linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c
Oak Zeng 443e902eee drm/amdkfd: Return proper error code for gws alloc API
Signed-off-by: Oak Zeng <Oak.Zeng@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2019-05-31 10:39:33 -05:00

1963 lines
48 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/device.h>
#include <linux/export.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/compat.h>
#include <uapi/linux/kfd_ioctl.h>
#include <linux/time.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/dma-buf.h>
#include <asm/processor.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_dbgmgr.h"
#include "amdgpu_amdkfd.h"
static long kfd_ioctl(struct file *, unsigned int, unsigned long);
static int kfd_open(struct inode *, struct file *);
static int kfd_mmap(struct file *, struct vm_area_struct *);
static const char kfd_dev_name[] = "kfd";
static const struct file_operations kfd_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = kfd_ioctl,
.compat_ioctl = kfd_ioctl,
.open = kfd_open,
.mmap = kfd_mmap,
};
static int kfd_char_dev_major = -1;
static struct class *kfd_class;
struct device *kfd_device;
int kfd_chardev_init(void)
{
int err = 0;
kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
err = kfd_char_dev_major;
if (err < 0)
goto err_register_chrdev;
kfd_class = class_create(THIS_MODULE, kfd_dev_name);
err = PTR_ERR(kfd_class);
if (IS_ERR(kfd_class))
goto err_class_create;
kfd_device = device_create(kfd_class, NULL,
MKDEV(kfd_char_dev_major, 0),
NULL, kfd_dev_name);
err = PTR_ERR(kfd_device);
if (IS_ERR(kfd_device))
goto err_device_create;
return 0;
err_device_create:
class_destroy(kfd_class);
err_class_create:
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
err_register_chrdev:
return err;
}
void kfd_chardev_exit(void)
{
device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
class_destroy(kfd_class);
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
}
struct device *kfd_chardev(void)
{
return kfd_device;
}
static int kfd_open(struct inode *inode, struct file *filep)
{
struct kfd_process *process;
bool is_32bit_user_mode;
if (iminor(inode) != 0)
return -ENODEV;
is_32bit_user_mode = in_compat_syscall();
if (is_32bit_user_mode) {
dev_warn(kfd_device,
"Process %d (32-bit) failed to open /dev/kfd\n"
"32-bit processes are not supported by amdkfd\n",
current->pid);
return -EPERM;
}
process = kfd_create_process(filep);
if (IS_ERR(process))
return PTR_ERR(process);
if (kfd_is_locked())
return -EAGAIN;
dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
process->pasid, process->is_32bit_user_mode);
return 0;
}
static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_get_version_args *args = data;
args->major_version = KFD_IOCTL_MAJOR_VERSION;
args->minor_version = KFD_IOCTL_MINOR_VERSION;
return 0;
}
static int set_queue_properties_from_user(struct queue_properties *q_properties,
struct kfd_ioctl_create_queue_args *args)
{
if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
return -EINVAL;
}
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
return -EINVAL;
}
if ((args->ring_base_address) &&
(!access_ok((const void __user *) args->ring_base_address,
sizeof(uint64_t)))) {
pr_err("Can't access ring base address\n");
return -EFAULT;
}
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
pr_err("Ring size must be a power of 2 or 0\n");
return -EINVAL;
}
if (!access_ok((const void __user *) args->read_pointer_address,
sizeof(uint32_t))) {
pr_err("Can't access read pointer\n");
return -EFAULT;
}
if (!access_ok((const void __user *) args->write_pointer_address,
sizeof(uint32_t))) {
pr_err("Can't access write pointer\n");
return -EFAULT;
}
if (args->eop_buffer_address &&
!access_ok((const void __user *) args->eop_buffer_address,
sizeof(uint32_t))) {
pr_debug("Can't access eop buffer");
return -EFAULT;
}
if (args->ctx_save_restore_address &&
!access_ok((const void __user *) args->ctx_save_restore_address,
sizeof(uint32_t))) {
pr_debug("Can't access ctx save restore buffer");
return -EFAULT;
}
q_properties->is_interop = false;
q_properties->queue_percent = args->queue_percentage;
q_properties->priority = args->queue_priority;
q_properties->queue_address = args->ring_base_address;
q_properties->queue_size = args->ring_size;
q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
q_properties->eop_ring_buffer_address = args->eop_buffer_address;
q_properties->eop_ring_buffer_size = args->eop_buffer_size;
q_properties->ctx_save_restore_area_address =
args->ctx_save_restore_address;
q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
q_properties->ctl_stack_size = args->ctl_stack_size;
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
q_properties->type = KFD_QUEUE_TYPE_SDMA;
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
else
return -ENOTSUPP;
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
q_properties->format = KFD_QUEUE_FORMAT_AQL;
else
q_properties->format = KFD_QUEUE_FORMAT_PM4;
pr_debug("Queue Percentage: %d, %d\n",
q_properties->queue_percent, args->queue_percentage);
pr_debug("Queue Priority: %d, %d\n",
q_properties->priority, args->queue_priority);
pr_debug("Queue Address: 0x%llX, 0x%llX\n",
q_properties->queue_address, args->ring_base_address);
pr_debug("Queue Size: 0x%llX, %u\n",
q_properties->queue_size, args->ring_size);
pr_debug("Queue r/w Pointers: %px, %px\n",
q_properties->read_ptr,
q_properties->write_ptr);
pr_debug("Queue Format: %d\n", q_properties->format);
pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
pr_debug("Queue CTX save area: 0x%llX\n",
q_properties->ctx_save_restore_area_address);
return 0;
}
static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_create_queue_args *args = data;
struct kfd_dev *dev;
int err = 0;
unsigned int queue_id;
struct kfd_process_device *pdd;
struct queue_properties q_properties;
memset(&q_properties, 0, sizeof(struct queue_properties));
pr_debug("Creating queue ioctl\n");
err = set_queue_properties_from_user(&q_properties, args);
if (err)
return err;
pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
dev = kfd_device_by_id(args->gpu_id);
if (!dev) {
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
return -EINVAL;
}
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = -ESRCH;
goto err_bind_process;
}
pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
p->pasid,
dev->id);
err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
if (err != 0)
goto err_create_queue;
args->queue_id = queue_id;
/* Return gpu_id as doorbell offset for mmap usage */
args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
args->doorbell_offset <<= PAGE_SHIFT;
if (KFD_IS_SOC15(dev->device_info->asic_family))
/* On SOC15 ASICs, doorbell allocation must be
* per-device, and independent from the per-process
* queue_id. Return the doorbell offset within the
* doorbell aperture to user mode.
