linux/drivers/net/ethernet/intel/ice/ice_virtchnl_pf.c
Anirudh Venkataramanan df17b7e02f ice: Cosmetic formatting changes
1. Fix several cases of double spacing
2. Fix typos
3. Capitalize abbreviations

Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-11-20 11:39:04 -08:00

2672 lines
69 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
/**
* ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
* @pf: pointer to the PF structure
* @v_opcode: operation code
* @v_retval: return value
* @msg: pointer to the msg buffer
* @msglen: msg length
*/
static void
ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
enum ice_status v_retval, u8 *msg, u16 msglen)
{
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf = pf->vf;
int i;
for (i = 0; i < pf->num_alloc_vfs; i++, vf++) {
/* Not all vfs are enabled so skip the ones that are not */
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
continue;
/* Ignore return value on purpose - a given VF may fail, but
* we need to keep going and send to all of them
*/
ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
msglen, NULL);
}
}
/**
* ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
* @vf: pointer to the VF structure
* @pfe: pointer to the virtchnl_pf_event to set link speed/status for
* @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
* @link_up: whether or not to set the link up/down
*/
static void
ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
int ice_link_speed, bool link_up)
{
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
pfe->event_data.link_event_adv.link_status = link_up;
/* Speed in Mbps */
pfe->event_data.link_event_adv.link_speed =
ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
} else {
pfe->event_data.link_event.link_status = link_up;
/* Legacy method for virtchnl link speeds */
pfe->event_data.link_event.link_speed =
(enum virtchnl_link_speed)
ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
}
}
/**
* ice_set_pfe_link_forced - Force the virtchnl_pf_event link speed/status
* @vf: pointer to the VF structure
* @pfe: pointer to the virtchnl_pf_event to set link speed/status for
* @link_up: whether or not to set the link up/down
*/
static void
ice_set_pfe_link_forced(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
bool link_up)
{
u16 link_speed;
if (link_up)
link_speed = ICE_AQ_LINK_SPEED_40GB;
else
link_speed = ICE_AQ_LINK_SPEED_UNKNOWN;
ice_set_pfe_link(vf, pfe, link_speed, link_up);
}
/**
* ice_vc_notify_vf_link_state - Inform a VF of link status
* @vf: pointer to the VF structure
*
* send a link status message to a single VF
*/
static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
{
struct virtchnl_pf_event pfe = { 0 };
struct ice_link_status *ls;
struct ice_pf *pf = vf->pf;
struct ice_hw *hw;
hw = &pf->hw;
ls = &hw->port_info->phy.link_info;
pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
pfe.severity = PF_EVENT_SEVERITY_INFO;
if (vf->link_forced)
ice_set_pfe_link_forced(vf, &pfe, vf->link_up);
else
ice_set_pfe_link(vf, &pfe, ls->link_speed, ls->link_info &
ICE_AQ_LINK_UP);
ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe,
sizeof(pfe), NULL);
}
/**
* ice_get_vf_vector - get VF interrupt vector register offset
* @vf_msix: number of MSIx vector per VF on a PF
* @vf_id: VF identifier
* @i: index of MSIx vector
*/
static u32 ice_get_vf_vector(int vf_msix, int vf_id, int i)
{
return ((i == 0) ? VFINT_DYN_CTLN(vf_id) :
VFINT_DYN_CTLN(((vf_msix - 1) * (vf_id)) + (i - 1)));
}
/**
* ice_free_vf_res - Free a VF's resources
* @vf: pointer to the VF info
*/
static void ice_free_vf_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
int i, pf_vf_msix;
/* First, disable VF's configuration API to prevent OS from
* accessing the VF's VSI after it's freed or invalidated.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* free vsi & disconnect it from the parent uplink */
if (vf->lan_vsi_idx) {
ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
vf->lan_vsi_idx = 0;
vf->lan_vsi_num = 0;
vf->num_mac = 0;
}
pf_vf_msix = pf->num_vf_msix;
/* Disable interrupts so that VF starts in a known state */
for (i = 0; i < pf_vf_msix; i++) {
u32 reg_idx;
reg_idx = ice_get_vf_vector(pf_vf_msix, vf->vf_id, i);
wr32(&pf->hw, reg_idx, VFINT_DYN_CTLN_CLEARPBA_M);
ice_flush(&pf->hw);
}
/* reset some of the state variables keeping track of the resources */
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
}
/**
* ice_dis_vf_mappings
* @vf: pointer to the VF structure
*/
static void ice_dis_vf_mappings(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int first, last, v;
struct ice_hw *hw;
hw = &pf->hw;
vsi = pf->vsi[vf->lan_vsi_idx];
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
first = vf->first_vector_idx;
last = first + pf->num_vf_msix - 1;
for (v = first; v <= last; v++) {
u32 reg;
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
GLINT_VECT2FUNC_IS_PF_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
else
dev_err(&pf->pdev->dev,
"Scattered mode for VF Tx queues is not yet implemented\n");
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
else
dev_err(&pf->pdev->dev,
"Scattered mode for VF Rx queues is not yet implemented\n");
}
/**
* ice_free_vfs - Free all VFs
* @pf: pointer to the PF structure
*/
void ice_free_vfs(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
int tmp, i;
if (!pf->vf)
return;
while (test_and_set_bit(__ICE_VF_DIS, pf->state))
usleep_range(1000, 2000);
/* Disable IOV before freeing resources. This lets any VF drivers
* running in the host get themselves cleaned up before we yank
* the carpet out from underneath their feet.
*/
if (!pci_vfs_assigned(pf->pdev))
pci_disable_sriov(pf->pdev);
else
dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n");
/* Avoid wait time by stopping all VFs at the same time */
for (i = 0; i < pf->num_alloc_vfs; i++) {
if (!test_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states))
continue;
/* stop rings without wait time */
ice_vsi_stop_tx_rings(pf->vsi[pf->vf[i].lan_vsi_idx],
ICE_NO_RESET, i);
ice_vsi_stop_rx_rings(pf->vsi[pf->vf[i].lan_vsi_idx]);
clear_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states);
}
tmp = pf->num_alloc_vfs;
pf->num_vf_qps = 0;
pf->num_alloc_vfs = 0;
for (i = 0; i < tmp; i++) {
if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
/* disable VF qp mappings */
ice_dis_vf_mappings(&pf->vf[i]);
/* Set this state so that assigned VF vectors can be
* reclaimed by PF for reuse in ice_vsi_release(). No
* need to clear this bit since pf->vf array is being
* freed anyways after this for loop
*/
set_bit(ICE_VF_STATE_CFG_INTR, pf->vf[i].vf_states);
ice_free_vf_res(&pf->vf[i]);
}
}
devm_kfree(&pf->pdev->dev, pf->vf);
pf->vf = NULL;
/* This check is for when the driver is unloaded while VFs are
* assigned. Setting the number of VFs to 0 through sysfs is caught
* before this function ever gets called.
*/
if (!pci_vfs_assigned(pf->pdev)) {
int vf_id;
/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
* work correctly when SR-IOV gets re-enabled.
*/
for (vf_id = 0; vf_id < tmp; vf_id++) {
u32 reg_idx, bit_idx;
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
}
}
clear_bit(__ICE_VF_DIS, pf->state);
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
}
/**
* ice_trigger_vf_reset - Reset a VF on HW
* @vf: pointer to the VF structure
* @is_vflr: true if VFLR was issued, false if not
*
* Trigger hardware to start a reset for a particular VF. Expects the caller
* to wait the proper amount of time to allow hardware to reset the VF before
* it cleans up and restores VF functionality.
