forked from Minki/linux
59d3f1ceb6
Slowpath completion handling is incorrectly changing
SPQ_RING_SIZE bits instead of a single one.
Fixes: 76a9a3642a
("qed: fix handling of concurrent ramrods")
Signed-off-by: Manish Chopra <manish.chopra@qlogic.com>
Signed-off-by: Yuval Mintz <Yuval.Mintz@qlogic.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
918 lines
23 KiB
C
918 lines
23 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015 QLogic Corporation
|
|
*
|
|
* This software is available under the terms of the GNU General Public License
|
|
* (GPL) Version 2, available from the file COPYING in the main directory of
|
|
* this source tree.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include "qed.h"
|
|
#include "qed_cxt.h"
|
|
#include "qed_dev_api.h"
|
|
#include "qed_hsi.h"
|
|
#include "qed_hw.h"
|
|
#include "qed_int.h"
|
|
#include "qed_mcp.h"
|
|
#include "qed_reg_addr.h"
|
|
#include "qed_sp.h"
|
|
#include "qed_sriov.h"
|
|
|
|
/***************************************************************************
|
|
* Structures & Definitions
|
|
***************************************************************************/
|
|
|
|
#define SPQ_HIGH_PRI_RESERVE_DEFAULT (1)
|
|
#define SPQ_BLOCK_SLEEP_LENGTH (1000)
|
|
|
|
/***************************************************************************
|
|
* Blocking Imp. (BLOCK/EBLOCK mode)
|
|
***************************************************************************/
|
|
static void qed_spq_blocking_cb(struct qed_hwfn *p_hwfn,
|
|
void *cookie,
|
|
union event_ring_data *data,
|
|
u8 fw_return_code)
|
|
{
|
|
struct qed_spq_comp_done *comp_done;
|
|
|
|
comp_done = (struct qed_spq_comp_done *)cookie;
|
|
|
|
comp_done->done = 0x1;
|
|
comp_done->fw_return_code = fw_return_code;
|
|
|
|
/* make update visible to waiting thread */
|
|
smp_wmb();
|
|
}
|
|
|
|
static int qed_spq_block(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq_entry *p_ent,
|
|
u8 *p_fw_ret)
|
|
{
|
|
int sleep_count = SPQ_BLOCK_SLEEP_LENGTH;
|
|
struct qed_spq_comp_done *comp_done;
|
|
int rc;
|
|
|
|
comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie;
|
|
while (sleep_count) {
|
|
/* validate we receive completion update */
|
|
smp_rmb();
|
|
if (comp_done->done == 1) {
|
|
if (p_fw_ret)
|
|
*p_fw_ret = comp_done->fw_return_code;
|
|
return 0;
|
|
}
|
|
usleep_range(5000, 10000);
|
|
sleep_count--;
|
|
}
|
|
|
|
DP_INFO(p_hwfn, "Ramrod is stuck, requesting MCP drain\n");
|
|
rc = qed_mcp_drain(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc != 0)
|
|
DP_NOTICE(p_hwfn, "MCP drain failed\n");
|
|
|
|
/* Retry after drain */
|
|
sleep_count = SPQ_BLOCK_SLEEP_LENGTH;
|
|
while (sleep_count) {
|
|
/* validate we receive completion update */
|
|
smp_rmb();
|
|
if (comp_done->done == 1) {
|
|
if (p_fw_ret)
|
|
*p_fw_ret = comp_done->fw_return_code;
|
|
return 0;
|
|
}
|
|
usleep_range(5000, 10000);
|
|
sleep_count--;
|
|
}
|
|
|
|
if (comp_done->done == 1) {
|
|
if (p_fw_ret)
|
|
*p_fw_ret = comp_done->fw_return_code;
|
|
return 0;
|
|
}
|
|
|
|
DP_NOTICE(p_hwfn, "Ramrod is stuck, MCP drain failed\n");
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* SPQ entries inner API
|
|
***************************************************************************/
|
|
static int
