forked from Minki/linux
6065a244a0
__get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: linux-ia64@vger.kernel.org Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
673 lines
15 KiB
C
673 lines
15 KiB
C
/*
|
|
* linux/arch/ia64/kernel/irq_ia64.c
|
|
*
|
|
* Copyright (C) 1998-2001 Hewlett-Packard Co
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* 6/10/99: Updated to bring in sync with x86 version to facilitate
|
|
* support for SMP and different interrupt controllers.
|
|
*
|
|
* 09/15/00 Goutham Rao <goutham.rao@intel.com> Implemented pci_irq_to_vector
|
|
* PCI to vector allocation routine.
|
|
* 04/14/2004 Ashok Raj <ashok.raj@intel.com>
|
|
* Added CPU Hotplug handling for IPF.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/jiffies.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/delay.h>
|
|
#include <asm/intrinsics.h>
|
|
#include <asm/io.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
# include <asm/perfmon.h>
|
|
#endif
|
|
|
|
#define IRQ_DEBUG 0
|
|
|
|
#define IRQ_VECTOR_UNASSIGNED (0)
|
|
|
|
#define IRQ_UNUSED (0)
|
|
#define IRQ_USED (1)
|
|
#define IRQ_RSVD (2)
|
|
|
|
/* These can be overridden in platform_irq_init */
|
|
int ia64_first_device_vector = IA64_DEF_FIRST_DEVICE_VECTOR;
|
|
int ia64_last_device_vector = IA64_DEF_LAST_DEVICE_VECTOR;
|
|
|
|
/* default base addr of IPI table */
|
|
void __iomem *ipi_base_addr = ((void __iomem *)
|
|
(__IA64_UNCACHED_OFFSET | IA64_IPI_DEFAULT_BASE_ADDR));
|
|
|
|
static cpumask_t vector_allocation_domain(int cpu);
|
|
|
|
/*
|
|
* Legacy IRQ to IA-64 vector translation table.
|
|
*/
|
|
__u8 isa_irq_to_vector_map[16] = {
|
|
/* 8259 IRQ translation, first 16 entries */
|
|
0x2f, 0x20, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29,
|
|
0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21
|
|
};
|
|
EXPORT_SYMBOL(isa_irq_to_vector_map);
|
|
|
|
DEFINE_SPINLOCK(vector_lock);
|
|
|
|
struct irq_cfg irq_cfg[NR_IRQS] __read_mostly = {
|
|
[0 ... NR_IRQS - 1] = {
|
|
.vector = IRQ_VECTOR_UNASSIGNED,
|
|
.domain = CPU_MASK_NONE
|
|
}
|
|
};
|
|
|
|
DEFINE_PER_CPU(int[IA64_NUM_VECTORS], vector_irq) = {
|
|
[0 ... IA64_NUM_VECTORS - 1] = -1
|
|
};
|
|
|
|
static cpumask_t vector_table[IA64_NUM_VECTORS] = {
|
|
[0 ... IA64_NUM_VECTORS - 1] = CPU_MASK_NONE
|
|
};
|
|
|
|
static int irq_status[NR_IRQS] = {
|
|
[0 ... NR_IRQS -1] = IRQ_UNUSED
|
|
};
|
|
|
|
static inline int find_unassigned_irq(void)
|
|
{
|
|
int irq;
|
|
|
|
for (irq = IA64_FIRST_DEVICE_VECTOR; irq < NR_IRQS; irq++)
|
|
if (irq_status[irq] == IRQ_UNUSED)
|
|
return irq;
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static inline int find_unassigned_vector(cpumask_t domain)
|
|
{
|
|
cpumask_t mask;
|
|
int pos, vector;
|
|
|
|
cpumask_and(&mask, &domain, cpu_online_mask);
|
|
if (cpus_empty(mask))
|
|
return -EINVAL;
|
|
|
|
for (pos = 0; pos < IA64_NUM_DEVICE_VECTORS; pos++) {
|
|
vector = IA64_FIRST_DEVICE_VECTOR + pos;
|
|
cpus_and(mask, domain, vector_table[vector]);
|
|
if (!cpus_empty(mask))
|
|
