linux/arch/um/os-Linux/drivers/tuntap_kern.c
Jeff Dike b53f35a809 uml: network driver MTU cleanups
A bunch of MTU-related cleanups in the network code.

First, there is the addition of the notion of a maximally-sized packet, which
is the MTU plus headers.  This is used to size the skb that will receive a
packet.  This allows ether_adjust_skb to go away, as it was used to resize the
skb after it was allocated.

Since the skb passed into the low-level read routine is no longer resized, and
possibly reallocated, there, they (and the write routines) don't need to get
an sk_buff **.  They just need the sk_buff * now.  The callers of
ether_adjust_skb still need to do the skb_put, so that's now inlined.

The MAX_PACKET definitions in most of the drivers are gone.

The set_mtu methods were all the same and did nothing, so they can be
removed.

The ethertap driver had a typo which doubled the size of the packet rather
than adding two bytes to it.  It also wasn't defining its setup_size, causing
a zero-byte kmalloc and crash when the invalid pointer returned from kmalloc
was dereferenced.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:08 -07:00

87 lines
1.9 KiB
C

/*
* Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
* Licensed under the GPL
*/
#include <linux/netdevice.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <asm/errno.h>
#include "net_kern.h"
#include "tuntap.h"
struct tuntap_init {
char *dev_name;
char *gate_addr;
};
static void tuntap_init(struct net_device *dev, void *data)
{
struct uml_net_private *pri;
struct tuntap_data *tpri;
struct tuntap_init *init = data;
pri = dev->priv;
tpri = (struct tuntap_data *) pri->user;
tpri->dev_name = init->dev_name;
tpri->fixed_config = (init->dev_name != NULL);
tpri->gate_addr = init->gate_addr;
tpri->fd = -1;
tpri->dev = dev;
printk("TUN/TAP backend - ");
if (tpri->gate_addr != NULL)
printk("IP = %s", tpri->gate_addr);
printk("\n");
}
static int tuntap_read(int fd, struct sk_buff *skb, struct uml_net_private *lp)
{
return net_read(fd, skb_mac_header(skb),
skb->dev->mtu + ETH_HEADER_OTHER);
}
static int tuntap_write(int fd, struct sk_buff *skb, struct uml_net_private *lp)
{
return net_write(fd, skb->data, skb->len);
}
const struct net_kern_info tuntap_kern_info = {
.init = tuntap_init,
.protocol = eth_protocol,
.read = tuntap_read,
.write = tuntap_write,
};
int tuntap_setup(char *str, char **mac_out, void *data)
{
struct tuntap_init *init = data;
*init = ((struct tuntap_init)
{ .dev_name = NULL,
.gate_addr = NULL });
if (tap_setup_common(str, "tuntap", &init->dev_name, mac_out,
&init->gate_addr))
return 0;
return 1;
}
static struct transport tuntap_transport = {
.list = LIST_HEAD_INIT(tuntap_transport.list),
.name = "tuntap",
.setup = tuntap_setup,
.user = &tuntap_user_info,
.kern = &tuntap_kern_info,
.private_size = sizeof(struct tuntap_data),
.setup_size = sizeof(struct tuntap_init),
};
static int register_tuntap(void)
{
register_transport(&tuntap_transport);
return 0;
}
late_initcall(register_tuntap);