forked from Minki/linux
1ea252afcd
When auditing a 32-bit guest on a 64-bit host, sign extension of the page table directory pointer table index caused bogus addresses to be shown on audit errors. Fix by declaring the index unsigned. Signed-off-by: Avi Kivity <avi@qumranet.com>
1478 lines
35 KiB
C
1478 lines
35 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* MMU support
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <asm/page.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "vmx.h"
|
|
#include "kvm.h"
|
|
|
|
#undef MMU_DEBUG
|
|
|
|
#undef AUDIT
|
|
|
|
#ifdef AUDIT
|
|
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
|
|
#else
|
|
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
|
|
#endif
|
|
|
|
#ifdef MMU_DEBUG
|
|
|
|
#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
|
|
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
|
|
|
|
#else
|
|
|
|
#define pgprintk(x...) do { } while (0)
|
|
#define rmap_printk(x...) do { } while (0)
|
|
|
|
#endif
|
|
|
|
#if defined(MMU_DEBUG) || defined(AUDIT)
|
|
static int dbg = 1;
|
|
#endif
|
|
|
|
#define ASSERT(x) \
|
|
if (!(x)) { \
|
|
printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
|
|
__FILE__, __LINE__, #x); \
|
|
}
|
|
|
|
#define PT64_PT_BITS 9
|
|
#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
|
|
#define PT32_PT_BITS 10
|
|
#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
|
|
|
|
#define PT_WRITABLE_SHIFT 1
|
|
|
|
#define PT_PRESENT_MASK (1ULL << 0)
|
|
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
|
|
#define PT_USER_MASK (1ULL << 2)
|
|
#define PT_PWT_MASK (1ULL << 3)
|
|
#define PT_PCD_MASK (1ULL << 4)
|
|
#define PT_ACCESSED_MASK (1ULL << 5)
|
|
#define PT_DIRTY_MASK (1ULL << 6)
|
|
#define PT_PAGE_SIZE_MASK (1ULL << 7)
|
|
#define PT_PAT_MASK (1ULL << 7)
|
|
#define PT_GLOBAL_MASK (1ULL << 8)
|
|
#define PT64_NX_MASK (1ULL << 63)
|
|
|
|
#define PT_PAT_SHIFT 7
|
|
#define PT_DIR_PAT_SHIFT 12
|
|
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
|
|
|
|
#define PT32_DIR_PSE36_SIZE 4
|
|
#define PT32_DIR_PSE36_SHIFT 13
|
|
#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
|
|
|
|
|
|
#define PT32_PTE_COPY_MASK \
|
|
(PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
|
|
|
|
#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
|
|
|
|
#define PT_FIRST_AVAIL_BITS_SHIFT 9
|
|
#define PT64_SECOND_AVAIL_BITS_SHIFT 52
|
|
|
|
#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
|
|
#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
|
|
|
|
#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
|
|
#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
|
|
|
|
#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
|
|
#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
|
|
|
|
#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
|
|
|
|
#define VALID_PAGE(x) ((x) != INVALID_PAGE)
|
|
|
|
#define PT64_LEVEL_BITS 9
|
|
|
|
#define PT64_LEVEL_SHIFT(level) \
|
|
( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
|
|
|
|
#define PT64_LEVEL_MASK(level) \
|
|
(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
|
|
|
|
#define PT64_INDEX(address, level)\
|
|
(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
|
|
|
|
|
|
#define PT32_LEVEL_BITS 10
|
|
|
|
#define PT32_LEVEL_SHIFT(level) \
|
|
( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
|
|
|
|
#define PT32_LEVEL_MASK(level) \
|
|
(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
|
|
|
|
#define PT32_INDEX(address, level)\
|
|
(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
|
|
|
|
|
|
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
|
|
#define PT64_DIR_BASE_ADDR_MASK \
|
|
(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
|
|
|
|
#define PT32_BASE_ADDR_MASK PAGE_MASK
|
|
#define PT32_DIR_BASE_ADDR_MASK \
|
|
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
|
|
|
|
|
|
#define PFERR_PRESENT_MASK (1U << 0)
|
|
#define PFERR_WRITE_MASK (1U << 1)
|
|
#define PFERR_USER_MASK (1U << 2)
|
|
#define PFERR_FETCH_MASK (1U << 4)
|
|
|
|
#define PT64_ROOT_LEVEL 4
|
|
#define PT32_ROOT_LEVEL 2
|
|
#define PT32E_ROOT_LEVEL 3
|
|
|
|
#define PT_DIRECTORY_LEVEL 2
|
|
#define PT_PAGE_TABLE_LEVEL 1
|
|
|
|
#define RMAP_EXT 4
|
|
|
|
struct kvm_rmap_desc {
|
|
u64 *shadow_ptes[RMAP_EXT];
|
|
struct kvm_rmap_desc *more;
|
|
};
|
|
|
|
static int is_write_protection(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->cr0 & CR0_WP_MASK;
|
|
}
|
|
|
|
static int is_cpuid_PSE36(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int is_nx(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->shadow_efer & EFER_NX;
|
|
}
|
|
|
|
static int is_present_pte(unsigned long pte)
|
|
{
|
|
return pte & PT_PRESENT_MASK;
|
|
}
|
|
|
|
static int is_writeble_pte(unsigned long pte)
|
|
{
|
|
return pte & PT_WRITABLE_MASK;
|
|
}
|
|
|
|
static int is_io_pte(unsigned long pte)
|
|
{
|
|
return pte & PT_SHADOW_IO_MARK;
|
|
}
|
|
|
|
static int is_rmap_pte(u64 pte)
|
