mm.dirty = true;
|
|
|
|
/* Invalidate GuC TLB. */
|
|
if (i915.enable_guc_submission) {
|
|
struct drm_i915_private *dev_priv = ctx->i915;
|
|
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
|
|
}
|
|
|
|
i915_gem_context_get(ctx);
|
|
return 0;
|
|
|
|
unpin_map:
|
|
i915_gem_object_unpin_map(ce->state->obj);
|
|
unpin_vma:
|
|
__i915_vma_unpin(ce->state);
|
|
err:
|
|
ce->pin_count = 0;
|
|
return ret;
|
|
}
|
|
|
|
void intel_lr_context_unpin(struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
|
|
|
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
|
|
GEM_BUG_ON(ce->pin_count == 0);
|
|
|
|
if (--ce->pin_count)
|
|
return;
|
|
|
|
intel_ring_unpin(ce->ring);
|
|
|
|
i915_gem_object_unpin_map(ce->state->obj);
|
|
i915_vma_unpin(ce->state);
|
|
|
|
i915_gem_context_put(ctx);
|
|
}
|
|
|
|
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
|
|
{
|
|
int ret, i;
|
|
struct intel_ring *ring = req->ring;
|
|
struct i915_workarounds *w = &req->i915->workarounds;
|
|
|
|
if (w->count == 0)
|
|
return 0;
|
|
|
|
ret = req->engine->emit_flush(req, EMIT_BARRIER);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(req, w->count * 2 + 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
|
|
for (i = 0; i < w->count; i++) {
|
|
intel_ring_emit_reg(ring, w->reg[i].addr);
|
|
intel_ring_emit(ring, w->reg[i].value);
|
|
}
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
|
|
intel_ring_advance(ring);
|
|
|
|
ret = req->engine->emit_flush(req, EMIT_BARRIER);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define wa_ctx_emit(batch, index, cmd) \
|
|
do { \
|
|
int __index = (index)++; \
|
|
if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
|
|
return -ENOSPC; \
|
|
} \
|
|
batch[__index] = (cmd); \
|
|
} while (0)
|
|
|
|
#define wa_ctx_emit_reg(batch, index, reg) \
|
|
wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
|
|
|
|
/*
|
|
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
|
|
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
|
|
* but there is a slight complication as this is applied in WA batch where the
|
|
* values are only initialized once so we cannot take register value at the
|
|
* beginning and reuse it further; hence we save its value to memory, upload a
|
|
* constant value with bit21 set and then we restore it back with the saved value.
|
|
* To simplify the WA, a constant value is formed by using the default value
|
|
* of this register. This shouldn't be a problem because we are only modifying
|
|
* it for a short period and this batch in non-premptible. We can ofcourse
|
|
* use additional instructions that read the actual value of the register
|
|
* at that time and set our bit of interest but it makes the WA complicated.
|
|
*
|
|
* This WA is also required for Gen9 so extracting as a function avoids
|
|
* code duplication.
|
|
*/
|
|
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
|
|
uint32_t *batch,
|
|
uint32_t index)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
|
|
|
|
/*
|
|
* WaDisableLSQCROPERFforOCL:kbl
|
|
* This WA is implemented in skl_init_clock_gating() but since
|
|
* this batch updates GEN8_L3SQCREG4 with default value we need to
|
|
* set this bit here to retain the WA during flush.
|
|
*/
|
|
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
|
|
l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
|
|
|
|
wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
|
|
MI_SRM_LRM_GLOBAL_GTT));
|
|
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
|
|
wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
|
|
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
|
|
wa_ctx_emit(batch, index, l3sqc4_flush);
|
|
|
|
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
|
|
wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_DC_FLUSH_ENABLE));
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
|
|
MI_SRM_LRM_GLOBAL_GTT));
|
|
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
|
|
wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
return index;
|
|
}
|
|
|
|
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
|
|
uint32_t offset,
|
|
uint32_t start_alignment)
|
|
{
|
|
return wa_ctx->offset = ALIGN(offset, start_alignment);
|
|
}
|
|
|
|
static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
|
|
uint32_t offset,
|
|
uint32_t size_alignment)
|
|
{
|
|
wa_ctx->size = offset - wa_ctx->offset;
|
|
|
|
WARN(wa_ctx->size % size_alignment,
|
|
"wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
|
|
wa_ctx->size, size_alignment);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
|
|
* initialized at the beginning and shared across all contexts but this field
|
|
* helps us to have multiple batches at different offsets and select them based
|
|
* on a criteria. At the moment this batch always start at the beginning of the page
|
|
* and at this point we don't have multiple wa_ctx batch buffers.
|
|
*
|
|
* The number of WA applied are not known at the beginning; we use this field
|
|
* to return the no of DWORDS written.