continue;
|
|
return vector;
|
|
}
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static int __bind_irq_vector(int irq, int vector, cpumask_t domain)
|
|
{
|
|
cpumask_t mask;
|
|
int cpu;
|
|
struct irq_cfg *cfg = &irq_cfg[irq];
|
|
|
|
BUG_ON((unsigned)irq >= NR_IRQS);
|
|
BUG_ON((unsigned)vector >= IA64_NUM_VECTORS);
|
|
|
|
cpumask_and(&mask, &domain, cpu_online_mask);
|
|
if (cpus_empty(mask))
|
|
return -EINVAL;
|
|
if ((cfg->vector == vector) && cpus_equal(cfg->domain, domain))
|
|
return 0;
|
|
if (cfg->vector != IRQ_VECTOR_UNASSIGNED)
|
|
return -EBUSY;
|
|
for_each_cpu_mask(cpu, mask)
|
|
per_cpu(vector_irq, cpu)[vector] = irq;
|
|
cfg->vector = vector;
|
|
cfg->domain = domain;
|
|
irq_status[irq] = IRQ_USED;
|
|
cpus_or(vector_table[vector], vector_table[vector], domain);
|
|
return 0;
|
|
}
|
|
|
|
int bind_irq_vector(int irq, int vector, cpumask_t domain)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&vector_lock, flags);
|
|
ret = __bind_irq_vector(irq, vector, domain);
|
|
spin_unlock_irqrestore(&vector_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void __clear_irq_vector(int irq)
|
|
{
|
|
int vector, cpu;
|
|
cpumask_t mask;
|
|
cpumask_t domain;
|
|
struct irq_cfg *cfg = &irq_cfg[irq];
|
|
|
|
BUG_ON((unsigned)irq >= NR_IRQS);
|
|
BUG_ON(cfg->vector == IRQ_VECTOR_UNASSIGNED);
|
|
vector = cfg->vector;
|
|
domain = cfg->domain;
|
|
cpumask_and(&mask, &cfg->domain, cpu_online_mask);
|
|
for_each_cpu_mask(cpu, mask)
|
|
per_cpu(vector_irq, cpu)[vector] = -1;
|
|
cfg->vector = IRQ_VECTOR_UNASSIGNED;
|
|
cfg->domain = CPU_MASK_NONE;
|
|
irq_status[irq] = IRQ_UNUSED;
|
|
cpus_andnot(vector_table[vector], vector_table[vector], domain);
|
|
}
|
|
|
|
static void clear_irq_vector(int irq)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vector_lock, flags);
|
|
__clear_irq_vector(irq);
|
|
spin_unlock_irqrestore(&vector_lock, flags);
|
|
}
|
|
|
|
int
|
|
ia64_native_assign_irq_vector (int irq)
|
|
{
|
|
unsigned long flags;
|
|
int vector, cpu;
|
|
cpumask_t domain = CPU_MASK_NONE;
|
|
|
|
vector = -ENOSPC;
|
|
|
|
spin_lock_irqsave(&vector_lock, flags);
|
|
for_each_online_cpu(cpu) {
|
|
domain = vector_allocation_domain(cpu);
|
|
vector = find_unassigned_vector(domain);
|
|
if (vector >= 0)
|
|
break;
|
|
}
|
|
if (vector < 0)
|
|
goto out;
|
|
if (irq == AUTO_ASSIGN)
|
|
irq = vector;
|
|
BUG_ON(__bind_irq_vector(irq, vector, domain));
|
|
out:
|
|
spin_unlock_irqrestore(&vector_lock, flags);
|
|
return vector;
|
|
}
|
|
|
|
void
|
|
ia64_native_free_irq_vector (int vector)
|
|
{
|
|
if (vector < IA64_FIRST_DEVICE_VECTOR ||
|
|
vector > IA64_LAST_DEVICE_VECTOR)
|
|
return;
|
|
clear_irq_vector(vector);
|
|
}
|
|
|
|
int
|
|
reserve_irq_vector (int vector)
|
|
{
|
|
if (vector < IA64_FIRST_DEVICE_VECTOR ||
|
|
vector > IA64_LAST_DEVICE_VECTOR)
|
|
return -EINVAL;
|
|
return !!bind_irq_vector(vector, vector, CPU_MASK_ALL);
|
|
}
|
|
|
|
/*
|
|
* Initialize vector_irq on a new cpu. This function must be called
|
|
* with vector_lock held.