*/
args->doorbell_offset |= q_properties.doorbell_off;
mutex_unlock(&p->mutex);
pr_debug("Queue id %d was created successfully\n", args->queue_id);
pr_debug("Ring buffer address == 0x%016llX\n",
args->ring_base_address);
pr_debug("Read ptr address == 0x%016llX\n",
args->read_pointer_address);
pr_debug("Write ptr address == 0x%016llX\n",
args->write_pointer_address);
return 0;
err_create_queue:
err_bind_process:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
void *data)
{
int retval;
struct kfd_ioctl_destroy_queue_args *args = data;
pr_debug("Destroying queue id %d for pasid %d\n",
args->queue_id,
p->pasid);
mutex_lock(&p->mutex);
retval = pqm_destroy_queue(&p->pqm, args->queue_id);
mutex_unlock(&p->mutex);
return retval;
}
static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
void *data)
{
int retval;
struct kfd_ioctl_update_queue_args *args = data;
struct queue_properties properties;
if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
return -EINVAL;
}
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
return -EINVAL;
}
if ((args->ring_base_address) &&
(!access_ok((const void __user *) args->ring_base_address,
sizeof(uint64_t)))) {
pr_err("Can't access ring base address\n");
return -EFAULT;
}
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
pr_err("Ring size must be a power of 2 or 0\n");
return -EINVAL;
}
properties.queue_address = args->ring_base_address;
properties.queue_size = args->ring_size;
properties.queue_percent = args->queue_percentage;
properties.priority = args->queue_priority;
pr_debug("Updating queue id %d for pasid %d\n",
args->queue_id, p->pasid);
mutex_lock(&p->mutex);
retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
mutex_unlock(&p->mutex);
return retval;
}
static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
void *data)
{
int retval;
const int max_num_cus = 1024;
struct kfd_ioctl_set_cu_mask_args *args = data;
struct queue_properties properties;
uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
if ((args->num_cu_mask % 32) != 0) {
pr_debug("num_cu_mask 0x%x must be a multiple of 32",
args->num_cu_mask);
return -EINVAL;
}
properties.cu_mask_count = args->num_cu_mask;
if (properties.cu_mask_count == 0) {
pr_debug("CU mask cannot be 0");
return -EINVAL;
}
/* To prevent an unreasonably large CU mask size, set an arbitrary
* limit of max_num_cus bits. We can then just drop any CU mask bits
* past max_num_cus bits and just use the first max_num_cus bits.
