linux/arch/arm64/include/asm/kvm_host.h
Linus Torvalds b357bf6023 Small update for KVM.
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
 regions for vGIC redistributor
 
 * s390: cleanups for nested, clock handling, crypto, storage keys and
 control register bits
 
 * x86: many bugfixes, implement more Hyper-V super powers,
 implement lapic_timer_advance_ns even when the LAPIC timer
 is emulated using the processor's VMX preemption timer.  Two
 security-related bugfixes at the top of the branch.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
 +5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
 VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
 3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
 ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
 JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
 =H5zI
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "Small update for KVM:

  ARM:
   - lazy context-switching of FPSIMD registers on arm64
   - "split" regions for vGIC redistributor

  s390:
   - cleanups for nested
   - clock handling
   - crypto
   - storage keys
   - control register bits

  x86:
   - many bugfixes
   - implement more Hyper-V super powers
   - implement lapic_timer_advance_ns even when the LAPIC timer is
     emulated using the processor's VMX preemption timer.
   - two security-related bugfixes at the top of the branch"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
  kvm: fix typo in flag name
  kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
  KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
  KVM: x86: introduce linear_{read,write}_system
  kvm: nVMX: Enforce cpl=0 for VMX instructions
  kvm: nVMX: Add support for "VMWRITE to any supported field"
  kvm: nVMX: Restrict VMX capability MSR changes
  KVM: VMX: Optimize tscdeadline timer latency
  KVM: docs: nVMX: Remove known limitations as they do not exist now
  KVM: docs: mmu: KVM support exposing SLAT to guests
  kvm: no need to check return value of debugfs_create functions
  kvm: Make VM ioctl do valloc for some archs
  kvm: Change return type to vm_fault_t
  KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
  kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
  KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
  KVM: introduce kvm_make_vcpus_request_mask() API
  KVM: x86: hyperv: do rep check for each hypercall separately
  ...
2018-06-12 11:34:04 -07:00