|
{
|
|
return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
|
|
== (PT_WRITABLE_MASK | PT_PRESENT_MASK);
|
|
}
|
|
|
|
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
|
size_t objsize, int min)
|
|
{
|
|
void *obj;
|
|
|
|
if (cache->nobjs >= min)
|
|
return 0;
|
|
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
|
|
obj = kzalloc(objsize, GFP_NOWAIT);
|
|
if (!obj)
|
|
return -ENOMEM;
|
|
cache->objects[cache->nobjs++] = obj;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
while (mc->nobjs)
|
|
kfree(mc->objects[--mc->nobjs]);
|
|
}
|
|
|
|
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
|
|
sizeof(struct kvm_pte_chain), 4);
|
|
if (r)
|
|
goto out;
|
|
r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
|
|
sizeof(struct kvm_rmap_desc), 1);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
|
|
mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
|
|
}
|
|
|
|
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
|
|
size_t size)
|
|
{
|
|
void *p;
|
|
|
|
BUG_ON(!mc->nobjs);
|
|
p = mc->objects[--mc->nobjs];
|
|
memset(p, 0, size);
|
|
return p;
|
|
}
|
|
|
|
static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
|
|
{
|
|
if (mc->nobjs < KVM_NR_MEM_OBJS)
|
|
mc->objects[mc->nobjs++] = obj;
|
|
else
|
|
kfree(obj);
|
|
}
|
|
|
|
static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
|
|
{
|
|
return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
|
|
sizeof(struct kvm_pte_chain));
|
|
}
|
|
|
|
static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
|
|
struct kvm_pte_chain *pc)
|
|
{
|
|
mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
|
|
}
|
|
|
|
static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
|
|
{
|
|
return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
|
|
sizeof(struct kvm_rmap_desc));
|
|
}
|
|
|
|
static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
|
|
struct kvm_rmap_desc *rd)
|
|
{
|
|
mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
|
|
}
|
|
|
|
/*
|
|
* Reverse mapping data structures:
|
|
*
|
|
* If page->private bit zero is zero, then page->private points to the
|
|
* shadow page table entry that points to page_address(page).
|
|
*
|
|
* If page->private bit zero is one, (then page->private & ~1) points
|
|
* to a struct kvm_rmap_desc containing more mappings.
|
|
*/
|
|
static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
|
|
{
|
|
struct page *page;
|
|
struct kvm_rmap_desc *desc;
|
|
int i;
|
|
|
|
if (!is_rmap_pte(*spte))
|
|
return;
|
|
page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
|
|
if (!page_private(page)) {
|
|
rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
|
|
set_page_private(page,(unsigned long)spte);
|
|
} else if (!(page_private(page) & 1)) {
|
|
rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
|
|
desc = mmu_alloc_rmap_desc(vcpu);
|
|
desc->shadow_ptes[0] = (u64 *)page_private(page);
|
|
desc->shadow_ptes[1] = spte;
|
|
set_page_private(page,(unsigned long)desc | 1);
|
|
} else {
|
|
rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
|
|
desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
|
|
while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
|
|
desc = desc->more;
|
|
if (desc->shadow_ptes[RMAP_EXT-1]) {
|
|
desc->more = mmu_alloc_rmap_desc(vcpu);
|
|
desc = desc->more;
|
|
}
|
|
for (i = 0; desc->shadow_ptes[i]; ++i)
|
|
;
|
|
desc->shadow_ptes[i] = spte;
|
|
}
|
|
}
|
|
|
|
static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
|
|
struct page *page,
|
|
struct kvm_rmap_desc *desc,
|
|
int i,
|
|
struct kvm_rmap_desc *prev_desc)
|
|
{
|
|
int j;
|
|
|
|
for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
|
|
;
|
|
desc->shadow_ptes[i] = desc->shadow_ptes[j];
|
|
desc->shadow_ptes[j] = NULL;
|
|
if (j != 0)
|
|
return;
|
|
if (!prev_desc && !desc->more)
|
|
set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
|
|
else
|
|
if (prev_desc)
|
|
prev_desc->more = desc->more;
|
|
else
|
|
set_page_private(page,(unsigned long)desc->more | 1);
|
|
mmu_free_rmap_desc(vcpu, desc);
|
|
}
|
|
|
|
static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
|
|
{
|
|
struct page *page;
|
|
struct kvm_rmap_desc *desc;
|
|
struct kvm_rmap_desc *prev_desc;
|
|
int i;
|
|
|
|
if (!is_rmap_pte(*spte))
|
|
return;
|
|
page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
|
|
if (!page_private(page)) {
|
|
printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
|
|
BUG();
|
|
} else if (!(page_private(page) & 1)) {
|
|
rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
|
|
if ((u64 *)page_private(page) != spte) {
|
|
printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
|
|
spte, *spte);
|
|
BUG();
|
|
}
|
|
set_page_private(page,0);
|
|
} else {
|
|
rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
|
|
desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
|
|
prev_desc = NULL;
|
|
while (desc) {
|
|
for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
|
|