*/
if (properties.cu_mask_count > max_num_cus) {
pr_debug("CU mask cannot be greater than 1024 bits");
properties.cu_mask_count = max_num_cus;
cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
}
properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
if (!properties.cu_mask)
return -ENOMEM;
retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
if (retval) {
pr_debug("Could not copy CU mask from userspace");
kfree(properties.cu_mask);
return -EFAULT;
}
mutex_lock(&p->mutex);
retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
mutex_unlock(&p->mutex);
if (retval)
kfree(properties.cu_mask);
return retval;
}
static int kfd_ioctl_get_queue_wave_state(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_queue_wave_state_args *args = data;
int r;
mutex_lock(&p->mutex);
r = pqm_get_wave_state(&p->pqm, args->queue_id,
(void __user *)args->ctl_stack_address,
&args->ctl_stack_used_size,
&args->save_area_used_size);
mutex_unlock(&p->mutex);
return r;
}
static int kfd_ioctl_set_memory_policy(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_memory_policy_args *args = data;
struct kfd_dev *dev;
int err = 0;
struct kfd_process_device *pdd;
enum cache_policy default_policy, alternate_policy;
if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
&& args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
return -EINVAL;
}
if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
&& args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
return -EINVAL;
}
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = -ESRCH;
goto out;
}
default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
? cache_policy_coherent : cache_policy_noncoherent;
alternate_policy =
(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
? cache_policy_coherent : cache_policy_noncoherent;
if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
&pdd->qpd,
default_policy,
alternate_policy,
(void __user *)args->alternate_aperture_base,
args->alternate_aperture_size))
err = -EINVAL;
out:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_set_trap_handler(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_trap_handler_args *args = data;
struct kfd_dev *dev;
int err = 0;
struct kfd_process_device *pdd;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = -ESRCH;
goto out;
}
if (dev->dqm->ops.set_trap_handler(dev->dqm,
&pdd->qpd,
args->tba_addr,
args->tma_addr))
err = -EINVAL;
out:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_dbg_register(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_dbg_register_args *args = data;
struct kfd_dev *dev;
struct kfd_dbgmgr *dbgmgr_ptr;
struct kfd_process_device *pdd;
bool create_ok;
long status = 0;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
if (dev->device_info->asic_family == CHIP_CARRIZO) {
pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
return -EINVAL;
}
mutex_lock(&p->mutex);
mutex_lock(kfd_get_dbgmgr_mutex());
/*
* make sure that we have pdd, if this the first queue created for
* this process
*/
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
status = PTR_ERR(pdd);
goto out;
}
if (!dev->dbgmgr) {
/* In case of a legal call, we have no dbgmgr yet */
create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
if (create_ok) {
status = kfd_dbgmgr_register(dbgmgr_ptr, p);
if (status != 0)
kfd_dbgmgr_destroy(dbgmgr_ptr);
else
dev->dbgmgr = dbgmgr_ptr;
}
} else {
pr_debug("debugger already registered\n");
status = -EINVAL;
}
out:
mutex_unlock(kfd_get_dbgmgr_mutex());
mutex_unlock(&p->mutex);
return status;
}
static int kfd_ioctl_dbg_unregister(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_dbg_unregister_args *args = data;
struct kfd_dev *dev;
long status;
dev = kfd_device_by_id(args->gpu_id);
if (!dev || !dev->dbgmgr)
return -EINVAL;
if (dev->device_info->asic_family == CHIP_CARRIZO) {
pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
return -EINVAL;
}
mutex_lock(kfd_get_dbgmgr_mutex());
status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
if (!status) {
kfd_dbgmgr_destroy(dev->dbgmgr);
dev->dbgmgr = NULL;
}
mutex_unlock(kfd_get_dbgmgr_mutex());
return status;
}
/*
* Parse and generate variable size data structure for address watch.
* Total size of the buffer and # watch points is limited in order
* to prevent kernel abuse. (no bearing to the much smaller HW limitation
* which is enforced by dbgdev module)
* please also note that the watch address itself are not "copied from user",
* since it be set into the HW in user mode values.
*
*/
static int kfd_ioctl_dbg_address_watch(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_dbg_address_watch_args *args = data;
struct kfd_dev *dev;
struct dbg_address_watch_info aw_info;
unsigned char *args_buff;
long status;
void __user *cmd_from_user;
uint64_t watch_mask_value = 0;
unsigned int args_idx = 0;
memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
if (dev->device_info->asic_family == CHIP_CARRIZO) {
pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
return -EINVAL;
}
cmd_from_user = (void __user *) args->content_ptr;
/* Validate arguments */
if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
(cmd_from_user == NULL))
return -EINVAL;
/* this is the actual buffer to work with */
args_buff = memdup_user(cmd_from_user,
args->buf_size_in_bytes - sizeof(*args));
if (IS_ERR(args_buff))
return PTR_ERR(args_buff);
aw_info.process = p;
aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
args_idx += sizeof(aw_info.num_watch_points);
aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
/*
* set watch address base pointer to point on the array base
* within args_buff
*/
aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
/* skip over the addresses buffer */
args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
status = -EINVAL;
goto out;
}
watch_mask_value = (uint64_t) args_buff[args_idx];
if (watch_mask_value > 0) {
/*
* There is an array of masks.
