b04096ff33
Four minor merge conflicts: 1) qca_spi.c renamed the local variable used for the SPI device from spi_device to spi, meanwhile the spi_set_drvdata() call got moved further up in the probe function. 2) Two changes were both adding new members to codel params structure, and thus we had overlapping changes to the initializer function. 3) 'net' was making a fix to sk_release_kernel() which is completely removed in 'net-next'. 4) In net_namespace.c, the rtnl_net_fill() call for GET operations had the command value fixed, meanwhile 'net-next' adjusted the argument signature a bit. This also matches example merge resolutions posted by Stephen Rothwell over the past two days. Signed-off-by: David S. Miller <davem@davemloft.net>
1002 lines
24 KiB
C
1002 lines
24 KiB
C
/*
|
|
* Just-In-Time compiler for BPF filters on 32bit ARM
|
|
*
|
|
* Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; version 2 of the License.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/hwcap.h>
|
|
#include <asm/opcodes.h>
|
|
|
|
#include "bpf_jit_32.h"
|
|
|
|
/*
|
|
* ABI:
|
|
*
|
|
* r0 scratch register
|
|
* r4 BPF register A
|
|
* r5 BPF register X
|
|
* r6 pointer to the skb
|
|
* r7 skb->data
|
|
* r8 skb_headlen(skb)
|
|
*/
|
|
|
|
#define r_scratch ARM_R0
|
|
/* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
|
|
#define r_off ARM_R1
|
|
#define r_A ARM_R4
|
|
#define r_X ARM_R5
|
|
#define r_skb ARM_R6
|
|
#define r_skb_data ARM_R7
|
|
#define r_skb_hl ARM_R8
|
|
|
|
#define SCRATCH_SP_OFFSET 0
|
|
#define SCRATCH_OFF(k) (SCRATCH_SP_OFFSET + 4 * (k))
|
|
|
|
#define SEEN_MEM ((1 << BPF_MEMWORDS) - 1)
|
|
#define SEEN_MEM_WORD(k) (1 << (k))
|
|
#define SEEN_X (1 << BPF_MEMWORDS)
|
|
#define SEEN_CALL (1 << (BPF_MEMWORDS + 1))
|
|
#define SEEN_SKB (1 << (BPF_MEMWORDS + 2))
|
|
#define SEEN_DATA (1 << (BPF_MEMWORDS + 3))
|
|
|
|
#define FLAG_NEED_X_RESET (1 << 0)
|
|
#define FLAG_IMM_OVERFLOW (1 << 1)
|
|
|
|
struct jit_ctx {
|
|
const struct bpf_prog *skf;
|
|
unsigned idx;
|
|
unsigned prologue_bytes;
|
|
int ret0_fp_idx;
|
|
u32 seen;
|
|
u32 flags;
|
|
u32 *offsets;
|
|
u32 *target;
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
u16 epilogue_bytes;
|
|
u16 imm_count;
|
|
u32 *imms;
|
|
#endif
|
|
};
|
|
|
|
int bpf_jit_enable __read_mostly;
|
|
|
|
static u64 jit_get_skb_b(struct sk_buff *skb, unsigned offset)
|
|
{
|
|
u8 ret;
|
|
int err;
|
|
|
|
err = skb_copy_bits(skb, offset, &ret, 1);
|
|
|
|
return (u64)err << 32 | ret;
|
|
}
|
|
|
|
static u64 jit_get_skb_h(struct sk_buff *skb, unsigned offset)
|
|
{
|
|
u16 ret;
|
|
int err;
|
|
|
|
err = skb_copy_bits(skb, offset, &ret, 2);
|
|
|
|
return (u64)err << 32 | ntohs(ret);
|
|
}
|
|
|
|
static u64 jit_get_skb_w(struct sk_buff *skb, unsigned offset)
|
|
{
|
|
u32 ret;
|
|
int err;
|
|
|
|
err = skb_copy_bits(skb, offset, &ret, 4);
|
|
|
|
return (u64)err << 32 | ntohl(ret);
|
|
}
|
|
|
|
/*
|
|
* Wrapper that handles both OABI and EABI and assures Thumb2 interworking
|
|
* (where the assembly routines like __aeabi_uidiv could cause problems).