|
|
*/
|
|
void __setup_vector_irq(int cpu)
|
|
{
|
|
int irq, vector;
|
|
|
|
/* Clear vector_irq */
|
|
for (vector = 0; vector < IA64_NUM_VECTORS; ++vector)
|
|
per_cpu(vector_irq, cpu)[vector] = -1;
|
|
/* Mark the inuse vectors */
|
|
for (irq = 0; irq < NR_IRQS; ++irq) {
|
|
if (!cpu_isset(cpu, irq_cfg[irq].domain))
|
|
continue;
|
|
vector = irq_to_vector(irq);
|
|
per_cpu(vector_irq, cpu)[vector] = irq;
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_SMP) && (defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_DIG))
|
|
|
|
static enum vector_domain_type {
|
|
VECTOR_DOMAIN_NONE,
|
|
VECTOR_DOMAIN_PERCPU
|
|
} vector_domain_type = VECTOR_DOMAIN_NONE;
|
|
|
|
static cpumask_t vector_allocation_domain(int cpu)
|
|
{
|
|
if (vector_domain_type == VECTOR_DOMAIN_PERCPU)
|
|
return cpumask_of_cpu(cpu);
|
|
return CPU_MASK_ALL;
|
|
}
|
|
|
|
static int __irq_prepare_move(int irq, int cpu)
|
|
{
|
|
struct irq_cfg *cfg = &irq_cfg[irq];
|
|
int vector;
|
|
cpumask_t domain;
|
|
|
|
if (cfg->move_in_progress || cfg->move_cleanup_count)
|
|
return -EBUSY;
|
|
if (cfg->vector == IRQ_VECTOR_UNASSIGNED || !cpu_online(cpu))
|
|
return -EINVAL;
|
|
if (cpu_isset(cpu, cfg->domain))
|
|
return 0;
|
|
domain = vector_allocation_domain(cpu);
|
|
vector = find_unassigned_vector(domain);
|
|
if (vector < 0)
|
|
return -ENOSPC;
|
|
cfg->move_in_progress = 1;
|
|
cfg->old_domain = cfg->domain;
|
|
cfg->vector = IRQ_VECTOR_UNASSIGNED;
|
|
cfg->domain = CPU_MASK_NONE;
|
|
BUG_ON(__bind_irq_vector(irq, vector, domain));
|
|
return 0;
|
|
}
|
|
|
|
int irq_prepare_move(int irq, int cpu)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&vector_lock, flags);
|
|
ret = __irq_prepare_move(irq, cpu);
|
|
spin_unlock_irqrestore(&vector_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
void irq_complete_move(unsigned irq)
|
|
{
|
|
struct irq_cfg *cfg = &irq_cfg[irq];
|
|
cpumask_t cleanup_mask;
|
|
int i;
|
|
|
|
if (likely(!cfg->move_in_progress))
|
|
return;
|
|
|
|
if (unlikely(cpu_isset(smp_processor_id(), cfg->old_domain)))
|
|
return;
|
|
|
|
cpumask_and(&cleanup_mask, &cfg->old_domain, cpu_online_mask);
|
|
cfg->move_cleanup_count = cpus_weight(cleanup_mask);
|
|
for_each_cpu_mask(i, cleanup_mask)
|
|
platform_send_ipi(i, IA64_IRQ_MOVE_VECTOR, IA64_IPI_DM_INT, 0);
|
|
cfg->move_in_progress = 0;
|
|
}
|
|
|
|
static irqreturn_t smp_irq_move_cleanup_interrupt(int irq, void *dev_id)
|
|
{
|
|
int me = smp_processor_id();
|
|
ia64_vector vector;
|
|
unsigned long flags;
|
|
|
|
for (vector = IA64_FIRST_DEVICE_VECTOR;
|
|
vector < IA64_LAST_DEVICE_VECTOR; vector++) {
|
|
int irq;
|
|
struct irq_desc *desc;
|
|
struct irq_cfg *cfg;
|
|
irq = __this_cpu_read(vector_irq[vector]);
|
|
if (irq < 0)
|
|
continue;
|
|
|
|
desc = irq_to_desc(irq);
|
|
cfg = irq_cfg + irq;
|
|
raw_spin_lock(&desc->lock);
|
|
if (!cfg->move_cleanup_count)
|
|