|
|
*
|
|
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
|
|
* so it adds NOOPs as padding to make it cacheline aligned.
|
|
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
|
|
* makes a complete batch buffer.
|
|
*/
|
|
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
uint32_t *batch,
|
|
uint32_t *offset)
|
|
{
|
|
uint32_t scratch_addr;
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
/* WaDisableCtxRestoreArbitration:bdw,chv */
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
|
|
|
|
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
|
|
if (IS_BROADWELL(engine->i915)) {
|
|
int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
|
|
if (rc < 0)
|
|
return rc;
|
|
index = rc;
|
|
}
|
|
|
|
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
|
|
/* Actual scratch location is at 128 bytes offset */
|
|
scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
|
|
|
|
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
|
|
wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
|
|
PIPE_CONTROL_GLOBAL_GTT_IVB |
|
|
PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_QW_WRITE));
|
|
wa_ctx_emit(batch, index, scratch_addr);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
/* Pad to end of cacheline */
|
|
while (index % CACHELINE_DWORDS)
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
|
|
|
/*
|
|
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
|
|
* execution depends on the length specified in terms of cache lines
|
|
* in the register CTX_RCS_INDIRECT_CTX
|
|
*/
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
|
|
}
|
|
|
|
/*
|
|
* This batch is started immediately after indirect_ctx batch. Since we ensure
|
|
* that indirect_ctx ends on a cacheline this batch is aligned automatically.
|
|
*
|
|
* The number of DWORDS written are returned using this field.
|
|
*
|
|
* This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
|
|
* to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
|
|
*/
|
|
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
uint32_t *batch,
|
|
uint32_t *offset)
|
|
{
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
/* WaDisableCtxRestoreArbitration:bdw,chv */
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
|
|
|
|
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, 1);
|
|
}
|
|
|
|
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
uint32_t *batch,
|
|
uint32_t *offset)
|
|
{
|
|
int ret;
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
/* WaDisableCtxRestoreArbitration:bxt */
|
|
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
|
|
|
|
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
|
|
ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
|
|
if (ret < 0)
|
|
return ret;
|
|
index = ret;
|
|
|
|
/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
|
|
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
|
|
wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
|
|
wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
|
|
GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
|
|
|
/* WaClearSlmSpaceAtContextSwitch:kbl */
|
|
/* Actual scratch location is at 128 bytes offset */
|
|
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
|
|
u32 scratch_addr =
|
|
i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
|
|
|
|
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
|
|
wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
|
|
PIPE_CONTROL_GLOBAL_GTT_IVB |
|
|
PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_QW_WRITE));
|
|
wa_ctx_emit(batch, index, scratch_addr);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
}
|
|
|
|
/* WaMediaPoolStateCmdInWABB:bxt */
|
|
if (HAS_POOLED_EU(engine->i915)) {
|
|
/*
|
|
* EU pool configuration is setup along with golden context
|
|
* during context initialization. This value depends on
|
|
* device type (2x6 or 3x6) and needs to be updated based
|
|
* on which subslice is disabled especially for 2x6
|
|
* devices, however it is safe to load default
|
|
* configuration of 3x6 device instead of masking off
|
|
* corresponding bits because HW ignores bits of a disabled
|
|
* subslice and drops down to appropriate config. Please
|
|
* see render_state_setup() in i915_gem_render_state.c for
|
|
* possible configurations, to avoid duplication they are
|
|
* not shown here again.