|
|
*/
|
|
static u32 jit_udiv(u32 dividend, u32 divisor)
|
|
{
|
|
return dividend / divisor;
|
|
}
|
|
|
|
static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
|
|
{
|
|
inst |= (cond << 28);
|
|
inst = __opcode_to_mem_arm(inst);
|
|
|
|
if (ctx->target != NULL)
|
|
ctx->target[ctx->idx] = inst;
|
|
|
|
ctx->idx++;
|
|
}
|
|
|
|
/*
|
|
* Emit an instruction that will be executed unconditionally.
|
|
*/
|
|
static inline void emit(u32 inst, struct jit_ctx *ctx)
|
|
{
|
|
_emit(ARM_COND_AL, inst, ctx);
|
|
}
|
|
|
|
static u16 saved_regs(struct jit_ctx *ctx)
|
|
{
|
|
u16 ret = 0;
|
|
|
|
if ((ctx->skf->len > 1) ||
|
|
(ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
|
|
ret |= 1 << r_A;
|
|
|
|
#ifdef CONFIG_FRAME_POINTER
|
|
ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
|
|
#else
|
|
if (ctx->seen & SEEN_CALL)
|
|
ret |= 1 << ARM_LR;
|
|
#endif
|
|
if (ctx->seen & (SEEN_DATA | SEEN_SKB))
|
|
ret |= 1 << r_skb;
|
|
if (ctx->seen & SEEN_DATA)
|
|
ret |= (1 << r_skb_data) | (1 << r_skb_hl);
|
|
if (ctx->seen & SEEN_X)
|
|
ret |= 1 << r_X;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int mem_words_used(struct jit_ctx *ctx)
|
|
{
|
|
/* yes, we do waste some stack space IF there are "holes" in the set" */
|
|
return fls(ctx->seen & SEEN_MEM);
|
|
}
|
|
|
|
static inline bool is_load_to_a(u16 inst)
|
|
{
|
|
switch (inst) {
|
|
case BPF_LD | BPF_W | BPF_LEN:
|
|
case BPF_LD | BPF_W | BPF_ABS:
|
|
case BPF_LD | BPF_H | BPF_ABS:
|
|
case BPF_LD | BPF_B | BPF_ABS:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void jit_fill_hole(void *area, unsigned int size)
|
|
{
|
|
u32 *ptr;
|
|
/* We are guaranteed to have aligned memory. */
|
|
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
|
|
*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
|
|
}
|
|
|
|
static void build_prologue(struct jit_ctx *ctx)
|
|
{
|
|
u16 reg_set = saved_regs(ctx);
|
|
u16 first_inst = ctx->skf->insns[0].code;
|
|
u16 off;
|
|
|
|
#ifdef CONFIG_FRAME_POINTER
|
|
emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
|
|
emit(ARM_PUSH(reg_set), ctx);
|
|
emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
|
|
#else
|
|
if (reg_set)
|
|
emit(ARM_PUSH(reg_set), ctx);
|
|
#endif
|
|
|
|
if (ctx->seen & (SEEN_DATA | SEEN_SKB))
|
|
emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
|
|
|
|
if (ctx->seen & SEEN_DATA) {
|
|
off = offsetof(struct sk_buff, data);
|
|
emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
|
|
/* headlen = len - data_len */
|
|
off = offsetof(struct sk_buff, len);
|
|
emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
|
|
off = offsetof(struct sk_buff, data_len);
|
|
emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
|
|
emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
|
|
}
|
|
|
|
if (ctx->flags & FLAG_NEED_X_RESET)
|
|
emit(ARM_MOV_I(r_X, 0), ctx);
|
|
|
|
/* do not leak kernel data to userspace */
|
|
if ((first_inst != (BPF_RET | BPF_K)) && !(is_load_to_a(first_inst)))
|
|
emit(ARM_MOV_I(r_A, 0), ctx);
|
|
|
|
/* stack space for the BPF_MEM words */
|
|
if (ctx->seen & SEEN_MEM)
|
|
emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
|
|
}
|
|
|
|
static void build_epilogue(struct jit_ctx *ctx)
|
|
{
|
|
u16 reg_set = saved_regs(ctx);
|
|
|
|
if (ctx->seen & SEEN_MEM)
|
|
emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
|
|
|
|
reg_set &= ~(1 << ARM_LR);
|
|
|
|
