linux/arch/powerpc/kvm/book3s_hv_rm_mmu.c
Paul Mackerras 075295dd32 KVM: PPC: Make the H_ENTER hcall more reliable
At present, our implementation of H_ENTER only makes one try at locking
each slot that it looks at, and doesn't even retry the ldarx/stdcx.
atomic update sequence that it uses to attempt to lock the slot.  Thus
it can return the H_PTEG_FULL error unnecessarily, particularly when
the H_EXACT flag is set, meaning that the caller wants a specific PTEG
slot.

This improves the situation by making a second pass when no free HPTE
slot is found, where we spin until we succeed in locking each slot in
turn and then check whether it is full while we hold the lock.  If the
second pass fails, then we return H_PTEG_FULL.

This also moves lock_hpte to a header file (since later commits in this
series will need to use it from other source files) and renames it to
try_lock_hpte, which is a somewhat less misleading name.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:36 +02:00

395 lines
10 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/hugetlb.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
/*
* Since this file is built in even if KVM is a module, we need
* a local copy of this function for the case where kvm_main.c is
* modular.
*/
static struct kvm_memory_slot *builtin_gfn_to_memslot(struct kvm *kvm,
gfn_t gfn)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots)
if (gfn >= memslot->base_gfn &&
gfn < memslot->base_gfn + memslot->npages)
return memslot;
return NULL;
}
/* Translate address of a vmalloc'd thing to a linear map address */
static void *real_vmalloc_addr(void *x)
{
unsigned long addr = (unsigned long) x;
pte_t *p;
p = find_linux_pte(swapper_pg_dir, addr);
if (!p || !pte_present(*p))
return NULL;
/* assume we don't have huge pages in vmalloc space... */
addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
return __va(addr);
}
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel)
{
unsigned long porder;
struct kvm *kvm = vcpu->kvm;
unsigned long i, gfn, lpn, pa;
unsigned long *hpte;
struct revmap_entry *rev;
unsigned long g_ptel = ptel;
struct kvm_memory_slot *memslot;
unsigned long *physp;
/* only handle 4k, 64k and 16M pages for now */
porder = 12;
if (pteh & HPTE_V_LARGE) {
if (cpu_has_feature(CPU_FTR_ARCH_206) &&
(ptel & 0xf000) == 0x1000) {
/* 64k page */
porder = 16;
} else if ((ptel & 0xff000) == 0) {
/* 16M page */
porder = 24;
/* lowest AVA bit must be 0 for 16M pages */
if (pteh & 0x80)
return H_PARAMETER;
} else
return H_PARAMETER;
}
if (porder > kvm->arch.ram_porder)
return H_PARAMETER;
gfn = ((ptel & HPTE_R_RPN) & ~((1ul << porder) - 1)) >> PAGE_SHIFT;
memslot = builtin_gfn_to_memslot(kvm, gfn);
if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)))
return H_PARAMETER;
physp = kvm->arch.slot_phys[memslot->id];
if (!physp)
return H_PARAMETER;
lpn = (gfn - memslot->base_gfn) >> (kvm->arch.ram_porder - PAGE_SHIFT);
physp = real_vmalloc_addr(physp + lpn);
pa = *physp;
if (!pa)
return H_PARAMETER;
pa &= PAGE_MASK;
/* Check WIMG */
if ((ptel & HPTE_R_WIMG) != HPTE_R_M &&
(ptel & HPTE_R_WIMG) != (HPTE_R_W | HPTE_R_I | HPTE_R_M))
return H_PARAMETER;
pteh &= ~0x60UL;
ptel &= ~(HPTE_R_PP0 - kvm->arch.ram_psize);
ptel |= pa;
if (pte_index >= HPT_NPTE)
return H_PARAMETER;
if (likely((flags & H_EXACT) == 0)) {
pte_index &= ~7UL;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
for (i = 0; i < 8; ++i) {
if ((*hpte & HPTE_V_VALID) == 0 &&
try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID))
break;
hpte += 2;
}
if (i == 8) {
/*
* Since try_lock_hpte doesn't retry (not even stdcx.
* failures), it could be that there is a free slot
* but we transiently failed to lock it. Try again,