*/
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr)
{
struct ice_pf *pf = vf->pf;
u32 reg, reg_idx, bit_idx;
struct ice_hw *hw;
int vf_abs_id, i;
hw = &pf->hw;
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
/* Inform VF that it is no longer active, as a warning */
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
/* Disable VF's configuration API during reset. The flag is re-enabled
* in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
* It's normally disabled in ice_free_vf_res(), but it's safer
* to do it earlier to give some time to finish to any VF config
* functions that may still be running at this point.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* In the case of a VFLR, the HW has already reset the VF and we
* just need to clean up, so don't hit the VFRTRIG register.
*/
if (!is_vflr) {
/* reset VF using VPGEN_VFRTRIG reg */
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg |= VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
}
/* clear the VFLR bit in GLGEN_VFLRSTAT */
reg_idx = (vf_abs_id) / 32;
bit_idx = (vf_abs_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
ice_flush(hw);
wr32(hw, PF_PCI_CIAA,
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
for (i = 0; i < 100; i++) {
reg = rd32(hw, PF_PCI_CIAD);
if ((reg & VF_TRANS_PENDING_M) != 0)
dev_err(&pf->pdev->dev,
"VF %d PCI transactions stuck\n", vf->vf_id);
udelay(1);
}
}
/**
* ice_vsi_set_pvid - Set port VLAN id for the VSI
* @vsi: the VSI being changed
* @vid: the VLAN id to set as a PVID
*/
static int ice_vsi_set_pvid(struct ice_vsi *vsi, u16 vid)
{
struct device *dev = &vsi->back->pdev->dev;
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx ctxt = { 0 };
enum ice_status status;
ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
ICE_AQ_VSI_PVLAN_INSERT_PVID |
ICE_AQ_VSI_VLAN_EMOD_STR;
ctxt.info.pvid = cpu_to_le16(vid);
ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
if (status) {
dev_info(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
return -EIO;
}
vsi->info.pvid = ctxt.info.pvid;
vsi->info.vlan_flags = ctxt.info.vlan_flags;
return 0;
}
/**
* ice_vsi_kill_pvid - Remove port VLAN id from the VSI
* @vsi: the VSI being changed
*/
static int ice_vsi_kill_pvid(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
if (ice_vsi_manage_vlan_stripping(vsi, false)) {
dev_err(&pf->pdev->dev, "Error removing Port VLAN on VSI %i\n",
vsi->vsi_num);
return -ENODEV;
}
vsi->info.pvid = 0;
return 0;
}
/**
* ice_vf_vsi_setup - Set up a VF VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
* @vf_id: defines VF id to which this VSI connects.
*
* Returns pointer to the successfully allocated VSI struct on success,
* otherwise returns NULL on failure.
*/
static struct ice_vsi *
ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
{
return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
}
/**
* ice_alloc_vsi_res - Setup VF VSI and its resources
* @vf: pointer to the VF structure
*
* Returns 0 on success, negative value on failure
*/
static int ice_alloc_vsi_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
LIST_HEAD(tmp_add_list);
u8 broadcast[ETH_ALEN];
struct ice_vsi *vsi;
int status = 0;
vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
if (!vsi) {
dev_err(&pf->pdev->dev, "Failed to create VF VSI\n");
return -ENOMEM;
}
vf->lan_vsi_idx = vsi->idx;
vf->lan_vsi_num = vsi->vsi_num;
/* first vector index is the VFs OICR index */
vf->first_vector_idx = vsi->hw_base_vector;
/* Since hw_base_vector holds the vector where data queue interrupts
* starts, increment by 1 since VFs allocated vectors include OICR intr
* as well.
*/
vsi->hw_base_vector += 1;
/* Check if port VLAN exist before, and restore it accordingly */
if (vf->port_vlan_id)
ice_vsi_set_pvid(vsi, vf->port_vlan_id);
eth_broadcast_addr(broadcast);
status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
if (status)
goto ice_alloc_vsi_res_exit;
if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
status = ice_add_mac_to_list(vsi, &tmp_add_list,
vf->dflt_lan_addr.addr);
if (status)
goto ice_alloc_vsi_res_exit;
}
status = ice_add_mac(&pf->hw, &tmp_add_list);
if (status)
dev_err(&pf->pdev->dev, "could not add mac filters\n");
/* Clear this bit after VF initialization since we shouldn't reclaim
* and reassign interrupts for synchronous or asynchronous VFR events.
* We dont want to reconfigure interrupts since AVF driver doesn't
* expect vector assignment to be changed unless there is a request for
* more vectors.
*/
clear_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states);
ice_alloc_vsi_res_exit:
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
return status;
}
/**
* ice_alloc_vf_res - Allocate VF resources
* @vf: pointer to the VF structure
*/
static int ice_alloc_vf_res(struct ice_vf *vf)
{
int status;
/* setup VF VSI and necessary resources */
status = ice_alloc_vsi_res(vf);
if (status)
goto ice_alloc_vf_res_exit;
if (vf->trusted)
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
else
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
/* VF is now completely initialized */
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
return status;
ice_alloc_vf_res_exit:
ice_free_vf_res(vf);
return status;
}
/**
* ice_ena_vf_mappings
* @vf: pointer to the VF structure
*
* Enable VF vectors and queues allocation by writing the details into
* respective registers.
*/
static void ice_ena_vf_mappings(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int first, last, v;
struct ice_hw *hw;
int abs_vf_id;
u32 reg;
hw = &pf->hw;
vsi = pf->vsi[vf->lan_vsi_idx];
first = vf->first_vector_idx;
last = (first + pf->num_vf_msix) - 1;
abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
/* VF Vector allocation */
reg = (((first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
((last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
VPINT_ALLOC_VALID_M);
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
reg = (((first << VPINT_ALLOC_PCI_FIRST_S) & VPINT_ALLOC_PCI_FIRST_M) |
((last << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) |
VPINT_ALLOC_PCI_VALID_M);
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
/* map the interrupts to its functions */
for (v = first; v <= last; v++) {
reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
GLINT_VECT2FUNC_VF_NUM_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
/* set regardless of mapping mode */
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
/* VF Tx queues allocation */
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
/* set the VF PF Tx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
VPLAN_TX_QBASE_VFFIRSTQ_M) |
(((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
VPLAN_TX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
} else {
dev_err(&pf->pdev->dev,
"Scattered mode for VF Tx queues is not yet implemented\n");
}
/* set regardless of mapping mode */
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
/* VF Rx queues allocation */
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
/* set the VF PF Rx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
VPLAN_RX_QBASE_VFFIRSTQ_M) |
(((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
VPLAN_RX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
} else {
dev_err(&pf->pdev->dev,
"Scattered mode for VF Rx queues is not yet implemented\n");
}
}
/**
* ice_determine_res
* @pf: pointer to the PF structure
* @avail_res: available resources in the PF structure
* @max_res: maximum resources that can be given per VF
* @min_res: minimum resources that can be given per VF
*
* Returns non-zero value if resources (queues/vectors) are available or
* returns zero if PF cannot accommodate for all num_alloc_vfs.
*/
static int
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
{
bool checked_min_res = false;
int res;
/* start by checking if PF can assign max number of resources for
* all num_alloc_vfs.