|
|
*/
|
|
u32 eu_pool_config = 0x00777000;
|
|
wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
|
|
wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
|
|
wa_ctx_emit(batch, index, eu_pool_config);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
wa_ctx_emit(batch, index, 0);
|
|
}
|
|
|
|
/* Pad to end of cacheline */
|
|
while (index % CACHELINE_DWORDS)
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
|
|
}
|
|
|
|
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
uint32_t *batch,
|
|
uint32_t *offset)
|
|
{
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
|
|
if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
|
|
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
|
|
wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
|
|
wa_ctx_emit(batch, index,
|
|
_MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
|
}
|
|
|
|
/* WaClearTdlStateAckDirtyBits:bxt */
|
|
if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
|
|
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
|
|
|
|
wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
|
|
wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
|
|
|
|
wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
|
|
wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
|
|
|
|
wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
|
|
wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
|
|
|
|
wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
|
|
/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
|
|
wa_ctx_emit(batch, index, 0x0);
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
|
}
|
|
|
|
/* WaDisableCtxRestoreArbitration:bxt */
|
|
if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
|
|
|
|
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, 1);
|
|
}
|
|
|
|
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
int err;
|
|
|
|
obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
|
|
if (IS_ERR(obj))
|
|
return PTR_ERR(obj);
|
|
|
|
vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
|
|
if (err)
|
|
goto err;
|
|
|
|
engine->wa_ctx.vma = vma;
|
|
return 0;
|
|
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return err;
|
|
}
|
|
|
|
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
|
|
{
|
|
i915_vma_unpin_and_release(&engine->wa_ctx.vma);
|
|
}
|
|
|
|
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
|
|
{
|
|
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
|
|
uint32_t *batch;
|
|
uint32_t offset;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
WARN_ON(engine->id != RCS);
|
|
|
|
/* update this when WA for higher Gen are added */
|
|
if (INTEL_GEN(engine->i915) > 9) {
|
|
DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
|
|
INTEL_GEN(engine->i915));
|
|
return 0;
|
|
}
|
|
|
|
/* some WA perform writes to scratch page, ensure it is valid */
|
|
if (!engine->scratch) {
|
|
DRM_ERROR("scratch page not allocated for %s\n", engine->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
|
|
batch = kmap_atomic(page);
|
|
offset = 0;
|
|
|
|
if (IS_GEN8(engine->i915)) {
|
|
ret = gen8_init_indirectctx_bb(engine,
|
|
&wa_ctx->indirect_ctx,
|
|
batch,
|
|
&offset);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = gen8_init_perctx_bb(engine,
|
|
&wa_ctx->per_ctx,
|
|
batch,
|
|
&offset);
|
|
if (ret)
|
|
goto out;
|
|
} else if (IS_GEN9(engine->i915)) {
|
|
ret = gen9_init_indirectctx_bb(engine,
|
|
&wa_ctx->indirect_ctx,
|
|
batch,
|
|
&offset);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = gen9_init_perctx_bb(engine,
|
|
&wa_ctx->per_ctx,
|
|
batch,
|
|
&offset);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
kunmap_atomic(batch);
|
|
if (ret)
|
|
lrc_destroy_wa_ctx_obj(engine);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void lrc_init_hws(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
|
|
I915_WRITE(RING_HWS_PGA(engine->mmio_base),
|
|
engine->status_page.ggtt_offset);
|
|
POSTING_READ(RING_HWS_PGA(engine->mmio_base));
|
|
}
|
|
|
|
static int gen8_init_common_ring(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
int ret;
|
|
|
|
ret = intel_mocs_init_engine(engine);
|
|
if (ret)
|
|
return ret;
|
|
|
|
lrc_init_hws(engine);
|
|
|
|
intel_engine_reset_breadcrumbs(engine);
|
|
|
|
I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
|
|
|
|
I915_WRITE(RING_MODE_GEN7(engine),
|
|
_MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
|
|
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
|
|
|
|
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
|
|
|
|
intel_engine_init_hangcheck(engine);
|
|
|
|
/* After a GPU reset, we may have requests to replay */
|
|
if (!execlists_elsp_idle(engine)) {
|
|
engine->execlist_port[0].count = 0;
|
|
engine->execlist_port[1].count = 0;
|
|
execlists_submit_ports(engine);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_init_render_ring(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
int ret;
|
|
|
|
ret = gen8_init_common_ring(engine);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We need to disable the AsyncFlip performance optimisations in order
|
|
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
|
|
* programmed to '1' on all products.
|
|
*
|
|
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
|
|
*/
|
|
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
|
|
|
|
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
|
|
|
|
return init_workarounds_ring(engine);
|
|
}
|
|
|
|
static int gen9_init_render_ring(struct intel_engine_cs *engine)
|
|
{
|
|
int ret;
|
|
|
|
ret = gen8_init_common_ring(engine);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return init_workarounds_ring(engine);
|
|
}
|
|
|
|
static void reset_common_ring(struct intel_engine_cs *engine,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
struct execlist_port *port = engine->execlist_port;
|
|
struct intel_context *ce = &request->ctx->engine[engine->id];
|
|
|
|
/* We want a simple context + ring to execute the breadcrumb update.
|
|
* We cannot rely on the context being intact across the GPU hang,
|
|
* so clear it and rebuild just what we need for the breadcrumb.
|
|
* All pending requests for this context will be zapped, and any
|
|
* future request will be after userspace has had the opportunity
|
|
* to recreate its own state.