if (desc->shadow_ptes[i] == spte) {
|
|
rmap_desc_remove_entry(vcpu, page,
|
|
desc, i,
|
|
prev_desc);
|
|
return;
|
|
}
|
|
prev_desc = desc;
|
|
desc = desc->more;
|
|
}
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct page *page;
|
|
struct kvm_memory_slot *slot;
|
|
struct kvm_rmap_desc *desc;
|
|
u64 *spte;
|
|
|
|
slot = gfn_to_memslot(kvm, gfn);
|
|
BUG_ON(!slot);
|
|
page = gfn_to_page(slot, gfn);
|
|
|
|
while (page_private(page)) {
|
|
if (!(page_private(page) & 1))
|
|
spte = (u64 *)page_private(page);
|
|
else {
|
|
desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
|
|
spte = desc->shadow_ptes[0];
|
|
}
|
|
BUG_ON(!spte);
|
|
BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
|
|
!= page_to_pfn(page));
|
|
BUG_ON(!(*spte & PT_PRESENT_MASK));
|
|
BUG_ON(!(*spte & PT_WRITABLE_MASK));
|
|
rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
|
|
rmap_remove(vcpu, spte);
|
|
kvm_arch_ops->tlb_flush(vcpu);
|
|
*spte &= ~(u64)PT_WRITABLE_MASK;
|
|
}
|
|
}
|
|
|
|
static int is_empty_shadow_page(hpa_t page_hpa)
|
|
{
|
|
u64 *pos;
|
|
u64 *end;
|
|
|
|
for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
|
|
pos != end; pos++)
|
|
if (*pos != 0) {
|
|
printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
|
|
pos, *pos);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
|
|
{
|
|
struct kvm_mmu_page *page_head = page_header(page_hpa);
|
|
|
|
ASSERT(is_empty_shadow_page(page_hpa));
|
|
list_del(&page_head->link);
|
|
page_head->page_hpa = page_hpa;
|
|
list_add(&page_head->link, &vcpu->free_pages);
|
|
++vcpu->kvm->n_free_mmu_pages;
|
|
}
|
|
|
|
static unsigned kvm_page_table_hashfn(gfn_t gfn)
|
|
{
|
|
return gfn;
|
|
}
|
|
|
|
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
|
|
u64 *parent_pte)
|
|
{
|
|
struct kvm_mmu_page *page;
|
|
|
|
if (list_empty(&vcpu->free_pages))
|
|
return NULL;
|
|
|
|
page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
|
|
list_del(&page->link);
|
|
list_add(&page->link, &vcpu->kvm->active_mmu_pages);
|
|
ASSERT(is_empty_shadow_page(page->page_hpa));
|
|
page->slot_bitmap = 0;
|
|
page->global = 1;
|
|
page->multimapped = 0;
|
|
page->parent_pte = parent_pte;
|
|
--vcpu->kvm->n_free_mmu_pages;
|
|
return page;
|
|
}
|
|
|
|
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *page, u64 *parent_pte)
|
|
{
|
|
struct kvm_pte_chain *pte_chain;
|
|
struct hlist_node *node;
|
|
int i;
|
|
|
|
if (!parent_pte)
|
|
return;
|
|
if (!page->multimapped) {
|
|
u64 *old = page->parent_pte;
|
|
|
|
if (!old) {
|
|
page->parent_pte = parent_pte;
|
|
return;
|
|
}
|
|
page->multimapped = 1;
|
|
pte_chain = mmu_alloc_pte_chain(vcpu);
|
|
INIT_HLIST_HEAD(&page->parent_ptes);
|
|
hlist_add_head(&pte_chain->link, &page->parent_ptes);
|
|
pte_chain->parent_ptes[0] = old;
|
|
}
|
|
hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
|
|
if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
|
|
continue;
|
|
for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
|
|
if (!pte_chain->parent_ptes[i]) {
|
|
pte_chain->parent_ptes[i] = parent_pte;
|
|
return;
|
|
}
|
|
}
|
|
pte_chain = mmu_alloc_pte_chain(vcpu);
|
|
BUG_ON(!pte_chain);
|
|
hlist_add_head(&pte_chain->link, &page->parent_ptes);
|
|
pte_chain->parent_ptes[0] = parent_pte;
|
|
}
|
|
|
|
static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *page,
|
|
u64 *parent_pte)
|
|
{
|
|
struct kvm_pte_chain *pte_chain;
|
|
struct hlist_node *node;
|
|
int i;
|
|
|
|
if (!page->multimapped) {
|
|
BUG_ON(page->parent_pte != parent_pte);
|
|
page->parent_pte = NULL;
|
|
return;
|
|
}
|
|
hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
|
|
for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
|
|
if (!pte_chain->parent_ptes[i])
|
|
break;
|
|
if (pte_chain->parent_ptes[i] != parent_pte)
|
|
continue;
|
|
while (i + 1 < NR_PTE_CHAIN_ENTRIES
|
|
&& pte_chain->parent_ptes[i + 1]) {
|
|
pte_chain->parent_ptes[i]
|
|
= pte_chain->parent_ptes[i + 1];
|
|
++i;
|
|
}
|
|
pte_chain->parent_ptes[i] = NULL;
|
|
if (i == 0) {
|
|
hlist_del(&pte_chain->link);
|
|
mmu_free_pte_chain(vcpu, pte_chain);
|
|
if (hlist_empty(&page->parent_ptes)) {
|
|
page->multimapped = 0;
|
|
page->parent_pte = NULL;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
|
|
gfn_t gfn)
|
|
{
|
|
unsigned index;
|
|
struct hlist_head *bucket;
|
|
struct kvm_mmu_page *page;
|
|
struct hlist_node *node;
|
|
|
|
pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
|
|
index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
|
|
bucket = &vcpu->kvm->mmu_page_hash[index];
|
|
hlist_for_each_entry(page, node, bucket, hash_link)
|
|
if (page->gfn == gfn && !page->role.metaphysical) {
|
|
pgprintk("%s: found role %x\n",
|
|
__FUNCTION__, page->role.word);
|
|
return page;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
|
|
gfn_t gfn,
|
|
gva_t gaddr,
|
|
unsigned level,
|
|
int metaphysical,
|
|
u64 *parent_pte)
|
|
{
|
|
union kvm_mmu_page_role role;
|
|
unsigned index;
|
|