* set watch mask base pointer to point on the array base
* within args_buff
*/
aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
/* skip over the masks buffer */
args_idx += sizeof(aw_info.watch_mask) *
aw_info.num_watch_points;
} else {
/* just the NULL mask, set to NULL and skip over it */
aw_info.watch_mask = NULL;
args_idx += sizeof(aw_info.watch_mask);
}
if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
status = -EINVAL;
goto out;
}
/* Currently HSA Event is not supported for DBG */
aw_info.watch_event = NULL;
mutex_lock(kfd_get_dbgmgr_mutex());
status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
mutex_unlock(kfd_get_dbgmgr_mutex());
out:
kfree(args_buff);
return status;
}
/* Parse and generate fixed size data structure for wave control */
static int kfd_ioctl_dbg_wave_control(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_dbg_wave_control_args *args = data;
struct kfd_dev *dev;
struct dbg_wave_control_info wac_info;
unsigned char *args_buff;
uint32_t computed_buff_size;
long status;
void __user *cmd_from_user;
unsigned int args_idx = 0;
memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
/* we use compact form, independent of the packing attribute value */
computed_buff_size = sizeof(*args) +
sizeof(wac_info.mode) +
sizeof(wac_info.operand) +
sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
sizeof(wac_info.dbgWave_msg.MemoryVA) +
sizeof(wac_info.trapId);
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
if (dev->device_info->asic_family == CHIP_CARRIZO) {
pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
return -EINVAL;
}
/* input size must match the computed "compact" size */
if (args->buf_size_in_bytes != computed_buff_size) {
pr_debug("size mismatch, computed : actual %u : %u\n",
args->buf_size_in_bytes, computed_buff_size);
return -EINVAL;
}
cmd_from_user = (void __user *) args->content_ptr;
if (cmd_from_user == NULL)
return -EINVAL;
/* copy the entire buffer from user */
args_buff = memdup_user(cmd_from_user,
args->buf_size_in_bytes - sizeof(*args));
if (IS_ERR(args_buff))
return PTR_ERR(args_buff);
/* move ptr to the start of the "pay-load" area */
wac_info.process = p;
wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
args_idx += sizeof(wac_info.operand);
wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
args_idx += sizeof(wac_info.mode);
wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
args_idx += sizeof(wac_info.trapId);
wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
*((uint32_t *)(&args_buff[args_idx]));
wac_info.dbgWave_msg.MemoryVA = NULL;
mutex_lock(kfd_get_dbgmgr_mutex());
pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
wac_info.process, wac_info.operand,
wac_info.mode, wac_info.trapId,
wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
pr_debug("Returned status of dbg manager is %ld\n", status);
mutex_unlock(kfd_get_dbgmgr_mutex());
kfree(args_buff);
return status;
}
static int kfd_ioctl_get_clock_counters(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_clock_counters_args *args = data;
struct kfd_dev *dev;
dev = kfd_device_by_id(args->gpu_id);
if (dev)
/* Reading GPU clock counter from KGD */
args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
else
/* Node without GPU resource */
args->gpu_clock_counter = 0;
/* No access to rdtsc. Using raw monotonic time */
args->cpu_clock_counter = ktime_get_raw_ns();
args->system_clock_counter = ktime_get_boot_ns();
/* Since the counter is in nano-seconds we use 1GHz frequency */
args->system_clock_freq = 1000000000;
return 0;
}
static int kfd_ioctl_get_process_apertures(struct file *filp,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_process_apertures_args *args = data;
struct kfd_process_device_apertures *pAperture;
struct kfd_process_device *pdd;
dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
args->num_of_nodes = 0;
mutex_lock(&p->mutex);
/*if the process-device list isn't empty*/
if (kfd_has_process_device_data(p)) {
/* Run over all pdd of the process */
pdd = kfd_get_first_process_device_data(p);
do {
pAperture =
&args->process_apertures[args->num_of_nodes];
pAperture->gpu_id = pdd->dev->id;
pAperture->lds_base = pdd->lds_base;
pAperture->lds_limit = pdd->lds_limit;
pAperture->gpuvm_base = pdd->gpuvm_base;
pAperture->gpuvm_limit = pdd->gpuvm_limit;
pAperture->scratch_base = pdd->scratch_base;
pAperture->scratch_limit = pdd->scratch_limit;
dev_dbg(kfd_device,
"node id %u\n", args->num_of_nodes);
dev_dbg(kfd_device,
"gpu id %u\n", pdd->dev->id);
dev_dbg(kfd_device,
"lds_base %llX\n", pdd->lds_base);
dev_dbg(kfd_device,
"lds_limit %llX\n", pdd->lds_limit);
dev_dbg(kfd_device,
"gpuvm_base %llX\n", pdd->gpuvm_base);
dev_dbg(kfd_device,
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
dev_dbg(kfd_device,
"scratch_base %llX\n", pdd->scratch_base);
dev_dbg(kfd_device,
"scratch_limit %llX\n", pdd->scratch_limit);
args->num_of_nodes++;
pdd = kfd_get_next_process_device_data(p, pdd);
} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
}
mutex_unlock(&p->mutex);
return 0;
}
static int kfd_ioctl_get_process_apertures_new(struct file *filp,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_process_apertures_new_args *args = data;
struct kfd_process_device_apertures *pa;
struct kfd_process_device *pdd;
uint32_t nodes = 0;
int ret;
dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
if (args->num_of_nodes == 0) {
/* Return number of nodes, so that user space can alloacate
* sufficient memory
*/
mutex_lock(&p->mutex);
if (!kfd_has_process_device_data(p))
goto out_unlock;
/* Run over all pdd of the process */
pdd = kfd_get_first_process_device_data(p);
do {
args->num_of_nodes++;
pdd = kfd_get_next_process_device_data(p, pdd);
} while (pdd);
goto out_unlock;
}
/* Fill in process-aperture information for all available
* nodes, but not more than args->num_of_nodes as that is
* the amount of memory allocated by user
*/
pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
args->num_of_nodes), GFP_KERNEL);
if (!pa)
return -ENOMEM;
mutex_lock(&p->mutex);
if (!kfd_has_process_device_data(p)) {
args->num_of_nodes = 0;
kfree(pa);
goto out_unlock;
}
/* Run over all pdd of the process */
pdd = kfd_get_first_process_device_data(p);
do {
pa[nodes].gpu_id = pdd->dev->id;
pa[nodes].lds_base = pdd->lds_base;
pa[nodes].lds_limit = pdd->lds_limit;
pa[nodes].gpuvm_base = pdd->gpuvm_base;
pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
pa[nodes].scratch_base = pdd->scratch_base;
pa[nodes].scratch_limit = pdd->scratch_limit;
dev_dbg(kfd_device,
"gpu id %u\n", pdd->dev->id);
dev_dbg(kfd_device,
"lds_base %llX\n", pdd->lds_base);
dev_dbg(kfd_device,
"lds_limit %llX\n", pdd->lds_limit);
dev_dbg(kfd_device,
"gpuvm_base %llX\n", pdd->gpuvm_base);
dev_dbg(kfd_device,
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
dev_dbg(kfd_device,
"scratch_base %llX\n", pdd->scratch_base);
dev_dbg(kfd_device,
"scratch_limit %llX\n", pdd->scratch_limit);
nodes++;
pdd = kfd_get_next_process_device_data(p, pdd);
} while (pdd && (nodes < args->num_of_nodes));
mutex_unlock(&p->mutex);
args->num_of_nodes = nodes;
ret = copy_to_user(
(void __user *)args->kfd_process_device_apertures_ptr,
pa,
(nodes * sizeof(struct kfd_process_device_apertures)));
kfree(pa);
return ret ? -EFAULT : 0;
out_unlock:
mutex_unlock(&p->mutex);
return 0;
}
static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_create_event_args *args = data;
int err;
/* For dGPUs the event page is allocated in user mode. The
* handle is passed to KFD with the first call to this IOCTL
* through the event_page_offset field.
*/
if (args->event_page_offset) {
struct kfd_dev *kfd;
struct kfd_process_device *pdd;
void *mem, *kern_addr;
uint64_t size;
if (p->signal_page) {
pr_err("Event page is already set\n");
return -EINVAL;
}
kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
if (!kfd) {
pr_err("Getting device by id failed in %s\n", __func__);
return -EINVAL;
}
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(kfd, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto out_unlock;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->event_page_offset));
if (!mem) {
pr_err("Can't find BO, offset is 0x%llx\n",
args->event_page_offset);
err = -EINVAL;
goto out_unlock;
}
mutex_unlock(&p->mutex);
err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
mem, &kern_addr, &size);
if (err) {
pr_err("Failed to map event page to kernel\n");
return err;
}
err = kfd_event_page_set(p, kern_addr, size);
if (err) {
pr_err("Failed to set event page\n");
return err;
}
}
err = kfd_event_create(filp, p, args->event_type,
args->auto_reset != 0, args->node_id,
&args->event_id, &args->event_trigger_data,
&args->event_page_offset,
&args->event_slot_index);
return err;
out_unlock:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_destroy_event_args *args = data;
return kfd_event_destroy(p, args->event_id);
}
static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_set_event_args *args = data;
return kfd_set_event(p, args->event_id);
}
static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_reset_event_args *args = data;
return kfd_reset_event(p, args->event_id);
}
static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_wait_events_args *args = data;
int err;
err = kfd_wait_on_events(p, args->num_events,
(void __user *)args->events_ptr,
(args->wait_for_all != 0),
args->timeout, &args->wait_result);
return err;
}
static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_scratch_backing_va_args *args = data;
struct kfd_process_device *pdd;
struct kfd_dev *dev;
long err;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto bind_process_to_device_fail;
}
pdd->qpd.sh_hidden_private_base = args->va_addr;
mutex_unlock(&p->mutex);
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
pdd->qpd.vmid != 0)
dev->kfd2kgd->set_scratch_backing_va(
dev->kgd, args->va_addr, pdd->qpd.vmid);
return 0;
bind_process_to_device_fail:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_get_tile_config(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_tile_config_args *args = data;
struct kfd_dev *dev;
struct tile_config config;
int err = 0;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
dev->kfd2kgd->get_tile_config(dev->kgd, &config);
args->gb_addr_config = config.gb_addr_config;
args->num_banks = config.num_banks;
args->num_ranks = config.num_ranks;
if (args->num_tile_configs > config.num_tile_configs)
args->num_tile_configs = config.num_tile_configs;
err = copy_to_user((void __user *)args->tile_config_ptr,
config.tile_config_ptr,
args->num_tile_configs * sizeof(uint32_t));
if (err) {
args->num_tile_configs = 0;
return -EFAULT;
}