goto unlock;
|
|
|
|
if (!cpu_isset(me, cfg->old_domain))
|
|
goto unlock;
|
|
|
|
spin_lock_irqsave(&vector_lock, flags);
|
|
__this_cpu_write(vector_irq[vector], -1);
|
|
cpu_clear(me, vector_table[vector]);
|
|
spin_unlock_irqrestore(&vector_lock, flags);
|
|
cfg->move_cleanup_count--;
|
|
unlock:
|
|
raw_spin_unlock(&desc->lock);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct irqaction irq_move_irqaction = {
|
|
.handler = smp_irq_move_cleanup_interrupt,
|
|
.name = "irq_move"
|
|
};
|
|
|
|
static int __init parse_vector_domain(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
if (!strcmp(arg, "percpu")) {
|
|
vector_domain_type = VECTOR_DOMAIN_PERCPU;
|
|
no_int_routing = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
early_param("vector", parse_vector_domain);
|
|
#else
|
|
static cpumask_t vector_allocation_domain(int cpu)
|
|
{
|
|
return CPU_MASK_ALL;
|
|
}
|
|
#endif
|
|
|
|
|
|
void destroy_and_reserve_irq(unsigned int irq)
|
|
{
|
|
unsigned long flags;
|
|
|
|
irq_init_desc(irq);
|
|
spin_lock_irqsave(&vector_lock, flags);
|
|
__clear_irq_vector(irq);
|
|
irq_status[irq] = IRQ_RSVD;
|
|
spin_unlock_irqrestore(&vector_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Dynamic irq allocate and deallocation for MSI
|
|
*/
|
|
int create_irq(void)
|
|
{
|
|
unsigned long flags;
|
|
int irq, vector, cpu;
|
|
cpumask_t domain = CPU_MASK_NONE;
|
|
|
|
irq = vector = -ENOSPC;
|
|
spin_lock_irqsave(&vector_lock, flags);
|
|
for_each_online_cpu(cpu) {
|
|
domain = vector_allocation_domain(cpu);
|
|
vector = find_unassigned_vector(domain);
|
|
if (vector >= 0)
|
|
break;
|
|
}
|
|
if (vector < 0)
|
|
goto out;
|
|
irq = find_unassigned_irq();
|
|
if (irq < 0)
|
|
goto out;
|
|
BUG_ON(__bind_irq_vector(irq, vector, domain));
|
|
out:
|
|
spin_unlock_irqrestore(&vector_lock, flags);
|
|
if (irq >= 0)
|
|
irq_init_desc(irq);
|
|
return irq;
|
|
}
|
|
|
|
void destroy_irq(unsigned int irq)
|
|
{
|
|
irq_init_desc(irq);
|
|
clear_irq_vector(irq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
# define IS_RESCHEDULE(vec) (vec == IA64_IPI_RESCHEDULE)
|
|
# define IS_LOCAL_TLB_FLUSH(vec) (vec == IA64_IPI_LOCAL_TLB_FLUSH)
|
|
#else
|
|
# define IS_RESCHEDULE(vec) (0)
|
|
# define IS_LOCAL_TLB_FLUSH(vec) (0)
|
|
#endif
|
|
/*
|
|
* That's where the IVT branches when we get an external
|
|
* interrupt. This branches to the correct hardware IRQ handler via
|
|
* function ptr.
|
|
*/
|
|
void
|
|
ia64_handle_irq (ia64_vector vector, struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
unsigned long saved_tpr;
|
|
|
|
#if IRQ_DEBUG
|
|
{
|
|
unsigned long bsp, sp;
|
|
|
|
/*
|
|
* Note: if the interrupt happened while executing in
|
|
* the context switch routine (ia64_switch_to), we may
|
|
* get a spurious stack overflow here. This is
|
|
* because the register and the memory stack are not
|
|
* switched atomically.