* if yes, return number per VF
* If no, divide by 2 and roundup, check again
* repeat the loop till we reach a point where even minimum resources
* are not available, in that case return 0
*/
res = max_res;
while ((res >= min_res) && !checked_min_res) {
int num_all_res;
num_all_res = pf->num_alloc_vfs * res;
if (num_all_res <= avail_res)
return res;
if (res == min_res)
checked_min_res = true;
res = DIV_ROUND_UP(res, 2);
}
return 0;
}
/**
* ice_check_avail_res - check if vectors and queues are available
* @pf: pointer to the PF structure
*
* This function is where we calculate actual number of resources for VF VSIs,
* we don't reserve ahead of time during probe. Returns success if vectors and
* queues resources are available, otherwise returns error code
*/
static int ice_check_avail_res(struct ice_pf *pf)
{
u16 num_msix, num_txq, num_rxq;
if (!pf->num_alloc_vfs)
return -EINVAL;
/* Grab from HW interrupts common pool
* Note: By the time the user decides it needs more vectors in a VF
* its already too late since one must decide this prior to creating the
* VF interface. So the best we can do is take a guess as to what the
* user might want.
*
* We have two policies for vector allocation:
* 1. if num_alloc_vfs is from 1 to 16, then we consider this as small
* number of NFV VFs used for NFV appliances, since this is a special
* case, we try to assign maximum vectors per VF (65) as much as
* possible, based on determine_resources algorithm.
* 2. if num_alloc_vfs is from 17 to 256, then its large number of
* regular VFs which are not used for any special purpose. Hence try to
* grab default interrupt vectors (5 as supported by AVF driver).
*/
if (pf->num_alloc_vfs <= 16) {
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
ICE_MAX_INTR_PER_VF,
ICE_MIN_INTR_PER_VF);
} else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) {
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
ICE_DFLT_INTR_PER_VF,
ICE_MIN_INTR_PER_VF);
} else {
dev_err(&pf->pdev->dev,
"Number of VFs %d exceeds max VF count %d\n",
pf->num_alloc_vfs, ICE_MAX_VF_COUNT);
return -EIO;
}
if (!num_msix)
return -EIO;
/* Grab from the common pool
* start by requesting Default queues (4 as supported by AVF driver),
* Note that, the main difference between queues and vectors is, latter
* can only be reserved at init time but queues can be requested by VF
* at runtime through Virtchnl, that is the reason we start by reserving
* few queues.
*/
num_txq = ice_determine_res(pf, pf->q_left_tx, ICE_DFLT_QS_PER_VF,
ICE_MIN_QS_PER_VF);
num_rxq = ice_determine_res(pf, pf->q_left_rx, ICE_DFLT_QS_PER_VF,
ICE_MIN_QS_PER_VF);
if (!num_txq || !num_rxq)
return -EIO;
/* since AVF driver works with only queue pairs which means, it expects
* to have equal number of Rx and Tx queues, so take the minimum of
* available Tx or Rx queues
*/
pf->num_vf_qps = min_t(int, num_txq, num_rxq);
pf->num_vf_msix = num_msix;
return 0;
}
/**
* ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
* @vf: pointer to the VF structure
*
* Cleanup a VF after the hardware reset is finished. Expects the caller to
* have verified whether the reset is finished properly, and ensure the
* minimum amount of wait time has passed. Reallocate VF resources back to make
* VF state active
*/
static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_hw *hw;
u32 reg;
hw = &pf->hw;
/* PF software completes the flow by notifying VF that reset flow is
* completed. This is done by enabling hardware by clearing the reset
* bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
* register to VFR completed (done at the end of this function)
* By doing this we allow HW to access VF memory at any point. If we
* did it any sooner, HW could access memory while it was being freed
* in ice_free_vf_res(), causing an IOMMU fault.
*
* On the other hand, this needs to be done ASAP, because the VF driver
* is waiting for this to happen and may report a timeout. It's
* harmless, but it gets logged into Guest OS kernel log, so best avoid
* it.
*/
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
/* reallocate VF resources to finish resetting the VSI state */
if (!ice_alloc_vf_res(vf)) {
ice_ena_vf_mappings(vf);
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
vf->num_vlan = 0;
}
/* Tell the VF driver the reset is done. This needs to be done only
* after VF has been fully initialized, because the VF driver may
* request resources immediately after setting this flag.
*/
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}
/**
* ice_reset_all_vfs - reset all allocated VFs in one go
* @pf: pointer to the PF structure
* @is_vflr: true if VFLR was issued, false if not
*
* First, tell the hardware to reset each VF, then do all the waiting in one
* chunk, and finally finish restoring each VF after the wait. This is useful
* during PF routines which need to reset all VFs, as otherwise it must perform
* these resets in a serialized fashion.
*
* Returns true if any VFs were reset, and false otherwise.
*/
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
{
struct ice_hw *hw = &pf->hw;
int v, i;
/* If we don't have any VFs, then there is nothing to reset */
if (!pf->num_alloc_vfs)
return false;
/* If VFs have been disabled, there is no need to reset */
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
return false;
/* Begin reset on all VFs at once */
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_trigger_vf_reset(&pf->vf[v], is_vflr);
/* Call Disable LAN Tx queue AQ call with VFR bit set and 0
* queues to inform Firmware about VF reset.
*/
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_dis_vsi_txq(pf->vsi[0]->port_info, 0, NULL, NULL,
ICE_VF_RESET, v, NULL);
/* HW requires some time to make sure it can flush the FIFO for a VF
* when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
* sequence to make sure that it has completed. We'll keep track of
* the VFs using a simple iterator that increments once that VF has
* finished resetting.
*/
for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
usleep_range(10000, 20000);
/* Check each VF in sequence */
while (v < pf->num_alloc_vfs) {
struct ice_vf *vf = &pf->vf[v];
u32 reg;
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
if (!(reg & VPGEN_VFRSTAT_VFRD_M))
break;
/* If the current VF has finished resetting, move on
* to the next VF in sequence.
*/
v++;
}
}
/* Display a warning if at least one VF didn't manage to reset in
* time, but continue on with the operation.
*/
if (v < pf->num_alloc_vfs)
dev_warn(&pf->pdev->dev, "VF reset check timeout\n");
usleep_range(10000, 20000);
/* free VF resources to begin resetting the VSI state */
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_free_vf_res(&pf->vf[v]);
if (ice_check_avail_res(pf)) {
dev_err(&pf->pdev->dev,
"Cannot allocate VF resources, try with fewer number of VFs\n");
return false;
}
/* Finish the reset on each VF */
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_cleanup_and_realloc_vf(&pf->vf[v]);
ice_flush(hw);
clear_bit(__ICE_VF_DIS, pf->state);
return true;
}
/**
* ice_reset_vf - Reset a particular VF
* @vf: pointer to the VF structure
* @is_vflr: true if VFLR was issued, false if not
*
* Returns true if the VF is reset, false otherwise.
*/
static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
{
struct ice_pf *pf = vf->pf;
struct ice_hw *hw = &pf->hw;
bool rsd = false;
u32 reg;
int i;
/* If the VFs have been disabled, this means something else is
* resetting the VF, so we shouldn't continue.
*/
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
return false;
ice_trigger_vf_reset(vf, is_vflr);
if (test_bit(ICE_VF_STATE_ENA, vf->vf_states)) {
ice_vsi_stop_tx_rings(pf->vsi[vf->lan_vsi_idx], ICE_VF_RESET,
vf->vf_id);
ice_vsi_stop_rx_rings(pf->vsi[vf->lan_vsi_idx]);
clear_bit(ICE_VF_STATE_ENA, vf->vf_states);
} else {
/* Call Disable LAN Tx queue AQ call even when queues are not
* enabled. This is needed for successful completiom of VFR
*/
ice_dis_vsi_txq(pf->vsi[vf->lan_vsi_idx]->port_info, 0,
NULL, NULL, ICE_VF_RESET, vf->vf_id, NULL);
}
/* poll VPGEN_VFRSTAT reg to make sure
* that reset is complete
*/
for (i = 0; i < 10; i++) {
/* VF reset requires driver to first reset the VF and then
* poll the status register to make sure that the reset
* completed successfully.