if (args->num_macro_tile_configs > config.num_macro_tile_configs)
args->num_macro_tile_configs =
config.num_macro_tile_configs;
err = copy_to_user((void __user *)args->macro_tile_config_ptr,
config.macro_tile_config_ptr,
args->num_macro_tile_configs * sizeof(uint32_t));
if (err) {
args->num_macro_tile_configs = 0;
return -EFAULT;
}
return 0;
}
static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_acquire_vm_args *args = data;
struct kfd_process_device *pdd;
struct kfd_dev *dev;
struct file *drm_file;
int ret;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
drm_file = fget(args->drm_fd);
if (!drm_file)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
ret = -EINVAL;
goto err_unlock;
}
if (pdd->drm_file) {
ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
goto err_unlock;
}
ret = kfd_process_device_init_vm(pdd, drm_file);
if (ret)
goto err_unlock;
/* On success, the PDD keeps the drm_file reference */
mutex_unlock(&p->mutex);
return 0;
err_unlock:
mutex_unlock(&p->mutex);
fput(drm_file);
return ret;
}
bool kfd_dev_is_large_bar(struct kfd_dev *dev)
{
struct kfd_local_mem_info mem_info;
if (debug_largebar) {
pr_debug("Simulate large-bar allocation on non large-bar machine\n");
return true;
}
if (dev->device_info->needs_iommu_device)
return false;
amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
if (mem_info.local_mem_size_private == 0 &&
mem_info.local_mem_size_public > 0)
return true;
return false;
}
static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
struct kfd_process_device *pdd;
void *mem;
struct kfd_dev *dev;
int idr_handle;
long err;
uint64_t offset = args->mmap_offset;
uint32_t flags = args->flags;
if (args->size == 0)
return -EINVAL;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
!kfd_dev_is_large_bar(dev)) {
pr_err("Alloc host visible vram on small bar is not allowed\n");
return -EINVAL;
}
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
if (args->size != kfd_doorbell_process_slice(dev))
return -EINVAL;
offset = kfd_get_process_doorbells(dev, p);
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
if (args->size != PAGE_SIZE)
return -EINVAL;
offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
if (!offset)
return -ENOMEM;
}
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto err_unlock;
}
err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
dev->kgd, args->va_addr, args->size,
pdd->vm, (struct kgd_mem **) &mem, &offset,
flags);
if (err)
goto err_unlock;
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
if (idr_handle < 0) {
err = -EFAULT;
goto err_free;
}
mutex_unlock(&p->mutex);
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
args->mmap_offset = offset;
/* MMIO is mapped through kfd device
* Generate a kfd mmap offset
*/
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
args->mmap_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(args->gpu_id);
args->mmap_offset <<= PAGE_SHIFT;
}
return 0;
err_free:
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
err_unlock:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_free_memory_of_gpu_args *args = data;
struct kfd_process_device *pdd;
void *mem;
struct kfd_dev *dev;
int ret;
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
if (!dev)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
ret = -EINVAL;
goto err_unlock;
}
mem = kfd_process_device_translate_handle(
pdd, GET_IDR_HANDLE(args->handle));
if (!mem) {
ret = -EINVAL;
goto err_unlock;
}
ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
(struct kgd_mem *)mem);
/* If freeing the buffer failed, leave the handle in place for
* clean-up during process tear-down.
*/
if (!ret)
kfd_process_device_remove_obj_handle(
pdd, GET_IDR_HANDLE(args->handle));
err_unlock:
mutex_unlock(&p->mutex);
return ret;
}
static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_map_memory_to_gpu_args *args = data;
struct kfd_process_device *pdd, *peer_pdd;
void *mem;
struct kfd_dev *dev, *peer;
long err = 0;
int i;
uint32_t *devices_arr = NULL;
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
if (!dev)
return -EINVAL;
if (!args->n_devices) {
pr_debug("Device IDs array empty\n");
return -EINVAL;
}
if (args->n_success > args->n_devices) {
pr_debug("n_success exceeds n_devices\n");
return -EINVAL;
}
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
GFP_KERNEL);
if (!devices_arr)
return -ENOMEM;
err = copy_from_user(devices_arr,
(void __user *)args->device_ids_array_ptr,
args->n_devices * sizeof(*devices_arr));
if (err != 0) {
err = -EFAULT;
goto copy_from_user_failed;
}
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto bind_process_to_device_failed;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->handle));
if (!mem) {
err = -ENOMEM;
goto get_mem_obj_from_handle_failed;
}
for (i = args->n_success; i < args->n_devices; i++) {
peer = kfd_device_by_id(devices_arr[i]);
if (!peer) {
pr_debug("Getting device by id failed for 0x%x\n",
devices_arr[i]);
err = -EINVAL;
goto get_mem_obj_from_handle_failed;
}
peer_pdd = kfd_bind_process_to_device(peer, p);
if (IS_ERR(peer_pdd)) {
err = PTR_ERR(peer_pdd);
goto get_mem_obj_from_handle_failed;
}
err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
if (err) {
pr_err("Failed to map to gpu %d/%d\n",
i, args->n_devices);
goto map_memory_to_gpu_failed;
}
args->n_success = i+1;
}
mutex_unlock(&p->mutex);