unsigned quadrant;
|
|
struct hlist_head *bucket;
|
|
struct kvm_mmu_page *page;
|
|
struct hlist_node *node;
|
|
|
|
role.word = 0;
|
|
role.glevels = vcpu->mmu.root_level;
|
|
role.level = level;
|
|
role.metaphysical = metaphysical;
|
|
if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
|
|
quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
|
|
quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
|
|
role.quadrant = quadrant;
|
|
}
|
|
pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
|
|
gfn, role.word);
|
|
index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
|
|
bucket = &vcpu->kvm->mmu_page_hash[index];
|
|
hlist_for_each_entry(page, node, bucket, hash_link)
|
|
if (page->gfn == gfn && page->role.word == role.word) {
|
|
mmu_page_add_parent_pte(vcpu, page, parent_pte);
|
|
pgprintk("%s: found\n", __FUNCTION__);
|
|
return page;
|
|
}
|
|
page = kvm_mmu_alloc_page(vcpu, parent_pte);
|
|
if (!page)
|
|
return page;
|
|
pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
|
|
page->gfn = gfn;
|
|
page->role = role;
|
|
hlist_add_head(&page->hash_link, bucket);
|
|
if (!metaphysical)
|
|
rmap_write_protect(vcpu, gfn);
|
|
return page;
|
|
}
|
|
|
|
static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *page)
|
|
{
|
|
unsigned i;
|
|
u64 *pt;
|
|
u64 ent;
|
|
|
|
pt = __va(page->page_hpa);
|
|
|
|
if (page->role.level == PT_PAGE_TABLE_LEVEL) {
|
|
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
|
|
if (pt[i] & PT_PRESENT_MASK)
|
|
rmap_remove(vcpu, &pt[i]);
|
|
pt[i] = 0;
|
|
}
|
|
kvm_arch_ops->tlb_flush(vcpu);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
|
|
ent = pt[i];
|
|
|
|
pt[i] = 0;
|
|
if (!(ent & PT_PRESENT_MASK))
|
|
continue;
|
|
ent &= PT64_BASE_ADDR_MASK;
|
|
mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
|
|
}
|
|
}
|
|
|
|
static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *page,
|
|
u64 *parent_pte)
|
|
{
|
|
mmu_page_remove_parent_pte(vcpu, page, parent_pte);
|
|
}
|
|
|
|
static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *page)
|
|
{
|
|
u64 *parent_pte;
|
|
|
|
while (page->multimapped || page->parent_pte) {
|
|
if (!page->multimapped)
|
|
parent_pte = page->parent_pte;
|
|
else {
|
|
struct kvm_pte_chain *chain;
|
|
|
|
chain = container_of(page->parent_ptes.first,
|
|
struct kvm_pte_chain, link);
|
|
parent_pte = chain->parent_ptes[0];
|
|
}
|
|
BUG_ON(!parent_pte);
|
|
kvm_mmu_put_page(vcpu, page, parent_pte);
|
|
*parent_pte = 0;
|
|
}
|
|
kvm_mmu_page_unlink_children(vcpu, page);
|
|
if (!page->root_count) {
|
|
hlist_del(&page->hash_link);
|
|
kvm_mmu_free_page(vcpu, page->page_hpa);
|
|
} else {
|
|
list_del(&page->link);
|
|
list_add(&page->link, &vcpu->kvm->active_mmu_pages);
|
|
}
|
|
}
|
|
|
|
static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
unsigned index;
|
|
struct hlist_head *bucket;
|
|
struct kvm_mmu_page *page;
|
|
struct hlist_node *node, *n;
|
|
int r;
|
|
|
|
pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
|
|
r = 0;
|
|
index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
|
|
bucket = &vcpu->kvm->mmu_page_hash[index];
|
|
hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
|
|
if (page->gfn == gfn && !page->role.metaphysical) {
|
|
pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
|
|
page->role.word);
|
|
kvm_mmu_zap_page(vcpu, page);
|
|
r = 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
|
|
{
|
|
int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
|
|
struct kvm_mmu_page *page_head = page_header(__pa(pte));
|
|
|
|
__set_bit(slot, &page_head->slot_bitmap);
|
|
}
|
|
|
|
hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
|
|
{
|
|
hpa_t hpa = gpa_to_hpa(vcpu, gpa);
|
|
|
|
return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
|
|
}
|
|
|
|
hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
|
|
{
|
|
struct kvm_memory_slot *slot;
|
|
struct page *page;
|
|
|
|
ASSERT((gpa & HPA_ERR_MASK) == 0);
|
|
slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
|
|
if (!slot)
|
|
return gpa | HPA_ERR_MASK;
|
|
page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
|
|
return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
|
|
| (gpa & (PAGE_SIZE-1));
|
|
}
|
|
|
|
hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
|
|
{
|
|
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return UNMAPPED_GVA;
|
|
return gpa_to_hpa(vcpu, gpa);
|
|
}
|
|
|
|
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
|
|
{
|
|
int level = PT32E_ROOT_LEVEL;
|
|
hpa_t table_addr = vcpu->mmu.root_hpa;
|
|
|
|
for (; ; level--) {
|
|
u32 index = PT64_INDEX(v, level);
|
|
u64 *table;
|
|
u64 pte;
|
|
|
|
ASSERT(VALID_PAGE(table_addr));
|
|
table = __va(table_addr);
|
|
|
|
if (level == 1) {
|
|
pte = table[index];
|
|
if (is_present_pte(pte) && is_writeble_pte(pte))
|
|
return 0;
|
|
mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
|
|
page_header_update_slot(vcpu->kvm, table, v);
|
|
table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