|
|
*/
|
|
execlists_init_reg_state(ce->lrc_reg_state,
|
|
request->ctx, engine, ce->ring);
|
|
|
|
/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
|
|
ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
|
|
i915_ggtt_offset(ce->ring->vma);
|
|
ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
|
|
|
|
request->ring->head = request->postfix;
|
|
request->ring->last_retired_head = -1;
|
|
intel_ring_update_space(request->ring);
|
|
|
|
if (i915.enable_guc_submission)
|
|
return;
|
|
|
|
/* Catch up with any missed context-switch interrupts */
|
|
I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
|
|
if (request->ctx != port[0].request->ctx) {
|
|
i915_gem_request_put(port[0].request);
|
|
port[0] = port[1];
|
|
memset(&port[1], 0, sizeof(port[1]));
|
|
}
|
|
|
|
GEM_BUG_ON(request->ctx != port[0].request->ctx);
|
|
|
|
/* Reset WaIdleLiteRestore:bdw,skl as well */
|
|
request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
|
|
}
|
|
|
|
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
|
|
struct intel_ring *ring = req->ring;
|
|
struct intel_engine_cs *engine = req->engine;
|
|
const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
|
|
int i, ret;
|
|
|
|
ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
|
|
for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
|
|
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
|
|
|
|
intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
|
|
intel_ring_emit(ring, upper_32_bits(pd_daddr));
|
|
intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
|
|
intel_ring_emit(ring, lower_32_bits(pd_daddr));
|
|
}
|
|
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
|
|
u64 offset, u32 len,
|
|
unsigned int dispatch_flags)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
|
|
int ret;
|
|
|
|
/* Don't rely in hw updating PDPs, specially in lite-restore.
|
|
* Ideally, we should set Force PD Restore in ctx descriptor,
|
|
* but we can't. Force Restore would be a second option, but
|
|
* it is unsafe in case of lite-restore (because the ctx is
|
|
* not idle). PML4 is allocated during ppgtt init so this is
|
|
* not needed in 48-bit.*/
|
|
if (req->ctx->ppgtt &&
|
|
(intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
|
|
if (!USES_FULL_48BIT_PPGTT(req->i915) &&
|
|
!intel_vgpu_active(req->i915)) {
|
|
ret = intel_logical_ring_emit_pdps(req);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
|
|
}
|
|
|
|
ret = intel_ring_begin(req, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* FIXME(BDW): Address space and security selectors. */
|
|
intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
|
|
(ppgtt<<8) |
|
|
(dispatch_flags & I915_DISPATCH_RS ?
|
|
MI_BATCH_RESOURCE_STREAMER : 0));
|
|
intel_ring_emit(ring, lower_32_bits(offset));
|
|
intel_ring_emit(ring, upper_32_bits(offset));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
I915_WRITE_IMR(engine,
|
|
~(engine->irq_enable_mask | engine->irq_keep_mask));
|
|
POSTING_READ_FW(RING_IMR(engine->mmio_base));
|
|
}
|
|
|
|
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
|
|
}
|
|
|
|
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
|
|
{
|
|
struct intel_ring *ring = request->ring;
|
|
u32 cmd;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(request, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cmd = MI_FLUSH_DW + 1;
|
|
|
|
/* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
if (mode & EMIT_INVALIDATE) {
|
|
cmd |= MI_INVALIDATE_TLB;
|
|
if (request->engine->id == VCS)
|
|
cmd |= MI_INVALIDATE_BSD;
|
|
}
|
|
|
|
intel_ring_emit(ring, cmd);
|
|
intel_ring_emit(ring,
|
|
I915_GEM_HWS_SCRATCH_ADDR |
|
|
MI_FLUSH_DW_USE_GTT);
|
|
intel_ring_emit(ring, 0); /* upper addr */
|
|
intel_ring_emit(ring, 0); /* value */
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
|
|
u32 mode)
|
|
{
|
|
struct intel_ring *ring = request->ring;
|
|
struct intel_engine_cs *engine = request->engine;
|
|
u32 scratch_addr =
|
|
i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
|
|
bool vf_flush_wa = false, dc_flush_wa = false;
|
|
u32 flags = 0;
|
|
int ret;
|
|
int len;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
if (mode & EMIT_FLUSH) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
|
|
flags |= PIPE_CONTROL_FLUSH_ENABLE;
|
|
}
|
|
|
|
if (mode & EMIT_INVALIDATE) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
|
|
/*
|
|
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
|
|
* pipe control.