err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
if (err) {
pr_debug("Sync memory failed, wait interrupted by user signal\n");
goto sync_memory_failed;
}
/* Flush TLBs after waiting for the page table updates to complete */
for (i = 0; i < args->n_devices; i++) {
peer = kfd_device_by_id(devices_arr[i]);
if (WARN_ON_ONCE(!peer))
continue;
peer_pdd = kfd_get_process_device_data(peer, p);
if (WARN_ON_ONCE(!peer_pdd))
continue;
kfd_flush_tlb(peer_pdd);
}
kfree(devices_arr);
return err;
bind_process_to_device_failed:
get_mem_obj_from_handle_failed:
map_memory_to_gpu_failed:
mutex_unlock(&p->mutex);
copy_from_user_failed:
sync_memory_failed:
kfree(devices_arr);
return err;
}
static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
struct kfd_process_device *pdd, *peer_pdd;
void *mem;
struct kfd_dev *dev, *peer;
long err = 0;
uint32_t *devices_arr = NULL, i;
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
if (!dev)
return -EINVAL;
if (!args->n_devices) {
pr_debug("Device IDs array empty\n");
return -EINVAL;
}
if (args->n_success > args->n_devices) {
pr_debug("n_success exceeds n_devices\n");
return -EINVAL;
}
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
GFP_KERNEL);
if (!devices_arr)
return -ENOMEM;
err = copy_from_user(devices_arr,
(void __user *)args->device_ids_array_ptr,
args->n_devices * sizeof(*devices_arr));
if (err != 0) {
err = -EFAULT;
goto copy_from_user_failed;
}
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
err = -EINVAL;
goto bind_process_to_device_failed;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->handle));
if (!mem) {
err = -ENOMEM;
goto get_mem_obj_from_handle_failed;
}
for (i = args->n_success; i < args->n_devices; i++) {
peer = kfd_device_by_id(devices_arr[i]);
if (!peer) {
err = -EINVAL;
goto get_mem_obj_from_handle_failed;
}
peer_pdd = kfd_get_process_device_data(peer, p);
if (!peer_pdd) {
err = -ENODEV;
goto get_mem_obj_from_handle_failed;
}
err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
if (err) {
pr_err("Failed to unmap from gpu %d/%d\n",
i, args->n_devices);
goto unmap_memory_from_gpu_failed;
}
args->n_success = i+1;
}
kfree(devices_arr);
mutex_unlock(&p->mutex);
return 0;
bind_process_to_device_failed:
get_mem_obj_from_handle_failed:
unmap_memory_from_gpu_failed:
mutex_unlock(&p->mutex);
copy_from_user_failed:
kfree(devices_arr);
return err;
}
static int kfd_ioctl_alloc_queue_gws(struct file *filep,
struct kfd_process *p, void *data)
{
int retval;
struct kfd_ioctl_alloc_queue_gws_args *args = data;
struct kfd_dev *dev;
if (!hws_gws_support)
return -ENODEV;
dev = kfd_device_by_id(args->gpu_id);
if (!dev) {
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
return -ENODEV;
}
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
return -ENODEV;
mutex_lock(&p->mutex);
retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
mutex_unlock(&p->mutex);
args->first_gws = 0;
return retval;
}
static int kfd_ioctl_get_dmabuf_info(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_dmabuf_info_args *args = data;
struct kfd_dev *dev = NULL;
struct kgd_dev *dma_buf_kgd;
void *metadata_buffer = NULL;
uint32_t flags;
unsigned int i;
int r;
/* Find a KFD GPU device that supports the get_dmabuf_info query */
for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
if (dev)
break;
if (!dev)
return -EINVAL;
if (args->metadata_ptr) {
metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
if (!metadata_buffer)
return -ENOMEM;
}
/* Get dmabuf info from KGD */
r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
&dma_buf_kgd, &args->size,
metadata_buffer, args->metadata_size,
&args->metadata_size, &flags);
if (r)
goto exit;
/* Reverse-lookup gpu_id from kgd pointer */
dev = kfd_device_by_kgd(dma_buf_kgd);
if (!dev) {
r = -EINVAL;
goto exit;
}
args->gpu_id = dev->id;
args->flags = flags;
/* Copy metadata buffer to user mode */
if (metadata_buffer) {
r = copy_to_user((void __user *)args->metadata_ptr,
metadata_buffer, args->metadata_size);
if (r != 0)
r = -EFAULT;
}
exit:
kfree(metadata_buffer);
return r;
}
static int kfd_ioctl_import_dmabuf(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_import_dmabuf_args *args = data;
struct kfd_process_device *pdd;
struct dma_buf *dmabuf;
struct kfd_dev *dev;
int idr_handle;
uint64_t size;
void *mem;
int r;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
dmabuf = dma_buf_get(args->dmabuf_fd);
if (IS_ERR(dmabuf))
return PTR_ERR(dmabuf);
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
r = PTR_ERR(pdd);
goto err_unlock;
}
r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
args->va_addr, pdd->vm,
(struct kgd_mem **)&mem, &size,
NULL);
if (r)
goto err_unlock;
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
if (idr_handle < 0) {
r = -EFAULT;
goto err_free;
}
mutex_unlock(&p->mutex);
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
return 0;
err_free:
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
err_unlock:
mutex_unlock(&p->mutex);
return r;
}
#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
.cmd_drv = 0, .name = #ioctl}
/** Ioctl table */
static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
kfd_ioctl_get_version, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
kfd_ioctl_create_queue, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
kfd_ioctl_destroy_queue, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