#ifdef CONFIG_FRAME_POINTER
|
|
/* the first instruction of the prologue was: mov ip, sp */
|
|
reg_set &= ~(1 << ARM_IP);
|
|
reg_set |= (1 << ARM_SP);
|
|
emit(ARM_LDM(ARM_SP, reg_set), ctx);
|
|
#else
|
|
if (reg_set) {
|
|
if (ctx->seen & SEEN_CALL)
|
|
reg_set |= 1 << ARM_PC;
|
|
emit(ARM_POP(reg_set), ctx);
|
|
}
|
|
|
|
if (!(ctx->seen & SEEN_CALL))
|
|
emit(ARM_BX(ARM_LR), ctx);
|
|
#endif
|
|
}
|
|
|
|
static int16_t imm8m(u32 x)
|
|
{
|
|
u32 rot;
|
|
|
|
for (rot = 0; rot < 16; rot++)
|
|
if ((x & ~ror32(0xff, 2 * rot)) == 0)
|
|
return rol32(x, 2 * rot) | (rot << 8);
|
|
|
|
return -1;
|
|
}
|
|
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
|
|
static u16 imm_offset(u32 k, struct jit_ctx *ctx)
|
|
{
|
|
unsigned i = 0, offset;
|
|
u16 imm;
|
|
|
|
/* on the "fake" run we just count them (duplicates included) */
|
|
if (ctx->target == NULL) {
|
|
ctx->imm_count++;
|
|
return 0;
|
|
}
|
|
|
|
while ((i < ctx->imm_count) && ctx->imms[i]) {
|
|
if (ctx->imms[i] == k)
|
|
break;
|
|
i++;
|
|
}
|
|
|
|
if (ctx->imms[i] == 0)
|
|
ctx->imms[i] = k;
|
|
|
|
/* constants go just after the epilogue */
|
|
offset = ctx->offsets[ctx->skf->len];
|
|
offset += ctx->prologue_bytes;
|
|
offset += ctx->epilogue_bytes;
|
|
offset += i * 4;
|
|
|
|
ctx->target[offset / 4] = k;
|
|
|
|
/* PC in ARM mode == address of the instruction + 8 */
|
|
imm = offset - (8 + ctx->idx * 4);
|
|
|
|
if (imm & ~0xfff) {
|
|
/*
|
|
* literal pool is too far, signal it into flags. we
|
|
* can only detect it on the second pass unfortunately.
|
|
*/
|
|
ctx->flags |= FLAG_IMM_OVERFLOW;
|
|
return 0;
|
|
}
|
|
|
|
return imm;
|
|
}
|
|
|
|
#endif /* __LINUX_ARM_ARCH__ */
|
|
|
|
/*
|
|
* Move an immediate that's not an imm8m to a core register.
|
|
*/
|
|
static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
|
|
{
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
|
|
#else
|
|
emit(ARM_MOVW(rd, val & 0xffff), ctx);
|
|
if (val > 0xffff)
|
|
emit(ARM_MOVT(rd, val >> 16), ctx);
|
|
#endif
|
|
}
|
|
|
|
static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
|
|
{
|
|
int imm12 = imm8m(val);
|
|
|
|
if (imm12 >= 0)
|
|
emit(ARM_MOV_I(rd, imm12), ctx);
|
|
else
|
|
emit_mov_i_no8m(rd, val, ctx);
|
|
}
|
|
|
|
#if __LINUX_ARM_ARCH__ < 6
|
|
|
|
static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
|
|
{
|
|
_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
|
|
_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
|
|
_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
|
|
_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
|
|
_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
|
|
_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
|
|
_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
|
|
_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
|
|
}
|
|
|
|
static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
|
|
{
|
|
_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
|
|
_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
|
|
_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
|
|
}
|
|
|
|
static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
|
|
{
|
|
/* r_dst = (r_src << 8) | (r_src >> 8) */
|
|
emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
|
|
emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
|
|
|
|
/*
|
|
* we need to mask out the bits set in r_dst[23:16] due to
|
|
* the first shift instruction.