|
|
*/
|
|
if (IS_GEN9(request->i915))
|
|
vf_flush_wa = true;
|
|
|
|
/* WaForGAMHang:kbl */
|
|
if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
|
|
dc_flush_wa = true;
|
|
}
|
|
|
|
len = 6;
|
|
|
|
if (vf_flush_wa)
|
|
len += 6;
|
|
|
|
if (dc_flush_wa)
|
|
len += 12;
|
|
|
|
ret = intel_ring_begin(request, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (vf_flush_wa) {
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
}
|
|
|
|
if (dc_flush_wa) {
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
|
|
intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
}
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
|
|
intel_ring_emit(ring, flags);
|
|
intel_ring_emit(ring, scratch_addr);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
|
|
if (dc_flush_wa) {
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
|
|
intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
}
|
|
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
|
|
{
|
|
/*
|
|
* On BXT A steppings there is a HW coherency issue whereby the
|
|
* MI_STORE_DATA_IMM storing the completed request's seqno
|
|
* occasionally doesn't invalidate the CPU cache. Work around this by
|
|
* clflushing the corresponding cacheline whenever the caller wants
|
|
* the coherency to be guaranteed. Note that this cacheline is known
|
|
* to be clean at this point, since we only write it in
|
|
* bxt_a_set_seqno(), where we also do a clflush after the write. So
|
|
* this clflush in practice becomes an invalidate operation.
|
|
*/
|
|
intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
/*
|
|
* Reserve space for 2 NOOPs at the end of each request to be
|
|
* used as a workaround for not being allowed to do lite
|
|
* restore with HEAD==TAIL (WaIdleLiteRestore).
|
|
*/
|
|
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
|
|
{
|
|
*out++ = MI_NOOP;
|
|
*out++ = MI_NOOP;
|
|
request->wa_tail = intel_ring_offset(request->ring, out);
|
|
}
|
|
|
|
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
|
|
u32 *out)
|
|
{
|
|
/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
|
|
BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
|
|
|
|
*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
|
|
*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
|
|
*out++ = 0;
|
|
*out++ = request->global_seqno;
|
|
*out++ = MI_USER_INTERRUPT;
|
|
*out++ = MI_NOOP;
|
|
request->tail = intel_ring_offset(request->ring, out);
|
|
|
|
gen8_emit_wa_tail(request, out);
|
|
}
|
|
|
|
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
|
|
|
|
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
|
|
u32 *out)
|
|
{
|
|
/* We're using qword write, seqno should be aligned to 8 bytes. */
|
|
BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
|
|
|
|
/* w/a for post sync ops following a GPGPU operation we
|
|
* need a prior CS_STALL, which is emitted by the flush
|
|
* following the batch.
|
|
*/
|
|
*out++ = GFX_OP_PIPE_CONTROL(6);
|
|
*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
|
|
PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_QW_WRITE);
|
|
*out++ = intel_hws_seqno_address(request->engine);
|
|
*out++ = 0;
|
|
*out++ = request->global_seqno;
|
|
/* We're thrashing one dword of HWS. */
|
|
*out++ = 0;
|
|
*out++ = MI_USER_INTERRUPT;
|
|
*out++ = MI_NOOP;
|
|
request->tail = intel_ring_offset(request->ring, out);
|
|
|
|
gen8_emit_wa_tail(request, out);
|
|
}
|
|
|
|
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
|
|
|
|
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_logical_ring_workarounds_emit(req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_rcs_context_init_mocs(req);
|
|
/*
|
|
* Failing to program the MOCS is non-fatal.The system will not
|
|
* run at peak performance. So generate an error and carry on.
|
|
*/
|
|
if (ret)
|
|
DRM_ERROR("MOCS failed to program: expect performance issues.\n");
|
|
|
|
return i915_gem_render_state_emit(req);
|
|
}
|
|
|
|
/**
|
|
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
|
|
* @engine: Engine Command Streamer.
|
|
*/
|
|
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv;
|
|
|
|
/*
|
|
* Tasklet cannot be active at this point due intel_mark_active/idle
|
|
* so this is just for documentation.