|
|
PT_USER_MASK;
|
|
rmap_add(vcpu, &table[index]);
|
|
return 0;
|
|
}
|
|
|
|
if (table[index] == 0) {
|
|
struct kvm_mmu_page *new_table;
|
|
gfn_t pseudo_gfn;
|
|
|
|
pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
|
|
>> PAGE_SHIFT;
|
|
new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
|
|
v, level - 1,
|
|
1, &table[index]);
|
|
if (!new_table) {
|
|
pgprintk("nonpaging_map: ENOMEM\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
table[index] = new_table->page_hpa | PT_PRESENT_MASK
|
|
| PT_WRITABLE_MASK | PT_USER_MASK;
|
|
}
|
|
table_addr = table[index] & PT64_BASE_ADDR_MASK;
|
|
}
|
|
}
|
|
|
|
static void mmu_free_roots(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_mmu_page *page;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
|
|
hpa_t root = vcpu->mmu.root_hpa;
|
|
|
|
ASSERT(VALID_PAGE(root));
|
|
page = page_header(root);
|
|
--page->root_count;
|
|
vcpu->mmu.root_hpa = INVALID_PAGE;
|
|
return;
|
|
}
|
|
#endif
|
|
for (i = 0; i < 4; ++i) {
|
|
hpa_t root = vcpu->mmu.pae_root[i];
|
|
|
|
ASSERT(VALID_PAGE(root));
|
|
root &= PT64_BASE_ADDR_MASK;
|
|
page = page_header(root);
|
|
--page->root_count;
|
|
vcpu->mmu.pae_root[i] = INVALID_PAGE;
|
|
}
|
|
vcpu->mmu.root_hpa = INVALID_PAGE;
|
|
}
|
|
|
|
static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
gfn_t root_gfn;
|
|
struct kvm_mmu_page *page;
|
|
|
|
root_gfn = vcpu->cr3 >> PAGE_SHIFT;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
|
|
hpa_t root = vcpu->mmu.root_hpa;
|
|
|
|
ASSERT(!VALID_PAGE(root));
|
|
page = kvm_mmu_get_page(vcpu, root_gfn, 0,
|
|
PT64_ROOT_LEVEL, 0, NULL);
|
|
root = page->page_hpa;
|
|
++page->root_count;
|
|
vcpu->mmu.root_hpa = root;
|
|
return;
|
|
}
|
|
#endif
|
|
for (i = 0; i < 4; ++i) {
|
|
hpa_t root = vcpu->mmu.pae_root[i];
|
|
|
|
ASSERT(!VALID_PAGE(root));
|
|
if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
|
|
root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
|
|
else if (vcpu->mmu.root_level == 0)
|
|
root_gfn = 0;
|
|
page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
|
|
PT32_ROOT_LEVEL, !is_paging(vcpu),
|
|
NULL);
|
|
root = page->page_hpa;
|
|
++page->root_count;
|
|
vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
|
|
}
|
|
vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
|
|
}
|
|
|
|
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
|
|
{
|
|
return vaddr;
|
|
}
|
|
|
|
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
|
|
u32 error_code)
|
|
{
|
|
gpa_t addr = gva;
|
|
hpa_t paddr;
|
|
int r;
|
|
|
|
r = mmu_topup_memory_caches(vcpu);
|
|
if (r)
|
|
return r;
|
|
|
|
ASSERT(vcpu);
|
|
ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
|
|
|
|
|
|
paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
|
|
|
|
if (is_error_hpa(paddr))
|
|
return 1;
|
|
|
|
return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
|
|
}
|
|
|
|
static void nonpaging_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
mmu_free_roots(vcpu);
|
|
}
|
|
|
|
static int nonpaging_init_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu *context = &vcpu->mmu;
|
|
|
|
context->new_cr3 = nonpaging_new_cr3;
|
|
context->page_fault = nonpaging_page_fault;
|
|
context->gva_to_gpa = nonpaging_gva_to_gpa;
|
|
context->free = nonpaging_free;
|
|
context->root_level = 0;
|
|
context->shadow_root_level = PT32E_ROOT_LEVEL;
|
|
mmu_alloc_roots(vcpu);
|
|
ASSERT(VALID_PAGE(context->root_hpa));
|
|
kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
++kvm_stat.tlb_flush;
|
|
kvm_arch_ops->tlb_flush(vcpu);
|
|
}
|
|
|
|
static void paging_new_cr3(struct kvm_vcpu *vcpu)
|
|
{
|
|
pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
|
|
mmu_free_roots(vcpu);
|
|
if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
|
|
kvm_mmu_free_some_pages(vcpu);
|
|
mmu_alloc_roots(vcpu);
|
|
kvm_mmu_flush_tlb(vcpu);
|
|
kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
|
|
}
|
|
|
|
static void mark_pagetable_nonglobal(void *shadow_pte)
|
|
{
|
|
page_header(__pa(shadow_pte))->global = 0;
|
|
}
|
|
|
|
static inline void set_pte_common(struct kvm_vcpu *vcpu,
|
|
u64 *shadow_pte,
|
|
gpa_t gaddr,
|
|
int dirty,
|
|
u64 access_bits,
|
|
gfn_t gfn)
|
|
{
|
|
hpa_t paddr;
|
|
|
|
*shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
|
|
if (!dirty)
|
|
access_bits &= ~PT_WRITABLE_MASK;
|
|
|
|
paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
|
|
|
|
*shadow_pte |= access_bits;
|
|
|
|
if (!(*shadow_pte & PT_GLOBAL_MASK))
|
|
mark_pagetable_nonglobal(shadow_pte);
|
|
|
|
if (is_error_hpa(paddr)) {
|
|
*shadow_pte |= gaddr;
|
|
*shadow_pte |= PT_SHADOW_IO_MARK;
|
|
*shadow_pte &= ~PT_PRESENT_MASK;
|
|
return;
|
|
}
|
|
|
|
*shadow_pte |= paddr;
|
|
|
|
if (access_bits & PT_WRITABLE_MASK) {
|
|
struct kvm_mmu_page *shadow;
|
|
|
|
shadow = kvm_mmu_lookup_page(vcpu, gfn);
|
|
if (shadow) {
|
|
pgprintk("%s: found shadow page for %lx, marking ro\n",
|
|
__FUNCTION__, gfn);
|