|
|
*
|
|
* note that 0x8ff is the encoded immediate 0x00ff0000.
|
|
*/
|
|
emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
|
|
}
|
|
|
|
#else /* ARMv6+ */
|
|
|
|
static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
|
|
{
|
|
_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
|
|
#ifdef __LITTLE_ENDIAN
|
|
_emit(cond, ARM_REV(r_res, r_res), ctx);
|
|
#endif
|
|
}
|
|
|
|
static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
|
|
{
|
|
_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
|
|
#ifdef __LITTLE_ENDIAN
|
|
_emit(cond, ARM_REV16(r_res, r_res), ctx);
|
|
#endif
|
|
}
|
|
|
|
static inline void emit_swap16(u8 r_dst __maybe_unused,
|
|
u8 r_src __maybe_unused,
|
|
struct jit_ctx *ctx __maybe_unused)
|
|
{
|
|
#ifdef __LITTLE_ENDIAN
|
|
emit(ARM_REV16(r_dst, r_src), ctx);
|
|
#endif
|
|
}
|
|
|
|
#endif /* __LINUX_ARM_ARCH__ < 6 */
|
|
|
|
|
|
/* Compute the immediate value for a PC-relative branch. */
|
|
static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
|
|
{
|
|
u32 imm;
|
|
|
|
if (ctx->target == NULL)
|
|
return 0;
|
|
/*
|
|
* BPF allows only forward jumps and the offset of the target is
|
|
* still the one computed during the first pass.
|
|
*/
|
|
imm = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
|
|
|
|
return imm >> 2;
|
|
}
|
|
|
|
#define OP_IMM3(op, r1, r2, imm_val, ctx) \
|
|
do { \
|
|
imm12 = imm8m(imm_val); \
|
|
if (imm12 < 0) { \
|
|
emit_mov_i_no8m(r_scratch, imm_val, ctx); \
|
|
emit(op ## _R((r1), (r2), r_scratch), ctx); \
|
|
} else { \
|
|
emit(op ## _I((r1), (r2), imm12), ctx); \
|
|
} \
|
|
} while (0)
|
|
|
|
static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
|
|
{
|
|
if (ctx->ret0_fp_idx >= 0) {
|
|
_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
|
|
/* NOP to keep the size constant between passes */
|
|
emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
|
|
} else {
|
|
_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
|
|
_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
|
|
}
|
|
}
|
|
|
|
static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
|
|
{
|
|
#if __LINUX_ARM_ARCH__ < 5
|
|
emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
|
|
|
|
if (elf_hwcap & HWCAP_THUMB)
|
|
emit(ARM_BX(tgt_reg), ctx);
|
|
else
|
|
emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
|
|
#else
|
|
emit(ARM_BLX_R(tgt_reg), ctx);
|
|
#endif
|
|
}
|
|
|
|
static inline void emit_udiv(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx)
|
|
{
|
|
#if __LINUX_ARM_ARCH__ == 7
|
|
if (elf_hwcap & HWCAP_IDIVA) {
|
|
emit(ARM_UDIV(rd, rm, rn), ctx);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4
|
|
* (r_A) and rn is ARM_R0 (r_scratch) so load rn first into
|
|
* ARM_R1 to avoid accidentally overwriting ARM_R0 with rm
|
|
* before using it as a source for ARM_R1.
|
|
*
|
|
* For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is
|
|
* ARM_R5 (r_X) so there is no particular register overlap
|
|
* issues.