|
|
*/
|
|
if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
|
|
tasklet_kill(&engine->irq_tasklet);
|
|
|
|
dev_priv = engine->i915;
|
|
|
|
if (engine->buffer) {
|
|
WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
|
|
}
|
|
|
|
if (engine->cleanup)
|
|
engine->cleanup(engine);
|
|
|
|
intel_engine_cleanup_common(engine);
|
|
|
|
if (engine->status_page.vma) {
|
|
i915_gem_object_unpin_map(engine->status_page.vma->obj);
|
|
engine->status_page.vma = NULL;
|
|
}
|
|
intel_lr_context_unpin(dev_priv->kernel_context, engine);
|
|
|
|
lrc_destroy_wa_ctx_obj(engine);
|
|
engine->i915 = NULL;
|
|
dev_priv->engine[engine->id] = NULL;
|
|
kfree(engine);
|
|
}
|
|
|
|
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
engine->submit_request = execlists_submit_request;
|
|
}
|
|
|
|
static void
|
|
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
|
|
{
|
|
/* Default vfuncs which can be overriden by each engine. */
|
|
engine->init_hw = gen8_init_common_ring;
|
|
engine->reset_hw = reset_common_ring;
|
|
engine->emit_flush = gen8_emit_flush;
|
|
engine->emit_breadcrumb = gen8_emit_breadcrumb;
|
|
engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
|
|
engine->submit_request = execlists_submit_request;
|
|
|
|
engine->irq_enable = gen8_logical_ring_enable_irq;
|
|
engine->irq_disable = gen8_logical_ring_disable_irq;
|
|
engine->emit_bb_start = gen8_emit_bb_start;
|
|
if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
|
|
engine->irq_seqno_barrier = bxt_a_seqno_barrier;
|
|
}
|
|
|
|
static inline void
|
|
logical_ring_default_irqs(struct intel_engine_cs *engine)
|
|
{
|
|
unsigned shift = engine->irq_shift;
|
|
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
|
|
engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
|
|
}
|
|
|
|
static int
|
|
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
|
|
{
|
|
const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
|
|
void *hws;
|
|
|
|
/* The HWSP is part of the default context object in LRC mode. */
|
|
hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
|
|
if (IS_ERR(hws))
|
|
return PTR_ERR(hws);
|
|
|
|
engine->status_page.page_addr = hws + hws_offset;
|
|
engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
|
|
engine->status_page.vma = vma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
logical_ring_setup(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
enum forcewake_domains fw_domains;
|
|
|
|
intel_engine_setup_common(engine);
|
|
|
|
/* Intentionally left blank. */
|
|
engine->buffer = NULL;
|
|
|
|
fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
|
|
RING_ELSP(engine),
|
|
FW_REG_WRITE);
|
|
|
|
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
|
|
RING_CONTEXT_STATUS_PTR(engine),
|
|
FW_REG_READ | FW_REG_WRITE);
|
|
|
|
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
|
|
RING_CONTEXT_STATUS_BUF_BASE(engine),
|
|
FW_REG_READ);
|
|
|
|
engine->fw_domains = fw_domains;
|
|
|
|
tasklet_init(&engine->irq_tasklet,
|
|
intel_lrc_irq_handler, (unsigned long)engine);
|
|
|
|
logical_ring_init_platform_invariants(engine);
|
|
logical_ring_default_vfuncs(engine);
|
|
logical_ring_default_irqs(engine);
|
|
}
|
|
|
|
static int
|
|
logical_ring_init(struct intel_engine_cs *engine)
|
|
{
|
|
struct i915_gem_context *dctx = engine->i915->kernel_context;
|
|
int ret;
|
|
|
|
ret = intel_engine_init_common(engine);
|
|
if (ret)
|
|
goto error;
|
|
|
|
ret = execlists_context_deferred_alloc(dctx, engine);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* As this is the default context, always pin it */
|
|
ret = intel_lr_context_pin(dctx, engine);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to pin context for %s: %d\n",
|
|
engine->name, ret);
|
|
goto error;
|
|
}
|
|
|
|
/* And setup the hardware status page. */
|
|
ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
intel_logical_ring_cleanup(engine);
|
|
return ret;
|
|
}
|
|
|
|
int logical_render_ring_init(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
int ret;
|
|
|
|
logical_ring_setup(engine);
|
|
|
|
if (HAS_L3_DPF(dev_priv))
|
|
engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
|
|
|
|
/* Override some for render ring. */
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
engine->init_hw = gen9_init_render_ring;
|
|
else
|
|
engine->init_hw = gen8_init_render_ring;
|
|
engine->init_context = gen8_init_rcs_context;
|
|
engine->emit_flush = gen8_emit_flush_render;
|
|
engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
|
|
engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
|
|
|
|
ret = intel_engine_create_scratch(engine, 4096);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_init_workaround_bb(engine);
|
|
if (ret) {
|
|
/*
|
|
* We continue even if we fail to initialize WA batch
|
|
* because we only expect rare glitches but nothing
|
|
* critical to prevent us from using GPU
|
|
*/
|
|
DRM_ERROR("WA batch buffer initialization failed: %d\n",
|
|
ret);
|
|
}
|
|
|
|
ret = logical_ring_init(engine);
|
|
if (ret) {
|
|
lrc_destroy_wa_ctx_obj(engine);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int logical_xcs_ring_init(struct intel_engine_cs *engine)
|
|
{
|
|
logical_ring_setup(engine);
|
|
|
|
return logical_ring_init(engine);
|
|
}
|
|
|
|
static u32
|
|
make_rpcs(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 rpcs = 0;
|
|
|
|
/*
|
|
* No explicit RPCS request is needed to ensure full
|
|
* slice/subslice/EU enablement prior to Gen9.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) < 9)
|
|
return 0;
|
|
|
|
/*
|
|
* Starting in Gen9, render power gating can leave
|
|
* slice/subslice/EU in a partially enabled state. We
|
|
* must make an explicit request through RPCS for full
|
|
* enablement.