*/
usleep_range(10000, 20000);
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
if (reg & VPGEN_VFRSTAT_VFRD_M) {
rsd = true;
break;
}
}
/* Display a warning if VF didn't manage to reset in time, but need to
* continue on with the operation.
*/
if (!rsd)
dev_warn(&pf->pdev->dev, "VF reset check timeout on VF %d\n",
vf->vf_id);
usleep_range(10000, 20000);
/* free VF resources to begin resetting the VSI state */
ice_free_vf_res(vf);
ice_cleanup_and_realloc_vf(vf);
ice_flush(hw);
clear_bit(__ICE_VF_DIS, pf->state);
return true;
}
/**
* ice_vc_notify_link_state - Inform all VFs on a PF of link status
* @pf: pointer to the PF structure
*/
void ice_vc_notify_link_state(struct ice_pf *pf)
{
int i;
for (i = 0; i < pf->num_alloc_vfs; i++)
ice_vc_notify_vf_link_state(&pf->vf[i]);
}
/**
* ice_vc_notify_reset - Send pending reset message to all VFs
* @pf: pointer to the PF structure
*
* indicate a pending reset to all VFs on a given PF
*/
void ice_vc_notify_reset(struct ice_pf *pf)
{
struct virtchnl_pf_event pfe;
if (!pf->num_alloc_vfs)
return;
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, ICE_SUCCESS,
(u8 *)&pfe, sizeof(struct virtchnl_pf_event));
}
/**
* ice_vc_notify_vf_reset - Notify VF of a reset event
* @vf: pointer to the VF structure
*/
static void ice_vc_notify_vf_reset(struct ice_vf *vf)
{
struct virtchnl_pf_event pfe;
/* validate the request */
if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs)
return;
/* verify if the VF is in either init or active before proceeding */
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
return;
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
ice_aq_send_msg_to_vf(&vf->pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0,
(u8 *)&pfe, sizeof(pfe), NULL);
}
/**
* ice_alloc_vfs - Allocate and set up VFs resources
* @pf: pointer to the PF structure
* @num_alloc_vfs: number of VFs to allocate
*/
static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
{
struct ice_hw *hw = &pf->hw;
struct ice_vf *vfs;
int i, ret;
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx),
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
ice_flush(hw);
ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
if (ret) {
pf->num_alloc_vfs = 0;
goto err_unroll_intr;
}
/* allocate memory */
vfs = devm_kcalloc(&pf->pdev->dev, num_alloc_vfs, sizeof(*vfs),
GFP_KERNEL);
if (!vfs) {
ret = -ENOMEM;
goto err_unroll_sriov;
}
pf->vf = vfs;
/* apply default profile */
for (i = 0; i < num_alloc_vfs; i++) {
vfs[i].pf = pf;
vfs[i].vf_sw_id = pf->first_sw;
vfs[i].vf_id = i;
/* assign default capabilities */
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
vfs[i].spoofchk = true;
/* Set this state so that PF driver does VF vector assignment */
set_bit(ICE_VF_STATE_CFG_INTR, vfs[i].vf_states);
}
pf->num_alloc_vfs = num_alloc_vfs;
/* VF resources get allocated during reset */
if (!ice_reset_all_vfs(pf, false))
goto err_unroll_sriov;
goto err_unroll_intr;
err_unroll_sriov:
pci_disable_sriov(pf->pdev);
err_unroll_intr:
/* rearm interrupts here */
ice_irq_dynamic_ena(hw, NULL, NULL);
return ret;
}
/**
* ice_pf_state_is_nominal - checks the pf for nominal state
* @pf: pointer to pf to check
*
* Check the PF's state for a collection of bits that would indicate
* the PF is in a state that would inhibit normal operation for
* driver functionality.
*
* Returns true if PF is in a nominal state.
* Returns false otherwise
*/
static bool ice_pf_state_is_nominal(struct ice_pf *pf)
{
DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
if (!pf)
return false;
bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
return false;
return true;
}
/**
* ice_pci_sriov_ena - Enable or change number of VFs
* @pf: pointer to the PF structure
* @num_vfs: number of VFs to allocate
*/
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
{
int pre_existing_vfs = pci_num_vf(pf->pdev);
struct device *dev = &pf->pdev->dev;
int err;
if (!ice_pf_state_is_nominal(pf)) {
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
return -EBUSY;
}
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
dev_err(dev, "This device is not capable of SR-IOV\n");
return -ENODEV;
}
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
ice_free_vfs(pf);
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
return num_vfs;
if (num_vfs > pf->num_vfs_supported) {
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
num_vfs, pf->num_vfs_supported);
return -ENOTSUPP;
}
dev_info(dev, "Allocating %d VFs\n", num_vfs);
err = ice_alloc_vfs(pf, num_vfs);
if (err) {
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
return err;
}
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
return num_vfs;
}
/**
* ice_sriov_configure - Enable or change number of VFs via sysfs
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate
*
* This function is called when the user updates the number of VFs in sysfs.
*/
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
if (num_vfs)
return ice_pci_sriov_ena(pf, num_vfs);
if (!pci_vfs_assigned(pdev)) {
ice_free_vfs(pf);
} else {
dev_err(&pf->pdev->dev,
"can't free VFs because some are assigned to VMs.\n");
return -EBUSY;
}
return 0;
}
/**
* ice_process_vflr_event - Free VF resources via IRQ calls
* @pf: pointer to the PF structure
*
* called from the VFLR IRQ handler to
* free up VF resources and state variables
*/
void ice_process_vflr_event(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
int vf_id;
u32 reg;
if (!test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
!pf->num_alloc_vfs)
return;
/* Re-enable the VFLR interrupt cause here, before looking for which
* VF got reset. Otherwise, if another VF gets a reset while the
* first one is being processed, that interrupt will be lost, and
* that VF will be stuck in reset forever.