|
|
qed_spq_fill_entry(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq_entry *p_ent)
|
|
{
|
|
p_ent->flags = 0;
|
|
|
|
switch (p_ent->comp_mode) {
|
|
case QED_SPQ_MODE_EBLOCK:
|
|
case QED_SPQ_MODE_BLOCK:
|
|
p_ent->comp_cb.function = qed_spq_blocking_cb;
|
|
break;
|
|
case QED_SPQ_MODE_CB:
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, "Unknown SPQE completion mode %d\n",
|
|
p_ent->comp_mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
|
|
"Ramrod header: [CID 0x%08x CMD 0x%02x protocol 0x%02x] Data pointer: [%08x:%08x] Completion Mode: %s\n",
|
|
p_ent->elem.hdr.cid,
|
|
p_ent->elem.hdr.cmd_id,
|
|
p_ent->elem.hdr.protocol_id,
|
|
p_ent->elem.data_ptr.hi,
|
|
p_ent->elem.data_ptr.lo,
|
|
D_TRINE(p_ent->comp_mode, QED_SPQ_MODE_EBLOCK,
|
|
QED_SPQ_MODE_BLOCK, "MODE_EBLOCK", "MODE_BLOCK",
|
|
"MODE_CB"));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* HSI access
|
|
***************************************************************************/
|
|
static void qed_spq_hw_initialize(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq *p_spq)
|
|
{
|
|
u16 pq;
|
|
struct qed_cxt_info cxt_info;
|
|
struct core_conn_context *p_cxt;
|
|
union qed_qm_pq_params pq_params;
|
|
int rc;
|
|
|
|
cxt_info.iid = p_spq->cid;
|
|
|
|
rc = qed_cxt_get_cid_info(p_hwfn, &cxt_info);
|
|
|
|
if (rc < 0) {
|
|
DP_NOTICE(p_hwfn, "Cannot find context info for cid=%d\n",
|
|
p_spq->cid);
|
|
return;
|
|
}
|
|
|
|
p_cxt = cxt_info.p_cxt;
|
|
|
|
SET_FIELD(p_cxt->xstorm_ag_context.flags10,
|
|
XSTORM_CORE_CONN_AG_CTX_DQ_CF_EN, 1);
|
|
SET_FIELD(p_cxt->xstorm_ag_context.flags1,
|
|
XSTORM_CORE_CONN_AG_CTX_DQ_CF_ACTIVE, 1);
|
|
SET_FIELD(p_cxt->xstorm_ag_context.flags9,
|
|
XSTORM_CORE_CONN_AG_CTX_CONSOLID_PROD_CF_EN, 1);
|
|
|
|
/* QM physical queue */
|
|
memset(&pq_params, 0, sizeof(pq_params));
|
|
pq_params.core.tc = LB_TC;
|
|
pq = qed_get_qm_pq(p_hwfn, PROTOCOLID_CORE, &pq_params);
|
|
p_cxt->xstorm_ag_context.physical_q0 = cpu_to_le16(pq);
|
|
|
|
p_cxt->xstorm_st_context.spq_base_lo =
|
|
DMA_LO_LE(p_spq->chain.p_phys_addr);
|
|
p_cxt->xstorm_st_context.spq_base_hi =
|
|
DMA_HI_LE(p_spq->chain.p_phys_addr);
|
|
|
|
DMA_REGPAIR_LE(p_cxt->xstorm_st_context.consolid_base_addr,
|
|
p_hwfn->p_consq->chain.p_phys_addr);
|
|
}
|
|
|
|
static int qed_spq_hw_post(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq *p_spq,
|
|
struct qed_spq_entry *p_ent)
|
|
{
|
|
struct qed_chain *p_chain = &p_hwfn->p_spq->chain;
|
|
u16 echo = qed_chain_get_prod_idx(p_chain);
|
|
struct slow_path_element *elem;
|
|
struct core_db_data db;
|
|
|
|
p_ent->elem.hdr.echo = cpu_to_le16(echo);
|
|
elem = qed_chain_produce(p_chain);
|
|
if (!elem) {
|
|
DP_NOTICE(p_hwfn, "Failed to produce from SPQ chain\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*elem = p_ent->elem; /* struct assignment */
|
|
|
|
/* send a doorbell on the slow hwfn session */
|
|
memset(&db, 0, sizeof(db));
|
|
SET_FIELD(db.params, CORE_DB_DATA_DEST, DB_DEST_XCM);
|
|
SET_FIELD(db.params, CORE_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
|
|
SET_FIELD(db.params, CORE_DB_DATA_AGG_VAL_SEL,
|
|
DQ_XCM_CORE_SPQ_PROD_CMD);
|
|
db.agg_flags = DQ_XCM_CORE_DQ_CF_CMD;
|
|
db.spq_prod = cpu_to_le16(qed_chain_get_prod_idx(p_chain));
|
|
|
|