|
access_bits &= ~PT_WRITABLE_MASK;
|
|
if (is_writeble_pte(*shadow_pte)) {
|
|
*shadow_pte &= ~PT_WRITABLE_MASK;
|
|
kvm_arch_ops->tlb_flush(vcpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (access_bits & PT_WRITABLE_MASK)
|
|
mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
|
|
|
|
page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
|
|
rmap_add(vcpu, shadow_pte);
|
|
}
|
|
|
|
static void inject_page_fault(struct kvm_vcpu *vcpu,
|
|
u64 addr,
|
|
u32 err_code)
|
|
{
|
|
kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
|
|
}
|
|
|
|
static inline int fix_read_pf(u64 *shadow_ent)
|
|
{
|
|
if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
|
|
!(*shadow_ent & PT_USER_MASK)) {
|
|
/*
|
|
* If supervisor write protect is disabled, we shadow kernel
|
|
* pages as user pages so we can trap the write access.
|
|
*/
|
|
*shadow_ent |= PT_USER_MASK;
|
|
*shadow_ent &= ~PT_WRITABLE_MASK;
|
|
|
|
return 1;
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void paging_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
nonpaging_free(vcpu);
|
|
}
|
|
|
|
#define PTTYPE 64
|
|
#include "paging_tmpl.h"
|
|
#undef PTTYPE
|
|
|
|
#define PTTYPE 32
|
|
#include "paging_tmpl.h"
|
|
#undef PTTYPE
|
|
|
|
static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
|
|
{
|
|
struct kvm_mmu *context = &vcpu->mmu;
|
|
|
|
ASSERT(is_pae(vcpu));
|
|
context->new_cr3 = paging_new_cr3;
|
|
context->page_fault = paging64_page_fault;
|
|
context->gva_to_gpa = paging64_gva_to_gpa;
|
|
context->free = paging_free;
|
|
context->root_level = level;
|
|
context->shadow_root_level = level;
|
|
mmu_alloc_roots(vcpu);
|
|
ASSERT(VALID_PAGE(context->root_hpa));
|
|
kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
|
|
(vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
|
|
return 0;
|
|
}
|
|
|
|
static int paging64_init_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
|
|
}
|
|
|
|
static int paging32_init_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu *context = &vcpu->mmu;
|
|
|
|
context->new_cr3 = paging_new_cr3;
|
|
context->page_fault = paging32_page_fault;
|
|
context->gva_to_gpa = paging32_gva_to_gpa;
|
|
context->free = paging_free;
|
|
context->root_level = PT32_ROOT_LEVEL;
|
|
context->shadow_root_level = PT32E_ROOT_LEVEL;
|
|
mmu_alloc_roots(vcpu);
|
|
ASSERT(VALID_PAGE(context->root_hpa));
|
|
kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
|
|
(vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
|
|
return 0;
|
|
}
|
|
|
|
static int paging32E_init_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
|
|
}
|
|
|
|
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
ASSERT(vcpu);
|
|
ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
|
|
|
|
if (!is_paging(vcpu))
|
|
return nonpaging_init_context(vcpu);
|
|
else if (is_long_mode(vcpu))
|
|
return paging64_init_context(vcpu);
|
|
else if (is_pae(vcpu))
|
|
return paging32E_init_context(vcpu);
|
|
else
|
|
return paging32_init_context(vcpu);
|
|
}
|
|
|
|
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
ASSERT(vcpu);
|
|
if (VALID_PAGE(vcpu->mmu.root_hpa)) {
|
|
vcpu->mmu.free(vcpu);
|
|
vcpu->mmu.root_hpa = INVALID_PAGE;
|
|
}
|
|
}
|
|
|
|
int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
destroy_kvm_mmu(vcpu);
|
|
r = init_kvm_mmu(vcpu);
|
|
if (r < 0)
|
|
goto out;
|
|
r = mmu_topup_memory_caches(vcpu);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *page,
|
|
u64 *spte)
|
|
{
|
|
u64 pte;
|
|
struct kvm_mmu_page *child;
|
|
|
|
pte = *spte;
|
|
if (is_present_pte(pte)) {
|
|
if (page->role.level == PT_PAGE_TABLE_LEVEL)
|
|
rmap_remove(vcpu, spte);
|
|
else {
|
|
child = page_header(pte & PT64_BASE_ADDR_MASK);
|
|
mmu_page_remove_parent_pte(vcpu, child, spte);
|
|
}
|
|
}
|
|
*spte = 0;
|
|
}
|
|
|
|
void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
struct kvm_mmu_page *page;
|
|
struct hlist_node *node, *n;
|
|
struct hlist_head *bucket;
|
|
unsigned index;
|
|
u64 *spte;
|
|
unsigned offset = offset_in_page(gpa);
|
|
unsigned pte_size;
|
|
unsigned page_offset;
|
|
unsigned misaligned;
|
|
int level;
|
|
int flooded = 0;
|
|
int npte;
|
|
|
|
pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
|
|
if (gfn == vcpu->last_pt_write_gfn) {
|
|
++vcpu->last_pt_write_count;
|
|
if (vcpu->last_pt_write_count >= 3)
|
|
flooded = 1;
|
|
} else {
|
|
vcpu->last_pt_write_gfn = gfn;
|
|
vcpu->last_pt_write_count = 1;
|
|
}
|
|
index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
|
|
bucket = &vcpu->kvm->mmu_page_hash[index];
|
|
hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
|
|
if (page->gfn != gfn || page->role.metaphysical)
|
|
continue;
|
|
pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
|
|
misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
|
|
if (misaligned || flooded) {
|
|
/*
|
|
* Misaligned accesses are too much trouble to fix
|
|
* up; also, they usually indicate a page is not used
|
|
* as a page table.