*/
reg = rd32(hw, PFINT_OICR_ENA);
reg |= PFINT_OICR_VFLR_M;
wr32(hw, PFINT_OICR_ENA, reg);
ice_flush(hw);
clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
for (vf_id = 0; vf_id < pf->num_alloc_vfs; vf_id++) {
struct ice_vf *vf = &pf->vf[vf_id];
u32 reg_idx, bit_idx;
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
/* read GLGEN_VFLRSTAT register to find out the flr VFs */
reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
if (reg & BIT(bit_idx))
/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
ice_reset_vf(vf, true);
}
}
/**
* ice_vc_dis_vf - Disable a given VF via SW reset
* @vf: pointer to the VF info
*
* Disable the VF through a SW reset
*/
static void ice_vc_dis_vf(struct ice_vf *vf)
{
ice_vc_notify_vf_reset(vf);
ice_reset_vf(vf, false);
}
/**
* ice_vc_send_msg_to_vf - Send message to VF
* @vf: pointer to the VF info
* @v_opcode: virtual channel opcode
* @v_retval: virtual channel return value
* @msg: pointer to the msg buffer
* @msglen: msg length
*
* send msg to VF
*/
static int ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
enum ice_status v_retval, u8 *msg, u16 msglen)
{
enum ice_status aq_ret;
struct ice_pf *pf;
/* validate the request */
if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs)
return -EINVAL;
pf = vf->pf;
/* single place to detect unsuccessful return values */
if (v_retval) {
vf->num_inval_msgs++;
dev_info(&pf->pdev->dev, "VF %d failed opcode %d, retval: %d\n",
vf->vf_id, v_opcode, v_retval);
if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
dev_err(&pf->pdev->dev,
"Number of invalid messages exceeded for VF %d\n",
vf->vf_id);
dev_err(&pf->pdev->dev, "Use PF Control I/F to enable the VF\n");
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
return -EIO;
}
} else {
vf->num_valid_msgs++;
/* reset the invalid counter, if a valid message is received. */
vf->num_inval_msgs = 0;
}
aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
msg, msglen, NULL);
if (aq_ret) {
dev_info(&pf->pdev->dev,
"Unable to send the message to VF %d aq_err %d\n",
vf->vf_id, pf->hw.mailboxq.sq_last_status);
return -EIO;
}
return 0;
}
/**
* ice_vc_get_ver_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to request the API version used by the PF
*/
static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_version_info info = {
VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
};
vf->vf_ver = *(struct virtchnl_version_info *)msg;
/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
if (VF_IS_V10(&vf->vf_ver))
info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, ICE_SUCCESS,
(u8 *)&info,
sizeof(struct virtchnl_version_info));
}
/**
* ice_vc_get_vf_res_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to request its resources
*/
static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_vf_resource *vfres = NULL;
enum ice_status aq_ret = 0;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int len = 0;
int ret;
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto err;
}
len = sizeof(struct virtchnl_vf_resource);
vfres = devm_kzalloc(&pf->pdev->dev, len, GFP_KERNEL);
if (!vfres) {
aq_ret = ICE_ERR_NO_MEMORY;
len = 0;
goto err;
}
if (VF_IS_V11(&vf->vf_ver))
vf->driver_caps = *(u32 *)msg;
else
vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
VIRTCHNL_VF_OFFLOAD_RSS_REG |
VIRTCHNL_VF_OFFLOAD_VLAN;
vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi->info.pvid)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
} else {
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
else
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
}
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
vfres->num_vsis = 1;
/* Tx and Rx queue are equal for VF */
vfres->num_queue_pairs = vsi->num_txq;
vfres->max_vectors = pf->num_vf_msix;
vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
vf->dflt_lan_addr.addr);
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
err:
/* send the response back to the VF */
ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, aq_ret,
(u8 *)vfres, len);
devm_kfree(&pf->pdev->dev, vfres);
return ret;
}
/**
* ice_vc_reset_vf_msg
* @vf: pointer to the VF info
*
* called from the VF to reset itself,
* unlike other virtchnl messages, PF driver
* doesn't send the response back to the VF
*/
static void ice_vc_reset_vf_msg(struct ice_vf *vf)
{
if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
ice_reset_vf(vf, false);
}
/**
* ice_find_vsi_from_id
* @pf: the pf structure to search for the VSI
* @id: id of the VSI it is searching for
*
* searches for the VSI with the given id
*/
static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
{
int i;
for (i = 0; i < pf->num_alloc_vsi; i++)
if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
return pf->vsi[i];
return NULL;
}
/**
* ice_vc_isvalid_vsi_id
* @vf: pointer to the VF info
* @vsi_id: VF relative VSI id
*
* check for the valid VSI id
*/
static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = ice_find_vsi_from_id(pf, vsi_id);
return (vsi && (vsi->vf_id == vf->vf_id));
}
/**
* ice_vc_isvalid_q_id
* @vf: pointer to the VF info
* @vsi_id: VSI id
* @qid: VSI relative queue id
*
* check for the valid queue id
*/
static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
{
struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
/* allocated Tx and Rx queues should be always equal for VF VSI */
return (vsi && (qid < vsi->alloc_txq));
}
/**
* ice_vc_config_rss_key
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Configure the VF's RSS key
*/
static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_rss_key *vrk =
(struct virtchnl_rss_key *)msg;
struct ice_vsi *vsi = NULL;
enum ice_status aq_ret;
int ret;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = ice_find_vsi_from_id(vf->pf, vrk->vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
ret = ice_set_rss(vsi, vrk->key, NULL, 0);
aq_ret = ret ? ICE_ERR_PARAM : ICE_SUCCESS;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, aq_ret,
NULL, 0);
}
/**
* ice_vc_config_rss_lut
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Configure the VF's RSS LUT
*/
static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
struct ice_vsi *vsi = NULL;
enum ice_status aq_ret;
int ret;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = ice_find_vsi_from_id(vf->pf, vrl->vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
ret = ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE);
aq_ret = ret ? ICE_ERR_PARAM : ICE_SUCCESS;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, aq_ret,
NULL, 0);
}
/**
* ice_vc_get_stats_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to get VSI stats
*/
static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
enum ice_status aq_ret = 0;
struct ice_eth_stats stats;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = ice_find_vsi_from_id(vf->pf, vqs->vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
memset(&stats, 0, sizeof(struct ice_eth_stats));
ice_update_eth_stats(vsi);
stats = vsi->eth_stats;
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, aq_ret,
(u8 *)&stats, sizeof(stats));
}
/**
* ice_vc_ena_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to enable all or specific queue(s)
*/
static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
enum ice_status aq_ret = 0;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!vqs->rx_queues && !vqs->tx_queues) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = ice_find_vsi_from_id(vf->pf, vqs->vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
/* Enable only Rx rings, Tx rings were enabled by the FW when the
* Tx queue group list was configured and the context bits were
* programmed using ice_vsi_cfg_txqs
*/
if (ice_vsi_start_rx_rings(vsi))
aq_ret = ICE_ERR_PARAM;
/* Set flag to indicate that queues are enabled */
if (!aq_ret)
set_bit(ICE_VF_STATE_ENA, vf->vf_states);
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, aq_ret,
NULL, 0);
}
/**
* ice_vc_dis_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to disable all or specific
* queue(s)
*/