/* make sure the SPQE is updated before the doorbell */
|
|
wmb();
|
|
|
|
DOORBELL(p_hwfn, qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY), *(u32 *)&db);
|
|
|
|
/* make sure doorbell is rang */
|
|
wmb();
|
|
|
|
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
|
|
"Doorbelled [0x%08x, CID 0x%08x] with Flags: %02x agg_params: %02x, prod: %04x\n",
|
|
qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY),
|
|
p_spq->cid, db.params, db.agg_flags,
|
|
qed_chain_get_prod_idx(p_chain));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Asynchronous events
|
|
***************************************************************************/
|
|
static int
|
|
qed_async_event_completion(struct qed_hwfn *p_hwfn,
|
|
struct event_ring_entry *p_eqe)
|
|
{
|
|
switch (p_eqe->protocol_id) {
|
|
case PROTOCOLID_COMMON:
|
|
return qed_sriov_eqe_event(p_hwfn,
|
|
p_eqe->opcode,
|
|
p_eqe->echo, &p_eqe->data);
|
|
default:
|
|
DP_NOTICE(p_hwfn,
|
|
"Unknown Async completion for protocol: %d\n",
|
|
p_eqe->protocol_id);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/***************************************************************************
|
|
* EQ API
|
|
***************************************************************************/
|
|
void qed_eq_prod_update(struct qed_hwfn *p_hwfn,
|
|
u16 prod)
|
|
{
|
|
u32 addr = GTT_BAR0_MAP_REG_USDM_RAM +
|
|
USTORM_EQE_CONS_OFFSET(p_hwfn->rel_pf_id);
|
|
|
|
REG_WR16(p_hwfn, addr, prod);
|
|
|
|
/* keep prod updates ordered */
|
|
mmiowb();
|
|
}
|
|
|
|
int qed_eq_completion(struct qed_hwfn *p_hwfn,
|
|
void *cookie)
|
|
|
|
{
|
|
struct qed_eq *p_eq = cookie;
|
|
struct qed_chain *p_chain = &p_eq->chain;
|
|
int rc = 0;
|
|
|
|
/* take a snapshot of the FW consumer */
|
|
u16 fw_cons_idx = le16_to_cpu(*p_eq->p_fw_cons);
|
|
|
|
DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "fw_cons_idx %x\n", fw_cons_idx);
|
|
|
|
/* Need to guarantee the fw_cons index we use points to a usuable
|
|
* element (to comply with our chain), so our macros would comply
|
|
*/
|
|
if ((fw_cons_idx & qed_chain_get_usable_per_page(p_chain)) ==
|
|
qed_chain_get_usable_per_page(p_chain))
|
|
fw_cons_idx += qed_chain_get_unusable_per_page(p_chain);
|
|
|
|
/* Complete current segment of eq entries */
|
|
while (fw_cons_idx != qed_chain_get_cons_idx(p_chain)) {
|
|
struct event_ring_entry *p_eqe = qed_chain_consume(p_chain);
|
|
|
|
if (!p_eqe) {
|
|
rc = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
|
|
"op %x prot %x res0 %x echo %x fwret %x flags %x\n",
|
|
p_eqe->opcode,
|
|
p_eqe->protocol_id,
|
|
p_eqe->reserved0,
|
|
le16_to_cpu(p_eqe->echo),
|
|
p_eqe->fw_return_code,
|
|
p_eqe->flags);
|
|
|
|
if (GET_FIELD(p_eqe->flags, EVENT_RING_ENTRY_ASYNC)) {
|
|
if (qed_async_event_completion(p_hwfn, p_eqe))
|
|
rc = -EINVAL;
|
|
} else if (qed_spq_completion(p_hwfn,
|
|
p_eqe->echo,
|
|
p_eqe->fw_return_code,
|
|
&p_eqe->data)) {
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
qed_chain_recycle_consumed(p_chain);
|
|
}
|
|
|
|
qed_eq_prod_update(p_hwfn, qed_chain_get_prod_idx(p_chain));
|
|
|
|
return rc;
|
|
}
|
|
|
|
struct qed_eq *qed_eq_alloc(struct qed_hwfn *p_hwfn,
|
|
u16 num_elem)
|
|
{
|
|
struct qed_eq *p_eq;
|
|
|
|
/* Allocate EQ struct */
|
|
p_eq = kzalloc(sizeof(*p_eq), GFP_KERNEL);