|
|
*/
|
|
bsp = ia64_getreg(_IA64_REG_AR_BSP);
|
|
sp = ia64_getreg(_IA64_REG_SP);
|
|
|
|
if ((sp - bsp) < 1024) {
|
|
static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
|
|
|
|
if (__ratelimit(&ratelimit)) {
|
|
printk("ia64_handle_irq: DANGER: less than "
|
|
"1KB of free stack space!!\n"
|
|
"(bsp=0x%lx, sp=%lx)\n", bsp, sp);
|
|
}
|
|
}
|
|
}
|
|
#endif /* IRQ_DEBUG */
|
|
|
|
/*
|
|
* Always set TPR to limit maximum interrupt nesting depth to
|
|
* 16 (without this, it would be ~240, which could easily lead
|
|
* to kernel stack overflows).
|
|
*/
|
|
irq_enter();
|
|
saved_tpr = ia64_getreg(_IA64_REG_CR_TPR);
|
|
ia64_srlz_d();
|
|
while (vector != IA64_SPURIOUS_INT_VECTOR) {
|
|
int irq = local_vector_to_irq(vector);
|
|
|
|
if (unlikely(IS_LOCAL_TLB_FLUSH(vector))) {
|
|
smp_local_flush_tlb();
|
|
kstat_incr_irq_this_cpu(irq);
|
|
} else if (unlikely(IS_RESCHEDULE(vector))) {
|
|
scheduler_ipi();
|
|
kstat_incr_irq_this_cpu(irq);
|
|
} else {
|
|
ia64_setreg(_IA64_REG_CR_TPR, vector);
|
|
ia64_srlz_d();
|
|
|
|
if (unlikely(irq < 0)) {
|
|
printk(KERN_ERR "%s: Unexpected interrupt "
|
|
"vector %d on CPU %d is not mapped "
|
|
"to any IRQ!\n", __func__, vector,
|
|
smp_processor_id());
|
|
} else
|
|
generic_handle_irq(irq);
|
|
|
|
/*
|
|
* Disable interrupts and send EOI:
|
|
*/
|
|
local_irq_disable();
|
|
ia64_setreg(_IA64_REG_CR_TPR, saved_tpr);
|
|
}
|
|
ia64_eoi();
|
|
vector = ia64_get_ivr();
|
|
}
|
|
/*
|
|
* This must be done *after* the ia64_eoi(). For example, the keyboard softirq
|
|
* handler needs to be able to wait for further keyboard interrupts, which can't
|
|
* come through until ia64_eoi() has been done.
|
|
*/
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* This function emulates a interrupt processing when a cpu is about to be
|
|
* brought down.
|
|
*/
|
|
void ia64_process_pending_intr(void)
|
|
{
|
|
ia64_vector vector;
|
|
unsigned long saved_tpr;
|
|
extern unsigned int vectors_in_migration[NR_IRQS];
|
|
|
|
vector = ia64_get_ivr();
|
|
|
|
irq_enter();
|
|
saved_tpr = ia64_getreg(_IA64_REG_CR_TPR);
|
|
ia64_srlz_d();
|
|
|
|
/*
|
|
* Perform normal interrupt style processing
|
|
*/
|
|
while (vector != IA64_SPURIOUS_INT_VECTOR) {
|
|
int irq = local_vector_to_irq(vector);
|
|
|
|
if (unlikely(IS_LOCAL_TLB_FLUSH(vector))) {
|
|
smp_local_flush_tlb();
|
|
kstat_incr_irq_this_cpu(irq);
|
|
} else if (unlikely(IS_RESCHEDULE(vector))) {
|
|
kstat_incr_irq_this_cpu(irq);
|
|
} else {
|
|
struct pt_regs *old_regs = set_irq_regs(NULL);
|
|
|
|
ia64_setreg(_IA64_REG_CR_TPR, vector);
|
|
ia64_srlz_d();
|
|
|
|
/*
|
|
* Now try calling normal ia64_handle_irq as it would have got called
|
|
* from a real intr handler. Try passing null for pt_regs, hopefully
|
|
* it will work. I hope it works!.