static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
enum ice_status aq_ret = 0;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
!test_bit(ICE_VF_STATE_ENA, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!vqs->rx_queues && !vqs->tx_queues) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = ice_find_vsi_from_id(vf->pf, vqs->vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, vf->vf_id)) {
dev_err(&vsi->back->pdev->dev,
"Failed to stop tx rings on VSI %d\n",
vsi->vsi_num);
aq_ret = ICE_ERR_PARAM;
}
if (ice_vsi_stop_rx_rings(vsi)) {
dev_err(&vsi->back->pdev->dev,
"Failed to stop rx rings on VSI %d\n",
vsi->vsi_num);
aq_ret = ICE_ERR_PARAM;
}
/* Clear enabled queues flag */
if (!aq_ret)
clear_bit(ICE_VF_STATE_ENA, vf->vf_states);
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, aq_ret,
NULL, 0);
}
/**
* ice_vc_cfg_irq_map_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure the IRQ to queue map
*/
static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_irq_map_info *irqmap_info =
(struct virtchnl_irq_map_info *)msg;
u16 vsi_id, vsi_q_id, vector_id;
struct virtchnl_vector_map *map;
struct ice_vsi *vsi = NULL;
struct ice_pf *pf = vf->pf;
enum ice_status aq_ret = 0;
unsigned long qmap;
int i;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
for (i = 0; i < irqmap_info->num_vectors; i++) {
map = &irqmap_info->vecmap[i];
vector_id = map->vector_id;
vsi_id = map->vsi_id;
/* validate msg params */
if (!(vector_id < pf->hw.func_caps.common_cap
.num_msix_vectors) || !ice_vc_isvalid_vsi_id(vf, vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
/* lookout for the invalid queue index */
qmap = map->rxq_map;
for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
struct ice_q_vector *q_vector;
if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
q_vector = vsi->q_vectors[i];
q_vector->num_ring_rx++;
q_vector->rx.itr_idx = map->rxitr_idx;
vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
}
qmap = map->txq_map;
for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
struct ice_q_vector *q_vector;
if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
q_vector = vsi->q_vectors[i];
q_vector->num_ring_tx++;
q_vector->tx.itr_idx = map->txitr_idx;
vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
}
}
if (vsi)
ice_vsi_cfg_msix(vsi);
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, aq_ret,
NULL, 0);
}
/**
* ice_vc_cfg_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure the Rx/Tx queues
*/
static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_vsi_queue_config_info *qci =
(struct virtchnl_vsi_queue_config_info *)msg;
struct virtchnl_queue_pair_info *qpi;
enum ice_status aq_ret = 0;
struct ice_vsi *vsi;
int i;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = ice_find_vsi_from_id(vf->pf, qci->vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
for (i = 0; i < qci->num_queue_pairs; i++) {
qpi = &qci->qpair[i];
if (qpi->txq.vsi_id != qci->vsi_id ||
qpi->rxq.vsi_id != qci->vsi_id ||
qpi->rxq.queue_id != qpi->txq.queue_id ||
!ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
/* copy Tx queue info from VF into VSI */
vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
vsi->tx_rings[i]->count = qpi->txq.ring_len;
/* copy Rx queue info from VF into VSI */
vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
vsi->rx_rings[i]->count = qpi->rxq.ring_len;
if (qpi->rxq.databuffer_size > ((16 * 1024) - 128)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi->rx_buf_len = qpi->rxq.databuffer_size;
if (qpi->rxq.max_pkt_size >= (16 * 1024) ||
qpi->rxq.max_pkt_size < 64) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi->max_frame = qpi->rxq.max_pkt_size;
}
/* VF can request to configure less than allocated queues
* or default allocated queues. So update the VSI with new number
*/
vsi->num_txq = qci->num_queue_pairs;
vsi->num_rxq = qci->num_queue_pairs;
if (!ice_vsi_cfg_txqs(vsi) && !ice_vsi_cfg_rxqs(vsi))
aq_ret = 0;
else
aq_ret = ICE_ERR_PARAM;
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, aq_ret,
NULL, 0);
}
/**
* ice_is_vf_trusted
* @vf: pointer to the VF info
*/
static bool ice_is_vf_trusted(struct ice_vf *vf)
{
return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
}
/**
* ice_can_vf_change_mac
* @vf: pointer to the VF info
*
* Return true if the VF is allowed to change its MAC filters, false otherwise
*/
static bool ice_can_vf_change_mac(struct ice_vf *vf)
{
/* If the VF MAC address has been set administratively (via the
* ndo_set_vf_mac command), then deny permission to the VF to
* add/delete unicast MAC addresses, unless the VF is trusted
*/
if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
return false;
return true;
}
/**
* ice_vc_handle_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
* @set: true if mac filters are being set, false otherwise
*
* add guest MAC address filter
*/
static int
ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
{
struct virtchnl_ether_addr_list *al =
(struct virtchnl_ether_addr_list *)msg;
struct ice_pf *pf = vf->pf;
enum virtchnl_ops vc_op;
enum ice_status ret;
LIST_HEAD(mac_list);
struct ice_vsi *vsi;
int mac_count = 0;
int i;
if (set)
vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
else
vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
!ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
ret = ICE_ERR_PARAM;
goto handle_mac_exit;
}
if (set && !ice_is_vf_trusted(vf) &&
(vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
dev_err(&pf->pdev->dev,
"Can't add more MAC addresses, because VF is not trusted, switch the VF to trusted mode in order to add more functionalities\n");
ret = ICE_ERR_PARAM;
goto handle_mac_exit;
}
vsi = pf->vsi[vf->lan_vsi_idx];
for (i = 0; i < al->num_elements; i++) {
u8 *maddr = al->list[i].addr;
if (ether_addr_equal(maddr, vf->dflt_lan_addr.addr) ||
is_broadcast_ether_addr(maddr)) {
if (set) {
/* VF is trying to add filters that the PF
* already added. Just continue.
*/
dev_info(&pf->pdev->dev,
"mac %pM already set for VF %d\n",
maddr, vf->vf_id);
continue;
} else {
/* VF can't remove dflt_lan_addr/bcast mac */
dev_err(&pf->pdev->dev,
"can't remove mac %pM for VF %d\n",
maddr, vf->vf_id);
ret = ICE_ERR_PARAM;
goto handle_mac_exit;
}
}
/* check for the invalid cases and bail if necessary */
if (is_zero_ether_addr(maddr)) {
dev_err(&pf->pdev->dev,
"invalid mac %pM provided for VF %d\n",
maddr, vf->vf_id);
ret = ICE_ERR_PARAM;
goto handle_mac_exit;
}
if (is_unicast_ether_addr(maddr) &&
!ice_can_vf_change_mac(vf)) {
dev_err(&pf->pdev->dev,
"can't change unicast mac for untrusted VF %d\n",
vf->vf_id);
ret = ICE_ERR_PARAM;
goto handle_mac_exit;
}
/* get here if maddr is multicast or if VF can change mac */
if (ice_add_mac_to_list(vsi, &mac_list, al->list[i].addr)) {
ret = ICE_ERR_NO_MEMORY;
goto handle_mac_exit;
}
mac_count++;
}
/* program the updated filter list */
if (set)
ret = ice_add_mac(&pf->hw, &mac_list);
else
ret = ice_remove_mac(&pf->hw, &mac_list);
if (ret) {
dev_err(&pf->pdev->dev,
"can't update mac filters for VF %d, error %d\n",
vf->vf_id, ret);
} else {
if (set)
vf->num_mac += mac_count;
else
vf->num_mac -= mac_count;
}
handle_mac_exit:
ice_free_fltr_list(&pf->pdev->dev, &mac_list);
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, vc_op, ret, NULL, 0);
}
/**
* ice_vc_add_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* add guest MAC address filter
*/
static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_handle_mac_addr_msg(vf, msg, true);
}
/**
* ice_vc_del_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* remove guest MAC address filter
*/
static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_handle_mac_addr_msg(vf, msg, false);
}
/**
* ice_vc_request_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* VFs get a default number of queues but can use this message to request a
* different number. If the request is successful, PF will reset the VF and
* return 0. If unsuccessful, PF will send message informing VF of number of
* available queue pairs via virtchnl message response to vf.