|
|
if (!p_eq) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_eq'\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate and initialize EQ chain*/
|
|
if (qed_chain_alloc(p_hwfn->cdev,
|
|
QED_CHAIN_USE_TO_PRODUCE,
|
|
QED_CHAIN_MODE_PBL,
|
|
QED_CHAIN_CNT_TYPE_U16,
|
|
num_elem,
|
|
sizeof(union event_ring_element),
|
|
&p_eq->chain)) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate eq chain\n");
|
|
goto eq_allocate_fail;
|
|
}
|
|
|
|
/* register EQ completion on the SP SB */
|
|
qed_int_register_cb(p_hwfn,
|
|
qed_eq_completion,
|
|
p_eq,
|
|
&p_eq->eq_sb_index,
|
|
&p_eq->p_fw_cons);
|
|
|
|
return p_eq;
|
|
|
|
eq_allocate_fail:
|
|
qed_eq_free(p_hwfn, p_eq);
|
|
return NULL;
|
|
}
|
|
|
|
void qed_eq_setup(struct qed_hwfn *p_hwfn,
|
|
struct qed_eq *p_eq)
|
|
{
|
|
qed_chain_reset(&p_eq->chain);
|
|
}
|
|
|
|
void qed_eq_free(struct qed_hwfn *p_hwfn,
|
|
struct qed_eq *p_eq)
|
|
{
|
|
if (!p_eq)
|
|
return;
|
|
qed_chain_free(p_hwfn->cdev, &p_eq->chain);
|
|
kfree(p_eq);
|
|
}
|
|
|
|
/***************************************************************************
|
|
* CQE API - manipulate EQ functionality
|
|
***************************************************************************/
|
|
static int qed_cqe_completion(
|
|
struct qed_hwfn *p_hwfn,
|
|
struct eth_slow_path_rx_cqe *cqe,
|
|
enum protocol_type protocol)
|
|
{
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return 0;
|
|
|
|
/* @@@tmp - it's possible we'll eventually want to handle some
|
|
* actual commands that can arrive here, but for now this is only
|
|
* used to complete the ramrod using the echo value on the cqe
|
|
*/
|
|
return qed_spq_completion(p_hwfn, cqe->echo, 0, NULL);
|
|
}
|
|
|
|
int qed_eth_cqe_completion(struct qed_hwfn *p_hwfn,
|
|
struct eth_slow_path_rx_cqe *cqe)
|
|
{
|
|
int rc;
|
|
|
|
rc = qed_cqe_completion(p_hwfn, cqe, PROTOCOLID_ETH);
|
|
if (rc)
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to handle RXQ CQE [cmd 0x%02x]\n",
|
|
cqe->ramrod_cmd_id);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Slow hwfn Queue (spq)
|
|
***************************************************************************/
|
|
void qed_spq_setup(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_spq *p_spq = p_hwfn->p_spq;
|
|
struct qed_spq_entry *p_virt = NULL;
|
|
dma_addr_t p_phys = 0;
|
|
u32 i, capacity;
|
|
|
|
INIT_LIST_HEAD(&p_spq->pending);
|
|
INIT_LIST_HEAD(&p_spq->completion_pending);
|
|
INIT_LIST_HEAD(&p_spq->free_pool);
|
|
INIT_LIST_HEAD(&p_spq->unlimited_pending);
|
|
spin_lock_init(&p_spq->lock);
|
|
|
|
/* SPQ empty pool */
|
|
p_phys = p_spq->p_phys + offsetof(struct qed_spq_entry, ramrod);
|
|
p_virt = p_spq->p_virt;
|
|
|
|
capacity = qed_chain_get_capacity(&p_spq->chain);
|
|
for (i = 0; i < capacity; i++) {
|
|
DMA_REGPAIR_LE(p_virt->elem.data_ptr, p_phys);
|
|
|
|
list_add_tail(&p_virt->list, &p_spq->free_pool);
|
|
|
|
p_virt++;
|
|
p_phys += sizeof(struct qed_spq_entry);
|
|
}
|
|
|
|
/* Statistics */
|
|
p_spq->normal_count = 0;
|
|
p_spq->comp_count = 0;
|
|
p_spq->comp_sent_count = 0;
|
|
p_spq->unlimited_pending_count = 0;
|
|
|
|
bitmap_zero(p_spq->p_comp_bitmap, SPQ_RING_SIZE);
|
|
p_spq->comp_bitmap_idx = 0;
|
|
|
|
/* SPQ cid, cannot fail */
|
|