|
|
*
|
|
* If we're seeing too many writes to a page,
|
|
* it may no longer be a page table, or we may be
|
|
* forking, in which case it is better to unmap the
|
|
* page.
|
|
*/
|
|
pgprintk("misaligned: gpa %llx bytes %d role %x\n",
|
|
gpa, bytes, page->role.word);
|
|
kvm_mmu_zap_page(vcpu, page);
|
|
continue;
|
|
}
|
|
page_offset = offset;
|
|
level = page->role.level;
|
|
npte = 1;
|
|
if (page->role.glevels == PT32_ROOT_LEVEL) {
|
|
page_offset <<= 1; /* 32->64 */
|
|
/*
|
|
* A 32-bit pde maps 4MB while the shadow pdes map
|
|
* only 2MB. So we need to double the offset again
|
|
* and zap two pdes instead of one.
|
|
*/
|
|
if (level == PT32_ROOT_LEVEL) {
|
|
page_offset &= ~7; /* kill rounding error */
|
|
page_offset <<= 1;
|
|
npte = 2;
|
|
}
|
|
page_offset &= ~PAGE_MASK;
|
|
}
|
|
spte = __va(page->page_hpa);
|
|
spte += page_offset / sizeof(*spte);
|
|
while (npte--) {
|
|
mmu_pre_write_zap_pte(vcpu, page, spte);
|
|
++spte;
|
|
}
|
|
}
|
|
}
|
|
|
|
void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
|
|
{
|
|
}
|
|
|
|
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
|
|
{
|
|
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
|
|
|
|
return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
|
|
}
|
|
|
|
void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
|
|
{
|
|
while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
|
|
struct kvm_mmu_page *page;
|
|
|
|
page = container_of(vcpu->kvm->active_mmu_pages.prev,
|
|
struct kvm_mmu_page, link);
|
|
kvm_mmu_zap_page(vcpu, page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
|
|
|
|
static void free_mmu_pages(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu_page *page;
|
|
|
|
while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
|
|
page = container_of(vcpu->kvm->active_mmu_pages.next,
|
|
struct kvm_mmu_page, link);
|
|
kvm_mmu_zap_page(vcpu, page);
|
|
}
|
|
while (!list_empty(&vcpu->free_pages)) {
|
|
page = list_entry(vcpu->free_pages.next,
|
|
struct kvm_mmu_page, link);
|
|
list_del(&page->link);
|
|
__free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
|
|
page->page_hpa = INVALID_PAGE;
|
|
}
|
|
free_page((unsigned long)vcpu->mmu.pae_root);
|
|
}
|
|
|
|
static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct page *page;
|
|
int i;
|
|
|
|
ASSERT(vcpu);
|
|
|
|
for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
|
|
struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
|
|
|
|
INIT_LIST_HEAD(&page_header->link);
|
|
if ((page = alloc_page(GFP_KERNEL)) == NULL)
|
|
goto error_1;
|
|
set_page_private(page, (unsigned long)page_header);
|
|
page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
|
|
memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
|
|
list_add(&page_header->link, &vcpu->free_pages);
|
|
++vcpu->kvm->n_free_mmu_pages;
|
|
}
|
|
|
|
/*
|
|
* When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
|
|
* Therefore we need to allocate shadow page tables in the first
|
|
* 4GB of memory, which happens to fit the DMA32 zone.