516 lines
17 KiB
C

/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/include/asm/kvm_host.h:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__
#include <linux/types.h>
#include <linux/kvm_types.h>
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/fpsimd.h>
#include <asm/kvm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmio.h>
#include <asm/thread_info.h>
#define __KVM_HAVE_ARCH_INTC_INITIALIZED
#define KVM_USER_MEM_SLOTS 512
#define KVM_HALT_POLL_NS_DEFAULT 500000
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
#include <kvm/arm_pmu.h>
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
#define KVM_VCPU_MAX_FEATURES 4
#define KVM_REQ_SLEEP \
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
int __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext);
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
struct kvm_arch {
/* The VMID generation used for the virt. memory system */
u64 vmid_gen;
u32 vmid;
/* 1-level 2nd stage table and lock */
spinlock_t pgd_lock;
pgd_t *pgd;
/* VTTBR value associated with above pgd and vmid */
u64 vttbr;
/* The last vcpu id that ran on each physical CPU */
int __percpu *last_vcpu_ran;
/* The maximum number of vCPUs depends on the used GIC model */
int max_vcpus;
/* Interrupt controller */
struct vgic_dist vgic;
/* Mandated version of PSCI */
u32 psci_version;
};
#define KVM_NR_MEM_OBJS 40
/*
* We don't want allocation failures within the mmu code, so we preallocate
* enough memory for a single page fault in a cache.
*/
struct kvm_mmu_memory_cache {
int nobjs;
void *objects[KVM_NR_MEM_OBJS];
};
struct kvm_vcpu_fault_info {
u32 esr_el2; /* Hyp Syndrom Register */
u64 far_el2; /* Hyp Fault Address Register */
u64 hpfar_el2; /* Hyp IPA Fault Address Register */
u64 disr_el1; /* Deferred [SError] Status Register */
};
/*
* 0 is reserved as an invalid value.
* Order should be kept in sync with the save/restore code.
*/
enum vcpu_sysreg {
__INVALID_SYSREG__,
MPIDR_EL1, /* MultiProcessor Affinity Register */
CSSELR_EL1, /* Cache Size Selection Register */
SCTLR_EL1, /* System Control Register */
ACTLR_EL1, /* Auxiliary Control Register */
CPACR_EL1, /* Coprocessor Access Control */
TTBR0_EL1, /* Translation Table Base Register 0 */
TTBR1_EL1, /* Translation Table Base Register 1 */
TCR_EL1, /* Translation Control Register */
ESR_EL1, /* Exception Syndrome Register */
AFSR0_EL1, /* Auxiliary Fault Status Register 0 */
AFSR1_EL1, /* Auxiliary Fault Status Register 1 */
FAR_EL1, /* Fault Address Register */
MAIR_EL1, /* Memory Attribute Indirection Register */
VBAR_EL1, /* Vector Base Address Register */
CONTEXTIDR_EL1, /* Context ID Register */
TPIDR_EL0, /* Thread ID, User R/W */
TPIDRRO_EL0, /* Thread ID, User R/O */
TPIDR_EL1, /* Thread ID, Privileged */
AMAIR_EL1, /* Aux Memory Attribute Indirection Register */
CNTKCTL_EL1, /* Timer Control Register (EL1) */
PAR_EL1, /* Physical Address Register */
MDSCR_EL1, /* Monitor Debug System Control Register */
MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
DISR_EL1, /* Deferred Interrupt Status Register */
/* Performance Monitors Registers */
PMCR_EL0, /* Control Register */
PMSELR_EL0, /* Event Counter Selection Register */
PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
PMCCNTR_EL0, /* Cycle Counter Register */
PMEVTYPER0_EL0, /* Event Type Register (0-30) */
PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
PMCCFILTR_EL0, /* Cycle Count Filter Register */
PMCNTENSET_EL0, /* Count Enable Set Register */
PMINTENSET_EL1, /* Interrupt Enable Set Register */
PMOVSSET_EL0, /* Overflow Flag Status Set Register */
PMSWINC_EL0, /* Software Increment Register */
PMUSERENR_EL0, /* User Enable Register */
/* 32bit specific registers. Keep them at the end of the range */
DACR32_EL2, /* Domain Access Control Register */
IFSR32_EL2, /* Instruction Fault Status Register */
FPEXC32_EL2, /* Floating-Point Exception Control Register */
DBGVCR32_EL2, /* Debug Vector Catch Register */
NR_SYS_REGS /* Nothing after this line! */
};
/* 32bit mapping */
#define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */
#define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */
#define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */
#define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */
#define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */
#define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */
#define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */
#define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */
#define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */
#define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */
#define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */
#define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */
#define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */
#define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */
#define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */
#define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */
#define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */
#define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */
#define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */
#define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */
#define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */
#define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */
#define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */
#define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */
#define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
#define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */
#define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */
#define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
#define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
#define cp14_DBGDSCRext (MDSCR_EL1 * 2)
#define cp14_DBGBCR0 (DBGBCR0_EL1 * 2)
#define cp14_DBGBVR0 (DBGBVR0_EL1 * 2)
#define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1)
#define cp14_DBGWCR0 (DBGWCR0_EL1 * 2)
#define cp14_DBGWVR0 (DBGWVR0_EL1 * 2)
#define cp14_DBGDCCINT (MDCCINT_EL1 * 2)
#define NR_COPRO_REGS (NR_SYS_REGS * 2)
struct kvm_cpu_context {
struct kvm_regs gp_regs;
union {
u64 sys_regs[NR_SYS_REGS];
u32 copro[NR_COPRO_REGS];
};
struct kvm_vcpu *__hyp_running_vcpu;
};
typedef struct kvm_cpu_context kvm_cpu_context_t;
struct kvm_vcpu_arch {
struct kvm_cpu_context ctxt;
/* HYP configuration */
u64 hcr_el2;
u32 mdcr_el2;
/* Exception Information */
struct kvm_vcpu_fault_info fault;