qed_cxt_acquire_cid(p_hwfn, PROTOCOLID_CORE, &p_spq->cid);
|
|
qed_spq_hw_initialize(p_hwfn, p_spq);
|
|
|
|
/* reset the chain itself */
|
|
qed_chain_reset(&p_spq->chain);
|
|
}
|
|
|
|
int qed_spq_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_spq_entry *p_virt = NULL;
|
|
struct qed_spq *p_spq = NULL;
|
|
dma_addr_t p_phys = 0;
|
|
u32 capacity;
|
|
|
|
/* SPQ struct */
|
|
p_spq =
|
|
kzalloc(sizeof(struct qed_spq), GFP_KERNEL);
|
|
if (!p_spq) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_spq'\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* SPQ ring */
|
|
if (qed_chain_alloc(p_hwfn->cdev,
|
|
QED_CHAIN_USE_TO_PRODUCE,
|
|
QED_CHAIN_MODE_SINGLE,
|
|
QED_CHAIN_CNT_TYPE_U16,
|
|
0, /* N/A when the mode is SINGLE */
|
|
sizeof(struct slow_path_element),
|
|
&p_spq->chain)) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate spq chain\n");
|
|
goto spq_allocate_fail;
|
|
}
|
|
|
|
/* allocate and fill the SPQ elements (incl. ramrod data list) */
|
|
capacity = qed_chain_get_capacity(&p_spq->chain);
|
|
p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
capacity *
|
|
sizeof(struct qed_spq_entry),
|
|
&p_phys, GFP_KERNEL);
|
|
|
|
if (!p_virt)
|
|
goto spq_allocate_fail;
|
|
|
|
p_spq->p_virt = p_virt;
|
|
p_spq->p_phys = p_phys;
|
|
p_hwfn->p_spq = p_spq;
|
|
|
|
return 0;
|
|
|
|
spq_allocate_fail:
|
|
qed_chain_free(p_hwfn->cdev, &p_spq->chain);
|
|
kfree(p_spq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void qed_spq_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_spq *p_spq = p_hwfn->p_spq;
|
|
u32 capacity;
|
|
|
|
if (!p_spq)
|
|
return;
|
|
|
|
if (p_spq->p_virt) {
|
|
capacity = qed_chain_get_capacity(&p_spq->chain);
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
capacity *
|
|
sizeof(struct qed_spq_entry),
|
|
p_spq->p_virt, p_spq->p_phys);
|
|
}
|
|
|
|
qed_chain_free(p_hwfn->cdev, &p_spq->chain);
|
|
;
|
|
kfree(p_spq);
|
|
}
|
|
|
|
int
|
|
qed_spq_get_entry(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq_entry **pp_ent)
|
|
{
|
|
struct qed_spq *p_spq = p_hwfn->p_spq;
|
|
struct qed_spq_entry *p_ent = NULL;
|
|
int rc = 0;
|
|
|
|
spin_lock_bh(&p_spq->lock);
|
|
|
|
if (list_empty(&p_spq->free_pool)) {
|
|
p_ent = kzalloc(sizeof(*p_ent), GFP_ATOMIC);
|
|
if (!p_ent) {
|
|
rc = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
p_ent->queue = &p_spq->unlimited_pending;
|
|
} else {
|
|
p_ent = list_first_entry(&p_spq->free_pool,
|
|
struct qed_spq_entry,
|
|
list);
|
|
list_del(&p_ent->list);
|
|
p_ent->queue = &p_spq->pending;
|
|
}
|
|
|
|
*pp_ent = p_ent;
|
|
|
|
out_unlock:
|
|
spin_unlock_bh(&p_spq->lock);
|
|
return rc;
|
|
}
|
|
|
|
/* Locked variant; Should be called while the SPQ lock is taken */
|
|
static void __qed_spq_return_entry(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq_entry *p_ent)
|
|
{
|
|
list_add_tail(&p_ent->list, &p_hwfn->p_spq->free_pool);
|
|
}
|
|
|
|
void qed_spq_return_entry(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq_entry *p_ent)
|
|
{
|
|
spin_lock_bh(&p_hwfn->p_spq->lock);
|
|
__qed_spq_return_entry(p_hwfn, p_ent);
|
|
spin_unlock_bh(&p_hwfn->p_spq->lock);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_spq_add_entry - adds a new entry to the pending
|
|
* list. Should be used while lock is being held.