|
|
*/
|
|
if (rn != ARM_R1)
|
|
emit(ARM_MOV_R(ARM_R1, rn), ctx);
|
|
if (rm != ARM_R0)
|
|
emit(ARM_MOV_R(ARM_R0, rm), ctx);
|
|
|
|
ctx->seen |= SEEN_CALL;
|
|
emit_mov_i(ARM_R3, (u32)jit_udiv, ctx);
|
|
emit_blx_r(ARM_R3, ctx);
|
|
|
|
if (rd != ARM_R0)
|
|
emit(ARM_MOV_R(rd, ARM_R0), ctx);
|
|
}
|
|
|
|
static inline void update_on_xread(struct jit_ctx *ctx)
|
|
{
|
|
if (!(ctx->seen & SEEN_X))
|
|
ctx->flags |= FLAG_NEED_X_RESET;
|
|
|
|
ctx->seen |= SEEN_X;
|
|
}
|
|
|
|
static int build_body(struct jit_ctx *ctx)
|
|
{
|
|
void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
|
|
const struct bpf_prog *prog = ctx->skf;
|
|
const struct sock_filter *inst;
|
|
unsigned i, load_order, off, condt;
|
|
int imm12;
|
|
u32 k;
|
|
|
|
for (i = 0; i < prog->len; i++) {
|
|
u16 code;
|
|
|
|
inst = &(prog->insns[i]);
|
|
/* K as an immediate value operand */
|
|
k = inst->k;
|
|
code = bpf_anc_helper(inst);
|
|
|
|
/* compute offsets only in the fake pass */
|
|
if (ctx->target == NULL)
|
|
ctx->offsets[i] = ctx->idx * 4;
|
|
|
|
switch (code) {
|
|
case BPF_LD | BPF_IMM:
|
|
emit_mov_i(r_A, k, ctx);
|
|
break;
|
|
case BPF_LD | BPF_W | BPF_LEN:
|
|
ctx->seen |= SEEN_SKB;
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
|
|
emit(ARM_LDR_I(r_A, r_skb,
|
|
offsetof(struct sk_buff, len)), ctx);
|
|
break;
|
|
case BPF_LD | BPF_MEM:
|
|
/* A = scratch[k] */
|
|
ctx->seen |= SEEN_MEM_WORD(k);
|
|
emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
|
|
break;
|
|
case BPF_LD | BPF_W | BPF_ABS:
|
|
load_order = 2;
|
|
goto load;
|
|
case BPF_LD | BPF_H | BPF_ABS:
|
|
load_order = 1;
|
|
goto load;
|
|
case BPF_LD | BPF_B | BPF_ABS:
|
|
load_order = 0;
|
|
load:
|
|
/* the interpreter will deal with the negative K */
|
|
if ((int)k < 0)
|
|
return -ENOTSUPP;
|
|
emit_mov_i(r_off, k, ctx);
|
|
load_common:
|
|
ctx->seen |= SEEN_DATA | SEEN_CALL;
|
|
|
|
if (load_order > 0) {
|
|
emit(ARM_SUB_I(r_scratch, r_skb_hl,
|
|
1 << load_order), ctx);
|
|
emit(ARM_CMP_R(r_scratch, r_off), ctx);
|
|
condt = ARM_COND_HS;
|
|
} else {
|
|
emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
|
|
condt = ARM_COND_HI;
|
|
}
|
|
|
|
_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
|
|
ctx);
|
|
|
|
if (load_order == 0)
|
|
_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
|
|
ctx);
|
|
else if (load_order == 1)
|
|
emit_load_be16(condt, r_A, r_scratch, ctx);
|
|
else if (load_order == 2)
|
|
emit_load_be32(condt, r_A, r_scratch, ctx);
|
|
|
|
_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
|
|
|
|
/* the slowpath */
|
|
emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
|
|
emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
|
|
/* the offset is already in R1 */
|
|
emit_blx_r(ARM_R3, ctx);
|
|
/* check the result of skb_copy_bits */
|
|
emit(ARM_CMP_I(ARM_R1, 0), ctx);
|
|
emit_err_ret(ARM_COND_NE, ctx);
|
|
emit(ARM_MOV_R(r_A, ARM_R0), ctx);
|
|
break;
|
|
case BPF_LD | BPF_W | BPF_IND:
|
|
load_order = 2;
|
|
goto load_ind;
|
|
case BPF_LD | BPF_H | BPF_IND:
|
|
load_order = 1;
|
|
goto load_ind;
|
|
case BPF_LD | BPF_B | BPF_IND:
|
|
load_order = 0;
|
|
load_ind:
|
|
OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
|
|
goto load_common;
|
|
case BPF_LDX | BPF_IMM:
|
|
ctx->seen |= SEEN_X;
|
|
emit_mov_i(r_X, k, ctx);
|
|
break;
|
|
case BPF_LDX | BPF_W | BPF_LEN:
|
|
ctx->seen |= SEEN_X | SEEN_SKB;
|
|
emit(ARM_LDR_I(r_X, r_skb,
|
|
offsetof(struct sk_buff, len)), ctx);
|
|
break;
|
|
case BPF_LDX | BPF_MEM:
|
|
ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
|
|
emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
|
|
break;
|
|
case BPF_LDX | BPF_B | BPF_MSH:
|
|
/* x = ((*(frame + k)) & 0xf) << 2; */
|
|
ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
|
|