/* State of various workarounds, see kvm_asm.h for bit assignment */
u64 workaround_flags;
/* Miscellaneous vcpu state flags */
u64 flags;
/*
* We maintain more than a single set of debug registers to support
* debugging the guest from the host and to maintain separate host and
* guest state during world switches. vcpu_debug_state are the debug
* registers of the vcpu as the guest sees them. host_debug_state are
* the host registers which are saved and restored during
* world switches. external_debug_state contains the debug
* values we want to debug the guest. This is set via the
* KVM_SET_GUEST_DEBUG ioctl.
*
* debug_ptr points to the set of debug registers that should be loaded
* onto the hardware when running the guest.
*/
struct kvm_guest_debug_arch *debug_ptr;
struct kvm_guest_debug_arch vcpu_debug_state;
struct kvm_guest_debug_arch external_debug_state;
/* Pointer to host CPU context */
kvm_cpu_context_t *host_cpu_context;
struct thread_info *host_thread_info; /* hyp VA */
struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
struct {
/* {Break,watch}point registers */
struct kvm_guest_debug_arch regs;
/* Statistical profiling extension */
u64 pmscr_el1;
} host_debug_state;
/* VGIC state */
struct vgic_cpu vgic_cpu;
struct arch_timer_cpu timer_cpu;
struct kvm_pmu pmu;
/*
* Anything that is not used directly from assembly code goes
* here.
*/
/*
* Guest registers we preserve during guest debugging.
*
* These shadow registers are updated by the kvm_handle_sys_reg
* trap handler if the guest accesses or updates them while we
* are using guest debug.
*/
struct {
u32 mdscr_el1;
} guest_debug_preserved;
/* vcpu power-off state */
bool power_off;
/* Don't run the guest (internal implementation need) */
bool pause;
/* IO related fields */
struct kvm_decode mmio_decode;
/* Cache some mmu pages needed inside spinlock regions */
struct kvm_mmu_memory_cache mmu_page_cache;
/* Target CPU and feature flags */
int target;
DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
/* Detect first run of a vcpu */
bool has_run_once;
/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
u64 vsesr_el2;
/* True when deferrable sysregs are loaded on the physical CPU,
* see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
bool sysregs_loaded_on_cpu;
};
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY (1 << 0)
#define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs)
/*
* Only use __vcpu_sys_reg if you know you want the memory backed version of a
* register, and not the one most recently accessed by a running VCPU. For
* example, for userspace access or for system registers that are never context
* switched, but only emulated.
*/
#define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)])
u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg);
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
/*
* CP14 and CP15 live in the same array, as they are backed by the
* same system registers.
*/
#define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r)])
#define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r)])
struct kvm_vm_stat {
ulong remote_tlb_flush;
};
struct kvm_vcpu_stat {
u64 halt_successful_poll;
u64 halt_attempted_poll;
u64 halt_poll_invalid;
u64 halt_wakeup;
u64 hvc_exit_stat;
u64 wfe_exit_stat;
u64 wfi_exit_stat;
u64 mmio_exit_user;
u64 mmio_exit_kernel;
u64 exits;
};
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
int kvm_unmap_hva_range(struct kvm *kvm,
unsigned long start, unsigned long end);
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
u64 __kvm_call_hyp(void *hypfn, ...);
#define kvm_call_hyp(f, ...) __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__)
void force_vm_exit(const cpumask_t *mask);
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index);
int kvm_perf_init(void);
int kvm_perf_teardown(void);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
void __kvm_set_tpidr_el2(u64 tpidr_el2);
DECLARE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
unsigned long hyp_stack_ptr,
unsigned long vector_ptr)
{
u64 tpidr_el2;
/*
* Call initialization code, and switch to the full blown HYP code.
* If the cpucaps haven't been finalized yet, something has gone very
* wrong, and hyp will crash and burn when it uses any
* cpus_have_const_cap() wrapper.
*/
BUG_ON(!static_branch_likely(&arm64_const_caps_ready));
__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr);
/*
* Calculate the raw per-cpu offset without a translation from the
* kernel's mapping to the linear mapping, and store it in tpidr_el2
* so that we can use adr_l to access per-cpu variables in EL2.
*/
tpidr_el2 = (u64)this_cpu_ptr(&kvm_host_cpu_state)
- (u64)kvm_ksym_ref(kvm_host_cpu_state);
kvm_call_hyp(__kvm_set_tpidr_el2, tpidr_el2);
}
static inline bool kvm_arch_check_sve_has_vhe(void)
{
/*
* The Arm architecture specifies that implementation of SVE
* requires VHE also to be implemented. The KVM code for arm64
* relies on this when SVE is present:
*/
if (system_supports_sve())
return has_vhe();
else
return true;
}
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
void kvm_arm_init_debug(void);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run);
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
static inline void __cpu_init_stage2(void)
{
u32 parange = kvm_call_hyp(__init_stage2_translation);
WARN_ONCE(parange < 40,
"PARange is %d bits, unsupported configuration!", parange);
}
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
{
return kvm_arch_vcpu_run_map_fp(vcpu);
}
#endif
static inline void kvm_arm_vhe_guest_enter(void)
{
local_daif_mask();
}
static inline void kvm_arm_vhe_guest_exit(void)
{
local_daif_restore(DAIF_PROCCTX_NOIRQ);
/*
* When we exit from the guest we change a number of CPU configuration
* parameters, such as traps. Make sure these changes take effect
* before running the host or additional guests.
*/
isb();
}
static inline bool kvm_arm_harden_branch_predictor(void)
{
return cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR);
}
#define KVM_SSBD_UNKNOWN -1
#define KVM_SSBD_FORCE_DISABLE 0
#define KVM_SSBD_KERNEL 1
#define KVM_SSBD_FORCE_ENABLE 2
#define KVM_SSBD_MITIGATED 3
static inline int kvm_arm_have_ssbd(void)
{
switch (arm64_get_ssbd_state()) {
case ARM64_SSBD_FORCE_DISABLE:
return KVM_SSBD_FORCE_DISABLE;
case ARM64_SSBD_KERNEL:
return KVM_SSBD_KERNEL;
case ARM64_SSBD_FORCE_ENABLE:
return KVM_SSBD_FORCE_ENABLE;
case ARM64_SSBD_MITIGATED:
return KVM_SSBD_MITIGATED;
case ARM64_SSBD_UNKNOWN:
default:
return KVM_SSBD_UNKNOWN;
}
}
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);
#endif /* __ARM64_KVM_HOST_H__ */