|
|
*
|
|
* Addes an entry to the pending list is there is room (en empty
|
|
* element is available in the free_pool), or else places the
|
|
* entry in the unlimited_pending pool.
|
|
*
|
|
* @param p_hwfn
|
|
* @param p_ent
|
|
* @param priority
|
|
*
|
|
* @return int
|
|
*/
|
|
static int
|
|
qed_spq_add_entry(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq_entry *p_ent,
|
|
enum spq_priority priority)
|
|
{
|
|
struct qed_spq *p_spq = p_hwfn->p_spq;
|
|
|
|
if (p_ent->queue == &p_spq->unlimited_pending) {
|
|
|
|
if (list_empty(&p_spq->free_pool)) {
|
|
list_add_tail(&p_ent->list, &p_spq->unlimited_pending);
|
|
p_spq->unlimited_pending_count++;
|
|
|
|
return 0;
|
|
} else {
|
|
struct qed_spq_entry *p_en2;
|
|
|
|
p_en2 = list_first_entry(&p_spq->free_pool,
|
|
struct qed_spq_entry,
|
|
list);
|
|
list_del(&p_en2->list);
|
|
|
|
/* Copy the ring element physical pointer to the new
|
|
* entry, since we are about to override the entire ring
|
|
* entry and don't want to lose the pointer.
|
|
*/
|
|
p_ent->elem.data_ptr = p_en2->elem.data_ptr;
|
|
|
|
*p_en2 = *p_ent;
|
|
|
|
/* EBLOCK responsible to free the allocated p_ent */
|
|
if (p_ent->comp_mode != QED_SPQ_MODE_EBLOCK)
|
|
kfree(p_ent);
|
|
|
|
p_ent = p_en2;
|
|
}
|
|
}
|
|
|
|
/* entry is to be placed in 'pending' queue */
|
|
switch (priority) {
|
|
case QED_SPQ_PRIORITY_NORMAL:
|
|
list_add_tail(&p_ent->list, &p_spq->pending);
|
|
p_spq->normal_count++;
|
|
break;
|
|
case QED_SPQ_PRIORITY_HIGH:
|
|
list_add(&p_ent->list, &p_spq->pending);
|
|
p_spq->high_count++;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Accessor
|
|
***************************************************************************/
|
|
u32 qed_spq_get_cid(struct qed_hwfn *p_hwfn)
|
|
{
|
|
if (!p_hwfn->p_spq)
|
|
return 0xffffffff; /* illegal */
|
|
return p_hwfn->p_spq->cid;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Posting new Ramrods
|
|
***************************************************************************/
|
|
static int qed_spq_post_list(struct qed_hwfn *p_hwfn,
|
|
struct list_head *head,
|
|
u32 keep_reserve)
|
|
{
|
|
struct qed_spq *p_spq = p_hwfn->p_spq;
|
|
int rc;
|
|
|
|
while (qed_chain_get_elem_left(&p_spq->chain) > keep_reserve &&
|
|
!list_empty(head)) {
|
|
struct qed_spq_entry *p_ent =
|
|
list_first_entry(head, struct qed_spq_entry, list);
|
|
list_del(&p_ent->list);
|
|
list_add_tail(&p_ent->list, &p_spq->completion_pending);
|
|
p_spq->comp_sent_count++;
|
|
|
|
rc = qed_spq_hw_post(p_hwfn, p_spq, p_ent);
|
|
if (rc) {
|
|
list_del(&p_ent->list);
|
|
__qed_spq_return_entry(p_hwfn, p_ent);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_spq_pend_post(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_spq *p_spq = p_hwfn->p_spq;
|
|
struct qed_spq_entry *p_ent = NULL;
|
|
|
|
while (!list_empty(&p_spq->free_pool)) {
|
|
if (list_empty(&p_spq->unlimited_pending))
|
|
break;
|
|
|
|
p_ent = list_first_entry(&p_spq->unlimited_pending,
|
|
struct qed_spq_entry,
|
|
list);
|
|
if (!p_ent)
|
|
return -EINVAL;
|
|
|
|
list_del(&p_ent->list);
|
|