|
|
*/
|
|
if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
|
|
rpcs |= GEN8_RPCS_S_CNT_ENABLE;
|
|
rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
|
|
GEN8_RPCS_S_CNT_SHIFT;
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
}
|
|
|
|
if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
|
|
rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
|
|
rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
|
|
GEN8_RPCS_SS_CNT_SHIFT;
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
}
|
|
|
|
if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
|
|
rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
|
|
GEN8_RPCS_EU_MIN_SHIFT;
|
|
rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
|
|
GEN8_RPCS_EU_MAX_SHIFT;
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
}
|
|
|
|
return rpcs;
|
|
}
|
|
|
|
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
|
|
{
|
|
u32 indirect_ctx_offset;
|
|
|
|
switch (INTEL_GEN(engine->i915)) {
|
|
default:
|
|
MISSING_CASE(INTEL_GEN(engine->i915));
|
|
/* fall through */
|
|
case 9:
|
|
indirect_ctx_offset =
|
|
GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
|
|
break;
|
|
case 8:
|
|
indirect_ctx_offset =
|
|
GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
|
|
break;
|
|
}
|
|
|
|
return indirect_ctx_offset;
|
|
}
|
|
|
|
static void execlists_init_reg_state(u32 *reg_state,
|
|
struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine,
|
|
struct intel_ring *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = engine->i915;
|
|
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
|
|
|
|
/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
|
|
* commands followed by (reg, value) pairs. The values we are setting here are
|
|
* only for the first context restore: on a subsequent save, the GPU will
|
|
* recreate this batchbuffer with new values (including all the missing
|
|
* MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
|
|
reg_state[CTX_LRI_HEADER_0] =
|
|
MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
|
|
ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
|
|
RING_CONTEXT_CONTROL(engine),
|
|
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
|
|
CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
|
|
(HAS_RESOURCE_STREAMER(dev_priv) ?
|
|
CTX_CTRL_RS_CTX_ENABLE : 0)));
|
|
ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
|
|
RING_START(engine->mmio_base), 0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
|
|
RING_CTL(engine->mmio_base),
|
|
RING_CTL_SIZE(ring->size) | RING_VALID);
|
|
ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
|
|
RING_BBADDR_UDW(engine->mmio_base), 0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
|
|
RING_BBADDR(engine->mmio_base), 0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
|
|
RING_BBSTATE(engine->mmio_base),
|
|
RING_BB_PPGTT);
|
|
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
|
|
RING_SBBADDR_UDW(engine->mmio_base), 0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
|
|
RING_SBBADDR(engine->mmio_base), 0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
|
|
RING_SBBSTATE(engine->mmio_base), 0);
|
|
if (engine->id == RCS) {
|
|
ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
|
|
RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
|
|
RING_INDIRECT_CTX(engine->mmio_base), 0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
|
|
RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
|
|
if (engine->wa_ctx.vma) {
|
|
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
|
|
u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX+1] =
|
|
(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
|
|
(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
|
|
intel_lr_indirect_ctx_offset(engine) << 6;
|
|
|
|
reg_state[CTX_BB_PER_CTX_PTR+1] =
|
|
(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
|
|
0x01;
|
|
}
|
|
}
|
|
reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
|
|
ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
|
|
RING_CTX_TIMESTAMP(engine->mmio_base), 0);
|
|
/* PDP values well be assigned later if needed */
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
|
|
0);
|
|
ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
|
|
0);
|
|
|
|
if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
|
|
/* 64b PPGTT (48bit canonical)
|
|
* PDP0_DESCRIPTOR contains the base address to PML4 and
|
|
* other PDP Descriptors are ignored.
|
|
*/
|
|
ASSIGN_CTX_PML4(ppgtt, reg_state);
|
|
} else {
|
|
/* 32b PPGTT
|
|
* PDP*_DESCRIPTOR contains the base address of space supported.
|
|
* With dynamic page allocation, PDPs may not be allocated at
|
|
* this point. Point the unallocated PDPs to the scratch page
|
|
*/
|
|
execlists_update_context_pdps(ppgtt, reg_state);
|
|
}
|
|
|
|
if (engine->id == RCS) {
|
|
reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
|
|
ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
|
|
make_rpcs(dev_priv));
|
|
}
|
|
}
|
|
|
|
static int
|
|
populate_lr_context(struct i915_gem_context *ctx,
|
|
struct drm_i915_gem_object *ctx_obj,
|
|
struct intel_engine_cs *engine,
|
|
struct intel_ring *ring)
|
|
{
|
|
void *vaddr;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
|
|
return ret;
|
|
}
|
|
|
|
vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
|
|
if (IS_ERR(vaddr)) {
|
|
ret = PTR_ERR(vaddr);
|
|
DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
ctx_obj->mm.dirty = true;
|
|
|
|
/* The second page of the context object contains some fields which must
|
|
* be set up prior to the first execution. */
|
|
|
|
execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
|
|
ctx, engine, ring);
|
|
|
|
i915_gem_object_unpin_map(ctx_obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_lr_context_size() - return the size of the context for an engine
|
|
* @engine: which engine to find the context size for
|
|
*
|
|
* Each engine may require a different amount of space for a context image,
|
|
* so when allocating (or copying) an image, this function can be used to
|
|
* find the right size for the specific engine.