/* the interpreter should deal with the negative K */
|
|
if ((int)k < 0)
|
|
return -1;
|
|
/* offset in r1: we might have to take the slow path */
|
|
emit_mov_i(r_off, k, ctx);
|
|
emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
|
|
|
|
/* load in r0: common with the slowpath */
|
|
_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
|
|
ARM_R1), ctx);
|
|
/*
|
|
* emit_mov_i() might generate one or two instructions,
|
|
* the same holds for emit_blx_r()
|
|
*/
|
|
_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
|
|
|
|
emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
|
|
/* r_off is r1 */
|
|
emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
|
|
emit_blx_r(ARM_R3, ctx);
|
|
/* check the return value of skb_copy_bits */
|
|
emit(ARM_CMP_I(ARM_R1, 0), ctx);
|
|
emit_err_ret(ARM_COND_NE, ctx);
|
|
|
|
emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
|
|
emit(ARM_LSL_I(r_X, r_X, 2), ctx);
|
|
break;
|
|
case BPF_ST:
|
|
ctx->seen |= SEEN_MEM_WORD(k);
|
|
emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
|
|
break;
|
|
case BPF_STX:
|
|
update_on_xread(ctx);
|
|
ctx->seen |= SEEN_MEM_WORD(k);
|
|
emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
/* A += K */
|
|
OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
/* A -= K */
|
|
OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
/* A *= K */
|
|
emit_mov_i(r_scratch, k, ctx);
|
|
emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_MUL(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
if (k == 1)
|
|
break;
|
|
emit_mov_i(r_scratch, k, ctx);
|
|
emit_udiv(r_A, r_A, r_scratch, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_CMP_I(r_X, 0), ctx);
|
|
emit_err_ret(ARM_COND_EQ, ctx);
|
|
emit_udiv(r_A, r_A, r_X, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
/* A |= K */
|
|
OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
/* A ^= K; */
|
|
OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_ALU_XOR_X:
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
/* A ^= X */
|
|
update_on_xread(ctx);
|
|
emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
/* A &= K */
|
|
OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_AND_R(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
if (unlikely(k > 31))
|
|
return -1;
|
|
emit(ARM_LSL_I(r_A, r_A, k), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
if (unlikely(k > 31))
|
|
return -1;
|
|
emit(ARM_LSR_I(r_A, r_A, k), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
update_on_xread(ctx);
|
|
emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_NEG:
|
|
/* A = -A */
|
|
emit(ARM_RSB_I(r_A, r_A, 0), ctx);
|
|
break;
|
|
case BPF_JMP | BPF_JA:
|
|
/* pc += K */
|
|
emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
|
|
break;
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
/* pc += (A == K) ? pc->jt : pc->jf */
|
|
condt = ARM_COND_EQ;
|
|
goto cmp_imm;
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
/* pc += (A > K) ? pc->jt : pc->jf */
|
|
condt = ARM_COND_HI;
|
|
goto cmp_imm;
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
/* pc += (A >= K) ? pc->jt : pc->jf */
|
|
condt = ARM_COND_HS;
|
|
cmp_imm:
|
|
imm12 = imm8m(k);
|
|
if (imm12 < 0) {
|
|
emit_mov_i_no8m(r_scratch, k, ctx);
|
|
emit(ARM_CMP_R(r_A, r_scratch), ctx);
|
|
} else {
|
|
emit(ARM_CMP_I(r_A, imm12), ctx);
|
|
}
|
|
cond_jump:
|
|
if (inst->jt)
|
|
_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
|
|
ctx)), ctx);
|
|
if (inst->jf)
|
|
_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
|
|
ctx)), ctx);
|
|
break;
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
/* pc += (A == X) ? pc->jt : pc->jf */
|
|
condt = ARM_COND_EQ;
|
|
goto cmp_x;
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
/* pc += (A > X) ? pc->jt : pc->jf */
|
|
condt = ARM_COND_HI;