|
|
qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
|
|
}
|
|
|
|
return qed_spq_post_list(p_hwfn, &p_spq->pending,
|
|
SPQ_HIGH_PRI_RESERVE_DEFAULT);
|
|
}
|
|
|
|
int qed_spq_post(struct qed_hwfn *p_hwfn,
|
|
struct qed_spq_entry *p_ent,
|
|
u8 *fw_return_code)
|
|
{
|
|
int rc = 0;
|
|
struct qed_spq *p_spq = p_hwfn ? p_hwfn->p_spq : NULL;
|
|
bool b_ret_ent = true;
|
|
|
|
if (!p_hwfn)
|
|
return -EINVAL;
|
|
|
|
if (!p_ent) {
|
|
DP_NOTICE(p_hwfn, "Got a NULL pointer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Complete the entry */
|
|
rc = qed_spq_fill_entry(p_hwfn, p_ent);
|
|
|
|
spin_lock_bh(&p_spq->lock);
|
|
|
|
/* Check return value after LOCK is taken for cleaner error flow */
|
|
if (rc)
|
|
goto spq_post_fail;
|
|
|
|
/* Add the request to the pending queue */
|
|
rc = qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
|
|
if (rc)
|
|
goto spq_post_fail;
|
|
|
|
rc = qed_spq_pend_post(p_hwfn);
|
|
if (rc) {
|
|
/* Since it's possible that pending failed for a different
|
|
* entry [although unlikely], the failed entry was already
|
|
* dealt with; No need to return it here.
|
|
*/
|
|
b_ret_ent = false;
|
|
goto spq_post_fail;
|
|
}
|
|
|
|
spin_unlock_bh(&p_spq->lock);
|
|
|
|
if (p_ent->comp_mode == QED_SPQ_MODE_EBLOCK) {
|
|
/* For entries in QED BLOCK mode, the completion code cannot
|
|
* perform the necessary cleanup - if it did, we couldn't
|
|
* access p_ent here to see whether it's successful or not.
|
|
* Thus, after gaining the answer perform the cleanup here.
|
|
*/
|
|
rc = qed_spq_block(p_hwfn, p_ent, fw_return_code);
|
|
|
|
if (p_ent->queue == &p_spq->unlimited_pending) {
|
|
/* This is an allocated p_ent which does not need to
|
|
* return to pool.
|
|
*/
|
|
kfree(p_ent);
|
|
return rc;
|
|
}
|
|
|
|
if (rc)
|
|
goto spq_post_fail2;
|
|
|
|
/* return to pool */
|
|
qed_spq_return_entry(p_hwfn, p_ent);
|
|
}
|
|
return rc;
|
|
|
|
spq_post_fail2:
|
|
spin_lock_bh(&p_spq->lock);
|
|
list_del(&p_ent->list);
|
|
qed_chain_return_produced(&p_spq->chain);
|
|
|
|
spq_post_fail:
|
|
/* return to the free pool */
|
|
if (b_ret_ent)
|
|
__qed_spq_return_entry(p_hwfn, p_ent);
|
|
spin_unlock_bh(&p_spq->lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int qed_spq_completion(struct qed_hwfn *p_hwfn,
|
|
__le16 echo,
|
|
u8 fw_return_code,
|
|
union event_ring_data *p_data)
|
|
{
|
|
struct qed_spq *p_spq;
|
|
struct qed_spq_entry *p_ent = NULL;
|
|
struct qed_spq_entry *tmp;
|
|
struct qed_spq_entry *found = NULL;
|
|
int rc;
|
|
|
|
if (!p_hwfn)
|
|
return -EINVAL;
|
|
|
|
p_spq = p_hwfn->p_spq;
|
|
if (!p_spq)
|
|
return -EINVAL;
|
|
|
|
spin_lock_bh(&p_spq->lock);
|
|
list_for_each_entry_safe(p_ent, tmp, &p_spq->completion_pending,
|
|
list) {
|
|
if (p_ent->elem.hdr.echo == echo) {
|
|
u16 pos = le16_to_cpu(echo) % SPQ_RING_SIZE;
|
|
|
|
list_del(&p_ent->list);
|
|
|
|
/* Avoid overriding of SPQ entries when getting
|
|
* out-of-order completions, by marking the completions
|
|
* in a bitmap and increasing the chain consumer only
|
|
* for the first successive completed entries.