kfd_ioctl_set_memory_policy, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
kfd_ioctl_get_clock_counters, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
kfd_ioctl_get_process_apertures, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
kfd_ioctl_update_queue, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
kfd_ioctl_create_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
kfd_ioctl_destroy_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
kfd_ioctl_set_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
kfd_ioctl_reset_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
kfd_ioctl_wait_events, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
kfd_ioctl_dbg_register, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
kfd_ioctl_dbg_unregister, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
kfd_ioctl_dbg_address_watch, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
kfd_ioctl_dbg_wave_control, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
kfd_ioctl_set_scratch_backing_va, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
kfd_ioctl_get_tile_config, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
kfd_ioctl_set_trap_handler, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
kfd_ioctl_get_process_apertures_new, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
kfd_ioctl_acquire_vm, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
kfd_ioctl_alloc_memory_of_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
kfd_ioctl_free_memory_of_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
kfd_ioctl_map_memory_to_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
kfd_ioctl_unmap_memory_from_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
kfd_ioctl_set_cu_mask, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
kfd_ioctl_get_queue_wave_state, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
kfd_ioctl_get_dmabuf_info, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
kfd_ioctl_import_dmabuf, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
kfd_ioctl_alloc_queue_gws, 0),
};
#define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
struct kfd_process *process;
amdkfd_ioctl_t *func;
const struct amdkfd_ioctl_desc *ioctl = NULL;
unsigned int nr = _IOC_NR(cmd);
char stack_kdata[128];
char *kdata = NULL;
unsigned int usize, asize;
int retcode = -EINVAL;
if (nr >= AMDKFD_CORE_IOCTL_COUNT)
goto err_i1;
if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
u32 amdkfd_size;
ioctl = &amdkfd_ioctls[nr];
amdkfd_size = _IOC_SIZE(ioctl->cmd);
usize = asize = _IOC_SIZE(cmd);
if (amdkfd_size > asize)
asize = amdkfd_size;
cmd = ioctl->cmd;
} else
goto err_i1;
dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
process = kfd_get_process(current);
if (IS_ERR(process)) {
dev_dbg(kfd_device, "no process\n");
goto err_i1;
}
/* Do not trust userspace, use our own definition */
func = ioctl->func;
if (unlikely(!func)) {
dev_dbg(kfd_device, "no function\n");
retcode = -EINVAL;
goto err_i1;
}
if (cmd & (IOC_IN | IOC_OUT)) {
if (asize <= sizeof(stack_kdata)) {
kdata = stack_kdata;
} else {
kdata = kmalloc(asize, GFP_KERNEL);
if (!kdata) {
retcode = -ENOMEM;
goto err_i1;
}
}
if (asize > usize)
memset(kdata + usize, 0, asize - usize);
}
if (cmd & IOC_IN) {
if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
retcode = -EFAULT;
goto err_i1;
}
} else if (cmd & IOC_OUT) {
memset(kdata, 0, usize);
}
retcode = func(filep, process, kdata);
if (cmd & IOC_OUT)
if (copy_to_user((void __user *)arg, kdata, usize) != 0)
retcode = -EFAULT;
err_i1:
if (!ioctl)
dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
task_pid_nr(current), cmd, nr);
if (kdata != stack_kdata)
kfree(kdata);
if (retcode)
dev_dbg(kfd_device, "ret = %d\n", retcode);
return retcode;
}
static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
struct vm_area_struct *vma)
{
phys_addr_t address;
int ret;
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
return -EINVAL;
address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
VM_DONTDUMP | VM_PFNMAP;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
pr_debug("Process %d mapping mmio page\n"
" target user address == 0x%08llX\n"
" physical address == 0x%08llX\n"
" vm_flags == 0x%04lX\n"
" size == 0x%04lX\n",
process->pasid, (unsigned long long) vma->vm_start,
address, vma->vm_flags, PAGE_SIZE);
ret = io_remap_pfn_range(vma,
vma->vm_start,
address >> PAGE_SHIFT,
PAGE_SIZE,
vma->vm_page_prot);
return ret;
}
static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct kfd_process *process;
struct kfd_dev *dev = NULL;
unsigned long vm_pgoff;
unsigned int gpu_id;
process = kfd_get_process(current);
if (IS_ERR(process))
return PTR_ERR(process);
vm_pgoff = vma->vm_pgoff;
vma->vm_pgoff = KFD_MMAP_OFFSET_VALUE_GET(vm_pgoff);
gpu_id = KFD_MMAP_GPU_ID_GET(vm_pgoff);
if (gpu_id)
dev = kfd_device_by_id(gpu_id);
switch (vm_pgoff & KFD_MMAP_TYPE_MASK) {
case KFD_MMAP_TYPE_DOORBELL:
if (!dev)
return -ENODEV;
return kfd_doorbell_mmap(dev, process, vma);
case KFD_MMAP_TYPE_EVENTS:
return kfd_event_mmap(process, vma);
case KFD_MMAP_TYPE_RESERVED_MEM:
if (!dev)
return -ENODEV;
return kfd_reserved_mem_mmap(dev, process, vma);
case KFD_MMAP_TYPE_MMIO:
if (!dev)
return -ENODEV;
return kfd_mmio_mmap(dev, process, vma);
}
return -EFAULT;
}