|
|
goto cmp_x;
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
/* pc += (A >= X) ? pc->jt : pc->jf */
|
|
condt = ARM_COND_CS;
|
|
cmp_x:
|
|
update_on_xread(ctx);
|
|
emit(ARM_CMP_R(r_A, r_X), ctx);
|
|
goto cond_jump;
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
/* pc += (A & K) ? pc->jt : pc->jf */
|
|
condt = ARM_COND_NE;
|
|
/* not set iff all zeroes iff Z==1 iff EQ */
|
|
|
|
imm12 = imm8m(k);
|
|
if (imm12 < 0) {
|
|
emit_mov_i_no8m(r_scratch, k, ctx);
|
|
emit(ARM_TST_R(r_A, r_scratch), ctx);
|
|
} else {
|
|
emit(ARM_TST_I(r_A, imm12), ctx);
|
|
}
|
|
goto cond_jump;
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
/* pc += (A & X) ? pc->jt : pc->jf */
|
|
update_on_xread(ctx);
|
|
condt = ARM_COND_NE;
|
|
emit(ARM_TST_R(r_A, r_X), ctx);
|
|
goto cond_jump;
|
|
case BPF_RET | BPF_A:
|
|
emit(ARM_MOV_R(ARM_R0, r_A), ctx);
|
|
goto b_epilogue;
|
|
case BPF_RET | BPF_K:
|
|
if ((k == 0) && (ctx->ret0_fp_idx < 0))
|
|
ctx->ret0_fp_idx = i;
|
|
emit_mov_i(ARM_R0, k, ctx);
|
|
b_epilogue:
|
|
if (i != ctx->skf->len - 1)
|
|
emit(ARM_B(b_imm(prog->len, ctx)), ctx);
|
|
break;
|
|
case BPF_MISC | BPF_TAX:
|
|
/* X = A */
|
|
ctx->seen |= SEEN_X;
|
|
emit(ARM_MOV_R(r_X, r_A), ctx);
|
|
break;
|
|
case BPF_MISC | BPF_TXA:
|
|
/* A = X */
|
|
update_on_xread(ctx);
|
|
emit(ARM_MOV_R(r_A, r_X), ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_PROTOCOL:
|
|
/* A = ntohs(skb->protocol) */
|
|
ctx->seen |= SEEN_SKB;
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
|
|
protocol) != 2);
|
|
off = offsetof(struct sk_buff, protocol);
|
|
emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
|
|
emit_swap16(r_A, r_scratch, ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_CPU:
|
|
/* r_scratch = current_thread_info() */
|
|
OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
|
|
/* A = current_thread_info()->cpu */
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
|
|
off = offsetof(struct thread_info, cpu);
|
|
emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_IFINDEX:
|
|
/* A = skb->dev->ifindex */
|
|
ctx->seen |= SEEN_SKB;
|
|
off = offsetof(struct sk_buff, dev);
|
|
emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
|
|
|
|
emit(ARM_CMP_I(r_scratch, 0), ctx);
|
|
emit_err_ret(ARM_COND_EQ, ctx);
|
|
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
|
|
ifindex) != 4);
|
|
off = offsetof(struct net_device, ifindex);
|
|
emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_MARK:
|
|
ctx->seen |= SEEN_SKB;
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
|
|
off = offsetof(struct sk_buff, mark);
|
|
emit(ARM_LDR_I(r_A, r_skb, off), ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_RXHASH:
|
|
ctx->seen |= SEEN_SKB;
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
|
|
off = offsetof(struct sk_buff, hash);
|
|
emit(ARM_LDR_I(r_A, r_skb, off), ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_VLAN_TAG:
|
|
case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
|
|
ctx->seen |= SEEN_SKB;
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
|
|
off = offsetof(struct sk_buff, vlan_tci);
|
|
emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
|
|
if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
|
|
OP_IMM3(ARM_AND, r_A, r_A, VLAN_VID_MASK, ctx);
|
|
else
|
|
OP_IMM3(ARM_AND, r_A, r_A, VLAN_TAG_PRESENT, ctx);
|
|
break;
|
|
case BPF_ANC | SKF_AD_QUEUE:
|
|
ctx->seen |= SEEN_SKB;
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
|
|
queue_mapping) != 2);
|
|
BUILD_BUG_ON(offsetof(struct sk_buff,
|
|
queue_mapping) > 0xff);
|
|
off = offsetof(struct sk_buff, queue_mapping);
|
|
emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
|
|
break;
|
|
case BPF_LDX | BPF_W | BPF_ABS:
|
|
/*
|
|
* load a 32bit word from struct seccomp_data.