|
|
*/
|
|
__set_bit(pos, p_spq->p_comp_bitmap);
|
|
|
|
while (test_bit(p_spq->comp_bitmap_idx,
|
|
p_spq->p_comp_bitmap)) {
|
|
__clear_bit(p_spq->comp_bitmap_idx,
|
|
p_spq->p_comp_bitmap);
|
|
p_spq->comp_bitmap_idx++;
|
|
qed_chain_return_produced(&p_spq->chain);
|
|
}
|
|
|
|
p_spq->comp_count++;
|
|
found = p_ent;
|
|
break;
|
|
}
|
|
|
|
/* This is relatively uncommon - depends on scenarios
|
|
* which have mutliple per-PF sent ramrods.
|
|
*/
|
|
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
|
|
"Got completion for echo %04x - doesn't match echo %04x in completion pending list\n",
|
|
le16_to_cpu(echo),
|
|
le16_to_cpu(p_ent->elem.hdr.echo));
|
|
}
|
|
|
|
/* Release lock before callback, as callback may post
|
|
* an additional ramrod.
|
|
*/
|
|
spin_unlock_bh(&p_spq->lock);
|
|
|
|
if (!found) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to find an entry this EQE completes\n");
|
|
return -EEXIST;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Complete: func %p cookie %p)\n",
|
|
p_ent->comp_cb.function, p_ent->comp_cb.cookie);
|
|
if (found->comp_cb.function)
|
|
found->comp_cb.function(p_hwfn, found->comp_cb.cookie, p_data,
|
|
fw_return_code);
|
|
|
|
if ((found->comp_mode != QED_SPQ_MODE_EBLOCK) ||
|
|
(found->queue == &p_spq->unlimited_pending))
|
|
/* EBLOCK is responsible for returning its own entry into the
|
|
* free list, unless it originally added the entry into the
|
|
* unlimited pending list.
|
|
*/
|
|
qed_spq_return_entry(p_hwfn, found);
|
|
|
|
/* Attempt to post pending requests */
|
|
spin_lock_bh(&p_spq->lock);
|
|
rc = qed_spq_pend_post(p_hwfn);
|
|
spin_unlock_bh(&p_spq->lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
struct qed_consq *qed_consq_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_consq *p_consq;
|
|
|
|
/* Allocate ConsQ struct */
|
|
p_consq = kzalloc(sizeof(*p_consq), GFP_KERNEL);
|
|
if (!p_consq) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_consq'\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate and initialize EQ chain*/
|
|
if (qed_chain_alloc(p_hwfn->cdev,
|
|
QED_CHAIN_USE_TO_PRODUCE,
|
|
QED_CHAIN_MODE_PBL,
|
|
QED_CHAIN_CNT_TYPE_U16,
|
|
QED_CHAIN_PAGE_SIZE / 0x80,
|
|
0x80, &p_consq->chain)) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate consq chain");
|
|
goto consq_allocate_fail;
|
|
}
|
|
|
|
return p_consq;
|
|
|
|
consq_allocate_fail:
|
|
qed_consq_free(p_hwfn, p_consq);
|
|
return NULL;
|
|
}
|
|
|
|
void qed_consq_setup(struct qed_hwfn *p_hwfn,
|
|
struct qed_consq *p_consq)
|
|
{
|
|
qed_chain_reset(&p_consq->chain);
|
|
}
|
|
|
|
void qed_consq_free(struct qed_hwfn *p_hwfn,
|
|
struct qed_consq *p_consq)
|
|
{
|
|
if (!p_consq)
|
|
return;
|
|
qed_chain_free(p_hwfn->cdev, &p_consq->chain);
|
|
kfree(p_consq);
|
|
}
|