|
|
*
|
|
* Return: size (in bytes) of an engine-specific context image
|
|
*
|
|
* Note: this size includes the HWSP, which is part of the context image
|
|
* in LRC mode, but does not include the "shared data page" used with
|
|
* GuC submission. The caller should account for this if using the GuC.
|
|
*/
|
|
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
|
|
{
|
|
int ret = 0;
|
|
|
|
WARN_ON(INTEL_GEN(engine->i915) < 8);
|
|
|
|
switch (engine->id) {
|
|
case RCS:
|
|
if (INTEL_GEN(engine->i915) >= 9)
|
|
ret = GEN9_LR_CONTEXT_RENDER_SIZE;
|
|
else
|
|
ret = GEN8_LR_CONTEXT_RENDER_SIZE;
|
|
break;
|
|
case VCS:
|
|
case BCS:
|
|
case VECS:
|
|
case VCS2:
|
|
ret = GEN8_LR_CONTEXT_OTHER_SIZE;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_object *ctx_obj;
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
|
struct i915_vma *vma;
|
|
uint32_t context_size;
|
|
struct intel_ring *ring;
|
|
int ret;
|
|
|
|
WARN_ON(ce->state);
|
|
|
|
context_size = round_up(intel_lr_context_size(engine), 4096);
|
|
|
|
/* One extra page as the sharing data between driver and GuC */
|
|
context_size += PAGE_SIZE * LRC_PPHWSP_PN;
|
|
|
|
ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
|
|
if (IS_ERR(ctx_obj)) {
|
|
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
|
|
return PTR_ERR(ctx_obj);
|
|
}
|
|
|
|
vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto error_deref_obj;
|
|
}
|
|
|
|
ring = intel_engine_create_ring(engine, ctx->ring_size);
|
|
if (IS_ERR(ring)) {
|
|
ret = PTR_ERR(ring);
|
|
goto error_deref_obj;
|
|
}
|
|
|
|
ret = populate_lr_context(ctx, ctx_obj, engine, ring);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
|
|
goto error_ring_free;
|
|
}
|
|
|
|
ce->ring = ring;
|
|
ce->state = vma;
|
|
ce->initialised = engine->init_context == NULL;
|
|
|
|
return 0;
|
|
|
|
error_ring_free:
|
|
intel_ring_free(ring);
|
|
error_deref_obj:
|
|
i915_gem_object_put(ctx_obj);
|
|
return ret;
|
|
}
|
|
|
|
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
struct i915_gem_context *ctx;
|
|
enum intel_engine_id id;
|
|
|
|
/* Because we emit WA_TAIL_DWORDS there may be a disparity
|
|
* between our bookkeeping in ce->ring->head and ce->ring->tail and
|
|
* that stored in context. As we only write new commands from
|
|
* ce->ring->tail onwards, everything before that is junk. If the GPU
|
|
* starts reading from its RING_HEAD from the context, it may try to
|
|
* execute that junk and die.
|
|
*
|
|
* So to avoid that we reset the context images upon resume. For
|
|
* simplicity, we just zero everything out.
|
|
*/
|
|
list_for_each_entry(ctx, &dev_priv->context_list, link) {
|
|
for_each_engine(engine, dev_priv, id) {
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
|
u32 *reg;
|
|
|
|
if (!ce->state)
|
|
continue;
|
|
|
|
reg = i915_gem_object_pin_map(ce->state->obj,
|
|
I915_MAP_WB);
|
|
if (WARN_ON(IS_ERR(reg)))
|
|
continue;
|
|
|
|
reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
|
|
reg[CTX_RING_HEAD+1] = 0;
|
|
reg[CTX_RING_TAIL+1] = 0;
|
|
|
|
ce->state->obj->mm.dirty = true;
|
|
i915_gem_object_unpin_map(ce->state->obj);
|
|
|
|
ce->ring->head = ce->ring->tail = 0;
|
|
ce->ring->last_retired_head = -1;
|
|
intel_ring_update_space(ce->ring);
|
|
}
|
|
}
|
|
}
|