*/
static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_vf_res_request *vfres =
(struct virtchnl_vf_res_request *)msg;
int req_queues = vfres->num_queue_pairs;
enum ice_status aq_ret = 0;
struct ice_pf *pf = vf->pf;
int tx_rx_queue_left;
int cur_queues;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
cur_queues = pf->num_vf_qps;
tx_rx_queue_left = min_t(int, pf->q_left_tx, pf->q_left_rx);
if (req_queues <= 0) {
dev_err(&pf->pdev->dev,
"VF %d tried to request %d queues. Ignoring.\n",
vf->vf_id, req_queues);
} else if (req_queues > ICE_MAX_QS_PER_VF) {
dev_err(&pf->pdev->dev,
"VF %d tried to request more than %d queues.\n",
vf->vf_id, ICE_MAX_QS_PER_VF);
vfres->num_queue_pairs = ICE_MAX_QS_PER_VF;
} else if (req_queues - cur_queues > tx_rx_queue_left) {
dev_warn(&pf->pdev->dev,
"VF %d requested %d more queues, but only %d left.\n",
vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
vfres->num_queue_pairs = tx_rx_queue_left + cur_queues;
} else {
/* request is successful, then reset VF */
vf->num_req_qs = req_queues;
ice_vc_dis_vf(vf);
dev_info(&pf->pdev->dev,
"VF %d granted request of %d queues.\n",
vf->vf_id, req_queues);
return 0;
}
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
aq_ret, (u8 *)vfres, sizeof(*vfres));
}
/**
* ice_set_vf_port_vlan
* @netdev: network interface device structure
* @vf_id: VF identifier
* @vlan_id: VLAN id being set
* @qos: priority setting
* @vlan_proto: VLAN protocol
*
* program VF Port VLAN id and/or qos
*/
int
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
__be16 vlan_proto)
{
u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S);
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_pf *pf = np->vsi->back;
struct ice_vsi *vsi;
struct ice_vf *vf;
int ret = 0;
/* validate the request */
if (vf_id >= pf->num_alloc_vfs) {
dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
return -EINVAL;
}
if (vlan_id > ICE_MAX_VLANID || qos > 7) {
dev_err(&pf->pdev->dev, "Invalid VF Parameters\n");
return -EINVAL;
}
if (vlan_proto != htons(ETH_P_8021Q)) {
dev_err(&pf->pdev->dev, "VF VLAN protocol is not supported\n");
return -EPROTONOSUPPORT;
}
vf = &pf->vf[vf_id];
vsi = pf->vsi[vf->lan_vsi_idx];
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
return -EBUSY;
}
if (le16_to_cpu(vsi->info.pvid) == vlanprio) {
/* duplicate request, so just return success */
dev_info(&pf->pdev->dev,
"Duplicate pvid %d request\n", vlanprio);
return ret;
}
/* If pvid, then remove all filters on the old VLAN */
if (vsi->info.pvid)
ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) &
VLAN_VID_MASK));
if (vlan_id || qos) {
ret = ice_vsi_set_pvid(vsi, vlanprio);
if (ret)
goto error_set_pvid;
} else {
ice_vsi_kill_pvid(vsi);
}
if (vlan_id) {
dev_info(&pf->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n",
vlan_id, qos, vf_id);
/* add new VLAN filter for each MAC */
ret = ice_vsi_add_vlan(vsi, vlan_id);
if (ret)
goto error_set_pvid;
}
/* The Port VLAN needs to be saved across resets the same as the
* default LAN MAC address.
*/
vf->port_vlan_id = le16_to_cpu(vsi->info.pvid);
error_set_pvid:
return ret;
}
/**
* ice_vc_process_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
* @add_v: Add VLAN if true, otherwise delete VLAN
*
* Process virtchnl op to add or remove programmed guest VLAN id
*/
static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
{
struct virtchnl_vlan_filter_list *vfl =
(struct virtchnl_vlan_filter_list *)msg;
enum ice_status aq_ret = 0;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int i;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (add_v && !ice_is_vf_trusted(vf) &&
vf->num_vlan >= ICE_MAX_VLAN_PER_VF) {
dev_info(&pf->pdev->dev,
"VF is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n");
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
for (i = 0; i < vfl->num_elements; i++) {
if (vfl->vlan_id[i] > ICE_MAX_VLANID) {
aq_ret = ICE_ERR_PARAM;
dev_err(&pf->pdev->dev,
"invalid VF VLAN id %d\n", vfl->vlan_id[i]);
goto error_param;
}
}
vsi = ice_find_vsi_from_id(vf->pf, vfl->vsi_id);
if (!vsi) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (vsi->info.pvid) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (ice_vsi_manage_vlan_stripping(vsi, add_v)) {
dev_err(&pf->pdev->dev,
"%sable VLAN stripping failed for VSI %i\n",
add_v ? "en" : "dis", vsi->vsi_num);
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
if (add_v) {
for (i = 0; i < vfl->num_elements; i++) {
u16 vid = vfl->vlan_id[i];
if (!ice_vsi_add_vlan(vsi, vid)) {
vf->num_vlan++;
/* Enable VLAN pruning when VLAN 0 is added */
if (unlikely(!vid))
if (ice_cfg_vlan_pruning(vsi, true))
aq_ret = ICE_ERR_PARAM;
} else {
aq_ret = ICE_ERR_PARAM;
}
}
} else {
for (i = 0; i < vfl->num_elements; i++) {
u16 vid = vfl->vlan_id[i];
/* Make sure ice_vsi_kill_vlan is successful before
* updating VLAN information
*/
if (!ice_vsi_kill_vlan(vsi, vid)) {
vf->num_vlan--;
/* Disable VLAN pruning when removing VLAN 0 */
if (unlikely(!vid))
ice_cfg_vlan_pruning(vsi, false);
}
}
}
error_param:
/* send the response to the VF */
if (add_v)
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, aq_ret,
NULL, 0);
else
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, aq_ret,
NULL, 0);
}
/**
* ice_vc_add_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Add and program guest VLAN id
*/
static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_process_vlan_msg(vf, msg, true);
}
/**
* ice_vc_remove_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* remove programmed guest VLAN id
*/
static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_process_vlan_msg(vf, msg, false);
}
/**
* ice_vc_ena_vlan_stripping
* @vf: pointer to the VF info
*
* Enable VLAN header stripping for a given VF
*/
static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
{
enum ice_status aq_ret = 0;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (ice_vsi_manage_vlan_stripping(vsi, true))
aq_ret = ICE_ERR_AQ_ERROR;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
aq_ret, NULL, 0);
}
/**
* ice_vc_dis_vlan_stripping
* @vf: pointer to the VF info
*
* Disable VLAN header stripping for a given VF
*/
static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
{
enum ice_status aq_ret = 0;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
aq_ret = ICE_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (ice_vsi_manage_vlan_stripping(vsi, false))
aq_ret = ICE_ERR_AQ_ERROR;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
aq_ret, NULL, 0);
}
/**
* ice_vc_process_vf_msg - Process request from VF
* @pf: pointer to the PF structure
* @event: pointer to the AQ event
*
* called from the common asq/arq handler to
* process request from VF
*/
void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
{
u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
s16 vf_id = le16_to_cpu(event->desc.retval);
u16 msglen = event->msg_len;
u8 *msg = event->msg_buf;
struct ice_vf *vf = NULL;
int err = 0;
if (vf_id >= pf->num_alloc_vfs) {
err = -EINVAL;
goto error_handler;
}
vf = &pf->vf[vf_id];
/* Check if VF is disabled. */
if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
err = -EPERM;
goto error_handler;
}
/* Perform basic checks on the msg */
err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
if (err) {
if (err == VIRTCHNL_ERR_PARAM)
err = -EPERM;
else
err = -EINVAL;
goto error_handler;
}
/* Perform additional checks specific to RSS and Virtchnl */
if (v_opcode == VIRTCHNL_OP_CONFIG_RSS_KEY) {
struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg;
if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE)
err = -EINVAL;
} else if (v_opcode == VIRTCHNL_OP_CONFIG_RSS_LUT) {
struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE)
err = -EINVAL;
}
error_handler:
if (err) {
ice_vc_send_msg_to_vf(vf, v_opcode, ICE_ERR_PARAM, NULL, 0);
dev_err(&pf->pdev->dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
vf_id, v_opcode, msglen, err);
return;
}
switch (v_opcode) {
case VIRTCHNL_OP_VERSION:
err = ice_vc_get_ver_msg(vf, msg);
break;
case VIRTCHNL_OP_GET_VF_RESOURCES:
err = ice_vc_get_vf_res_msg(vf, msg);
break;
case VIRTCHNL_OP_RESET_VF:
ice_vc_reset_vf_msg(vf);
break;
case VIRTCHNL_OP_ADD_ETH_ADDR:
err = ice_vc_add_mac_addr_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_ETH_ADDR:
err = ice_vc_del_mac_addr_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
err = ice_vc_cfg_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_QUEUES:
err = ice_vc_ena_qs_msg(vf, msg);
ice_vc_notify_vf_link_state(vf);
break;
case VIRTCHNL_OP_DISABLE_QUEUES:
err = ice_vc_dis_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_REQUEST_QUEUES:
err = ice_vc_request_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
err = ice_vc_cfg_irq_map_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_RSS_KEY:
err = ice_vc_config_rss_key(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_RSS_LUT:
err = ice_vc_config_rss_lut(vf, msg);
break;
case VIRTCHNL_OP_GET_STATS:
err = ice_vc_get_stats_msg(vf, msg);
break;
case VIRTCHNL_OP_ADD_VLAN:
err = ice_vc_add_vlan_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_VLAN:
err = ice_vc_remove_vlan_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
err = ice_vc_ena_vlan_stripping(vf);
break;
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
err = ice_vc_dis_vlan_stripping(vf);
break;
case VIRTCHNL_OP_UNKNOWN:
default:
dev_err(&pf->pdev->dev, "Unsupported opcode %d from VF %d\n",
v_opcode, vf_id);
err = ice_vc_send_msg_to_vf(vf, v_opcode, ICE_ERR_NOT_IMPL,
NULL, 0);
break;
}
if (err) {
/* Helper function cares less about error return values here
* as it is busy with pending work.