|
|
*/
|
|
page = alloc_page(GFP_KERNEL | __GFP_DMA32);
|
|
if (!page)
|
|
goto error_1;
|
|
vcpu->mmu.pae_root = page_address(page);
|
|
for (i = 0; i < 4; ++i)
|
|
vcpu->mmu.pae_root[i] = INVALID_PAGE;
|
|
|
|
return 0;
|
|
|
|
error_1:
|
|
free_mmu_pages(vcpu);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
int kvm_mmu_create(struct kvm_vcpu *vcpu)
|
|
{
|
|
ASSERT(vcpu);
|
|
ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
|
|
ASSERT(list_empty(&vcpu->free_pages));
|
|
|
|
return alloc_mmu_pages(vcpu);
|
|
}
|
|
|
|
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
|
|
{
|
|
ASSERT(vcpu);
|
|
ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
|
|
ASSERT(!list_empty(&vcpu->free_pages));
|
|
|
|
return init_kvm_mmu(vcpu);
|
|
}
|
|
|
|
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
ASSERT(vcpu);
|
|
|
|
destroy_kvm_mmu(vcpu);
|
|
free_mmu_pages(vcpu);
|
|
mmu_free_memory_caches(vcpu);
|
|
}
|
|
|
|
void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_page *page;
|
|
|
|
list_for_each_entry(page, &kvm->active_mmu_pages, link) {
|
|
int i;
|
|
u64 *pt;
|
|
|
|
if (!test_bit(slot, &page->slot_bitmap))
|
|
continue;
|
|
|
|
pt = __va(page->page_hpa);
|
|
for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
|
|
/* avoid RMW */
|
|
if (pt[i] & PT_WRITABLE_MASK) {
|
|
rmap_remove(vcpu, &pt[i]);
|
|
pt[i] &= ~PT_WRITABLE_MASK;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef AUDIT
|
|
|
|
static const char *audit_msg;
|
|
|
|
static gva_t canonicalize(gva_t gva)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
gva = (long long)(gva << 16) >> 16;
|
|
#endif
|
|
return gva;
|
|
}
|
|
|
|
static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
|
|
gva_t va, int level)
|
|
{
|
|
u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
|
|
int i;
|
|
gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
|
|
|
|
for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
|
|
u64 ent = pt[i];
|
|
|
|
if (!ent & PT_PRESENT_MASK)
|
|
continue;
|
|
|
|
va = canonicalize(va);
|
|
if (level > 1)
|
|
audit_mappings_page(vcpu, ent, va, level - 1);
|
|
else {
|
|
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
|
|
hpa_t hpa = gpa_to_hpa(vcpu, gpa);
|
|
|
|
if ((ent & PT_PRESENT_MASK)
|
|
&& (ent & PT64_BASE_ADDR_MASK) != hpa)
|
|
printk(KERN_ERR "audit error: (%s) levels %d"
|
|
" gva %lx gpa %llx hpa %llx ent %llx\n",
|
|
audit_msg, vcpu->mmu.root_level,
|
|
va, gpa, hpa, ent);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void audit_mappings(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned i;
|
|
|
|
if (vcpu->mmu.root_level == 4)
|
|
audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
|
|
else
|
|
for (i = 0; i < 4; ++i)
|
|
if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
|
|
audit_mappings_page(vcpu,
|
|
vcpu->mmu.pae_root[i],
|
|
i << 30,
|
|
2);
|
|
}
|
|
|
|
static int count_rmaps(struct kvm_vcpu *vcpu)
|
|
{
|
|
int nmaps = 0;
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
|
|
struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
|
|
struct kvm_rmap_desc *d;
|
|
|
|
for (j = 0; j < m->npages; ++j) {
|
|
struct page *page = m->phys_mem[j];
|
|
|
|
if (!page->private)
|
|
continue;
|
|
if (!(page->private & 1)) {
|
|
++nmaps;
|
|
continue;
|
|
}
|
|
d = (struct kvm_rmap_desc *)(page->private & ~1ul);
|
|
while (d) {
|
|
for (k = 0; k < RMAP_EXT; ++k)
|
|
if (d->shadow_ptes[k])
|
|
++nmaps;
|
|
else
|
|
break;
|
|
d = d->more;
|
|
}
|
|
}
|
|
}
|
|
return nmaps;
|
|
}
|
|
|
|
static int count_writable_mappings(struct kvm_vcpu *vcpu)
|
|
{
|
|
int nmaps = 0;
|
|
struct kvm_mmu_page *page;
|
|
int i;
|
|
|
|
list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
|
|
u64 *pt = __va(page->page_hpa);
|
|
|
|
if (page->role.level != PT_PAGE_TABLE_LEVEL)
|
|
continue;
|
|
|
|
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
|
|
u64 ent = pt[i];
|
|
|
|
if (!(ent & PT_PRESENT_MASK))
|
|
continue;
|
|
if (!(ent & PT_WRITABLE_MASK))
|
|
continue;
|
|
++nmaps;
|
|
}
|
|
}
|
|
return nmaps;
|
|
}
|
|
|
|
static void audit_rmap(struct kvm_vcpu *vcpu)
|
|
{
|
|
int n_rmap = count_rmaps(vcpu);
|
|
int n_actual = count_writable_mappings(vcpu);
|
|
|
|
if (n_rmap != n_actual)
|
|
printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
|
|
__FUNCTION__, audit_msg, n_rmap, n_actual);
|
|
}
|
|
|
|
static void audit_write_protection(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_mmu_page *page;
|
|
|
|
list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
|
|
hfn_t hfn;
|
|
struct page *pg;
|
|
|
|
if (page->role.metaphysical)
|
|
continue;
|
|
|
|
hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
|
|
>> PAGE_SHIFT;
|
|
pg = pfn_to_page(hfn);
|
|
if (pg->private)
|
|
printk(KERN_ERR "%s: (%s) shadow page has writable"
|
|
" mappings: gfn %lx role %x\n",
|
|
__FUNCTION__, audit_msg, page->gfn,
|
|
page->role.word);
|
|
}
|
|
}
|
|
|
|
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
|
|
{
|
|
int olddbg = dbg;
|
|
|
|
dbg = 0;
|
|
audit_msg = msg;
|
|
audit_rmap(vcpu);
|
|
audit_write_protection(vcpu);
|
|
audit_mappings(vcpu);
|
|
dbg = olddbg;
|
|
}
|
|
|
|
#endif
|