|
|
* Probably could shared code.
|
|
*/
|
|
if (unlikely(irq < 0)) {
|
|
printk(KERN_ERR "%s: Unexpected interrupt "
|
|
"vector %d on CPU %d not being mapped "
|
|
"to any IRQ!!\n", __func__, vector,
|
|
smp_processor_id());
|
|
} else {
|
|
vectors_in_migration[irq]=0;
|
|
generic_handle_irq(irq);
|
|
}
|
|
set_irq_regs(old_regs);
|
|
|
|
/*
|
|
* Disable interrupts and send EOI
|
|
*/
|
|
local_irq_disable();
|
|
ia64_setreg(_IA64_REG_CR_TPR, saved_tpr);
|
|
}
|
|
ia64_eoi();
|
|
vector = ia64_get_ivr();
|
|
}
|
|
irq_exit();
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static irqreturn_t dummy_handler (int irq, void *dev_id)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static struct irqaction ipi_irqaction = {
|
|
.handler = handle_IPI,
|
|
.name = "IPI"
|
|
};
|
|
|
|
/*
|
|
* KVM uses this interrupt to force a cpu out of guest mode
|
|
*/
|
|
static struct irqaction resched_irqaction = {
|
|
.handler = dummy_handler,
|
|
.name = "resched"
|
|
};
|
|
|
|
static struct irqaction tlb_irqaction = {
|
|
.handler = dummy_handler,
|
|
.name = "tlb_flush"
|
|
};
|
|
|
|
#endif
|
|
|
|
void
|
|
ia64_native_register_percpu_irq (ia64_vector vec, struct irqaction *action)
|
|
{
|
|
unsigned int irq;
|
|
|
|
irq = vec;
|
|
BUG_ON(bind_irq_vector(irq, vec, CPU_MASK_ALL));
|
|
irq_set_status_flags(irq, IRQ_PER_CPU);
|
|
irq_set_chip(irq, &irq_type_ia64_lsapic);
|
|
if (action)
|
|
setup_irq(irq, action);
|
|
irq_set_handler(irq, handle_percpu_irq);
|
|
}
|
|
|
|
void __init
|
|
ia64_native_register_ipi(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
register_percpu_irq(IA64_IPI_VECTOR, &ipi_irqaction);
|
|
register_percpu_irq(IA64_IPI_RESCHEDULE, &resched_irqaction);
|
|
register_percpu_irq(IA64_IPI_LOCAL_TLB_FLUSH, &tlb_irqaction);
|
|
#endif
|
|
}
|
|
|
|
void __init
|
|
init_IRQ (void)
|
|
{
|
|
#ifdef CONFIG_ACPI
|
|
acpi_boot_init();
|
|
#endif
|
|
ia64_register_ipi();
|
|
register_percpu_irq(IA64_SPURIOUS_INT_VECTOR, NULL);
|
|
#ifdef CONFIG_SMP
|
|
#if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_DIG)
|
|
if (vector_domain_type != VECTOR_DOMAIN_NONE)
|
|
register_percpu_irq(IA64_IRQ_MOVE_VECTOR, &irq_move_irqaction);
|
|
#endif
|
|
#endif
|
|
#ifdef CONFIG_PERFMON
|
|
pfm_init_percpu();
|
|
#endif
|
|
platform_irq_init();
|
|
}
|
|
|
|
void
|
|
ia64_send_ipi (int cpu, int vector, int delivery_mode, int redirect)
|
|
{
|
|
void __iomem *ipi_addr;
|
|
unsigned long ipi_data;
|
|
unsigned long phys_cpu_id;
|
|
|
|
phys_cpu_id = cpu_physical_id(cpu);
|
|
|
|
/*
|
|
* cpu number is in 8bit ID and 8bit EID
|
|
*/
|
|
|
|
ipi_data = (delivery_mode << 8) | (vector & 0xff);
|
|
ipi_addr = ipi_base_addr + ((phys_cpu_id << 4) | ((redirect & 1) << 3));
|
|
|
|
writeq(ipi_data, ipi_addr);
|
|
}
|