*/
dev_info(&pf->pdev->dev,
"PF failed to honor VF %d, opcode %d\n, error %d\n",
vf_id, v_opcode, err);
}
}
/**
* ice_get_vf_cfg
* @netdev: network interface device structure
* @vf_id: VF identifier
* @ivi: VF configuration structure
*
* return VF configuration
*/
int ice_get_vf_cfg(struct net_device *netdev, int vf_id,
struct ifla_vf_info *ivi)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct ice_vf *vf;
/* validate the request */
if (vf_id >= pf->num_alloc_vfs) {
netdev_err(netdev, "invalid VF id: %d\n", vf_id);
return -EINVAL;
}
vf = &pf->vf[vf_id];
vsi = pf->vsi[vf->lan_vsi_idx];
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
return -EBUSY;
}
ivi->vf = vf_id;
ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
/* VF configuration for VLAN and applicable QoS */
ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M;
ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >>
ICE_VLAN_PRIORITY_S;
ivi->trusted = vf->trusted;
ivi->spoofchk = vf->spoofchk;
if (!vf->link_forced)
ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
else if (vf->link_up)
ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
else
ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
ivi->max_tx_rate = vf->tx_rate;
ivi->min_tx_rate = 0;
return 0;
}
/**
* ice_set_vf_spoofchk
* @netdev: network interface device structure
* @vf_id: VF identifier
* @ena: flag to enable or disable feature
*
* Enable or disable VF spoof checking
*/
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi_ctx ctx = { 0 };
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct ice_vf *vf;
int status;
/* validate the request */
if (vf_id >= pf->num_alloc_vfs) {
netdev_err(netdev, "invalid VF id: %d\n", vf_id);
return -EINVAL;
}
vf = &pf->vf[vf_id];
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
return -EBUSY;
}
if (ena == vf->spoofchk) {
dev_dbg(&pf->pdev->dev, "VF spoofchk already %s\n",
ena ? "ON" : "OFF");
return 0;
}
ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
if (ena) {
ctx.info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
ctx.info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_PRUNE_EN_M;
}
status = ice_update_vsi(&pf->hw, vsi->idx, &ctx, NULL);
if (status) {
dev_dbg(&pf->pdev->dev,
"Error %d, failed to update VSI* parameters\n", status);
return -EIO;
}
vf->spoofchk = ena;
vsi->info.sec_flags = ctx.info.sec_flags;
vsi->info.sw_flags2 = ctx.info.sw_flags2;
return status;
}
/**
* ice_set_vf_mac
* @netdev: network interface device structure
* @vf_id: VF identifier
* @mac: mac address
*
* program VF mac address
*/
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct ice_vf *vf;
int ret = 0;
/* validate the request */
if (vf_id >= pf->num_alloc_vfs) {
netdev_err(netdev, "invalid VF id: %d\n", vf_id);
return -EINVAL;
}
vf = &pf->vf[vf_id];
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
return -EBUSY;
}
if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) {
netdev_err(netdev, "%pM not a valid unicast address\n", mac);
return -EINVAL;
}
/* copy mac into dflt_lan_addr and trigger a VF reset. The reset
* flow will use the updated dflt_lan_addr and add a MAC filter
* using ice_add_mac. Also set pf_set_mac to indicate that the PF has
* set the MAC address for this VF.
*/
ether_addr_copy(vf->dflt_lan_addr.addr, mac);
vf->pf_set_mac = true;
netdev_info(netdev,
"mac on VF %d set to %pM\n. VF driver will be reinitialized\n",
vf_id, mac);
ice_vc_dis_vf(vf);
return ret;
}
/**
* ice_set_vf_trust
* @netdev: network interface device structure
* @vf_id: VF identifier
* @trusted: Boolean value to enable/disable trusted VF
*
* Enable or disable a given VF as trusted
*/
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
struct ice_vf *vf;
/* validate the request */
if (vf_id >= pf->num_alloc_vfs) {
dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
return -EINVAL;
}
vf = &pf->vf[vf_id];
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
return -EBUSY;
}
/* Check if already trusted */
if (trusted == vf->trusted)
return 0;
vf->trusted = trusted;
ice_vc_dis_vf(vf);
dev_info(&pf->pdev->dev, "VF %u is now %strusted\n",
vf_id, trusted ? "" : "un");
return 0;
}
/**
* ice_set_vf_link_state
* @netdev: network interface device structure
* @vf_id: VF identifier
* @link_state: required link state
*
* Set VF's link state, irrespective of physical link state status
*/
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_pf *pf = np->vsi->back;
struct virtchnl_pf_event pfe = { 0 };
struct ice_link_status *ls;
struct ice_vf *vf;
struct ice_hw *hw;
if (vf_id >= pf->num_alloc_vfs) {
dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id);
return -EINVAL;
}
vf = &pf->vf[vf_id];
hw = &pf->hw;
ls = &pf->hw.port_info->phy.link_info;
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
dev_err(&pf->pdev->dev, "vf %d in reset. Try again.\n", vf_id);
return -EBUSY;
}
pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
pfe.severity = PF_EVENT_SEVERITY_INFO;
switch (link_state) {
case IFLA_VF_LINK_STATE_AUTO:
vf->link_forced = false;
vf->link_up = ls->link_info & ICE_AQ_LINK_UP;
break;
case IFLA_VF_LINK_STATE_ENABLE:
vf->link_forced = true;
vf->link_up = true;
break;
case IFLA_VF_LINK_STATE_DISABLE:
vf->link_forced = true;
vf->link_up = false;
break;
default:
return -EINVAL;
}
if (vf->link_forced)
ice_set_pfe_link_forced(vf, &pfe, vf->link_up);
else
ice_set_pfe_link(vf, &pfe, ls->link_speed, vf->link_up);
/* Notify the VF of its new link state */
ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe,
sizeof(pfe), NULL);
return 0;
}