|
|
* seccomp_check_filter() will already have checked
|
|
* that k is 32bit aligned and lies within the
|
|
* struct seccomp_data.
|
|
*/
|
|
ctx->seen |= SEEN_SKB;
|
|
emit(ARM_LDR_I(r_A, r_skb, k), ctx);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
if (ctx->flags & FLAG_IMM_OVERFLOW)
|
|
/*
|
|
* this instruction generated an overflow when
|
|
* trying to access the literal pool, so
|
|
* delegate this filter to the kernel interpreter.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
/* compute offsets only during the first pass */
|
|
if (ctx->target == NULL)
|
|
ctx->offsets[i] = ctx->idx * 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void bpf_jit_compile(struct bpf_prog *fp)
|
|
{
|
|
struct bpf_binary_header *header;
|
|
struct jit_ctx ctx;
|
|
unsigned tmp_idx;
|
|
unsigned alloc_size;
|
|
u8 *target_ptr;
|
|
|
|
if (!bpf_jit_enable)
|
|
return;
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
ctx.skf = fp;
|
|
ctx.ret0_fp_idx = -1;
|
|
|
|
ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
|
|
if (ctx.offsets == NULL)
|
|
return;
|
|
|
|
/* fake pass to fill in the ctx->seen */
|
|
if (unlikely(build_body(&ctx)))
|
|
goto out;
|
|
|
|
tmp_idx = ctx.idx;
|
|
build_prologue(&ctx);
|
|
ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
|
|
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
tmp_idx = ctx.idx;
|
|
build_epilogue(&ctx);
|
|
ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
|
|
|
|
ctx.idx += ctx.imm_count;
|
|
if (ctx.imm_count) {
|
|
ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
|
|
if (ctx.imms == NULL)
|
|
goto out;
|
|
}
|
|
#else
|
|
/* there's nothing after the epilogue on ARMv7 */
|
|
build_epilogue(&ctx);
|
|
#endif
|
|
alloc_size = 4 * ctx.idx;
|
|
header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
|
|
4, jit_fill_hole);
|
|
if (header == NULL)
|
|
goto out;
|
|
|
|
ctx.target = (u32 *) target_ptr;
|
|
ctx.idx = 0;
|
|
|
|
build_prologue(&ctx);
|
|
if (build_body(&ctx) < 0) {
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
if (ctx.imm_count)
|
|
kfree(ctx.imms);
|
|
#endif
|
|
bpf_jit_binary_free(header);
|
|
goto out;
|
|
}
|
|
build_epilogue(&ctx);
|
|
|
|
flush_icache_range((u32)ctx.target, (u32)(ctx.target + ctx.idx));
|
|
|
|
#if __LINUX_ARM_ARCH__ < 7
|
|
if (ctx.imm_count)
|
|
kfree(ctx.imms);
|
|
#endif
|
|
|
|
if (bpf_jit_enable > 1)
|
|
/* there are 2 passes here */
|
|
bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
|
|
|
|
set_memory_ro((unsigned long)header, header->pages);
|
|
fp->bpf_func = (void *)ctx.target;
|
|
fp->jited = true;
|
|
out:
|
|
kfree(ctx.offsets);
|
|
return;
|
|
}
|
|
|
|
void bpf_jit_free(struct bpf_prog *fp)
|
|
{
|
|
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
|
|
struct bpf_binary_header *header = (void *)addr;
|
|
|
|
if (!fp->jited)
|
|
goto free_filter;
|
|
|
|
set_memory_rw(addr, header->pages);
|
|
bpf_jit_binary_free(header);
|
|
|
|
free_filter:
|
|
bpf_prog_unlock_free(fp);
|
|
}
|