* actually locking each slot and checking it.
*/
hpte -= 16;
for (i = 0; i < 8; ++i) {
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if ((*hpte & HPTE_V_VALID) == 0)
break;
*hpte &= ~HPTE_V_HVLOCK;
hpte += 2;
}
if (i == 8)
return H_PTEG_FULL;
}
pte_index += i;
} else {
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID)) {
/* Lock the slot and check again */
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if (*hpte & HPTE_V_VALID) {
*hpte &= ~HPTE_V_HVLOCK;
return H_PTEG_FULL;
}
}
}
/* Save away the guest's idea of the second HPTE dword */
rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
if (rev)
rev->guest_rpte = g_ptel;
hpte[1] = ptel;
eieio();
hpte[0] = pteh;
asm volatile("ptesync" : : : "memory");
vcpu->arch.gpr[4] = pte_index;
return H_SUCCESS;
}
#define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
static inline int try_lock_tlbie(unsigned int *lock)
{
unsigned int tmp, old;
unsigned int token = LOCK_TOKEN;
asm volatile("1:lwarx %1,0,%2\n"
" cmpwi cr0,%1,0\n"
" bne 2f\n"
" stwcx. %3,0,%2\n"
" bne- 1b\n"
" isync\n"
"2:"
: "=&r" (tmp), "=&r" (old)
: "r" (lock), "r" (token)
: "cc", "memory");
return old == 0;
}
long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long va)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte;
unsigned long v, r, rb;
if (pte_index >= HPT_NPTE)
return H_PARAMETER;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if ((hpte[0] & HPTE_V_VALID) == 0 ||
((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
hpte[0] &= ~HPTE_V_HVLOCK;
return H_NOT_FOUND;
}
if (atomic_read(&kvm->online_vcpus) == 1)
flags |= H_LOCAL;
vcpu->arch.gpr[4] = v = hpte[0] & ~HPTE_V_HVLOCK;
vcpu->arch.gpr[5] = r = hpte[1];
rb = compute_tlbie_rb(v, r, pte_index);
hpte[0] = 0;
if (!(flags & H_LOCAL)) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
asm volatile("tlbiel %0" : : "r" (rb));
asm volatile("ptesync" : : : "memory");
}
return H_SUCCESS;
}
long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *args = &vcpu->arch.gpr[4];
unsigned long *hp, tlbrb[4];
long int i, found;
long int n_inval = 0;
unsigned long flags, req, pte_index;
long int local = 0;
long int ret = H_SUCCESS;
if (atomic_read(&kvm->online_vcpus) == 1)
local = 1;
for (i = 0; i < 4; ++i) {
pte_index = args[i * 2];
flags = pte_index >> 56;
pte_index &= ((1ul << 56) - 1);
req = flags >> 6;
flags &= 3;
if (req == 3)
break;
if (req != 1 || flags == 3 ||
pte_index >= HPT_NPTE) {
/* parameter error */
args[i * 2] = ((0xa0 | flags) << 56) + pte_index;
ret = H_PARAMETER;
break;
}
hp = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
cpu_relax();
found = 0;
if (hp[0] & HPTE_V_VALID) {
switch (flags & 3) {
case 0: /* absolute */
found = 1;
break;
case 1: /* andcond */
if (!(hp[0] & args[i * 2 + 1]))
found = 1;
break;
case 2: /* AVPN */
if ((hp[0] & ~0x7fUL) == args[i * 2 + 1])
found = 1;
break;
}
}
if (!found) {
hp[0] &= ~HPTE_V_HVLOCK;
args[i * 2] = ((0x90 | flags) << 56) + pte_index;
continue;
}
/* insert R and C bits from PTE */
flags |= (hp[1] >> 5) & 0x0c;
args[i * 2] = ((0x80 | flags) << 56) + pte_index;
tlbrb[n_inval++] = compute_tlbie_rb(hp[0], hp[1], pte_index);
hp[0] = 0;
}
if (n_inval == 0)
return ret;
if (!local) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
for (i = 0; i < n_inval; ++i)
asm volatile(PPC_TLBIE(%1,%0)
: : "r" (tlbrb[i]), "r" (kvm->arch.lpid));
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
for (i = 0; i < n_inval; ++i)
asm volatile("tlbiel %0" : : "r" (tlbrb[i]));
asm volatile("ptesync" : : : "memory");
}
return ret;
}
long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long va)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte;
struct revmap_entry *rev;
unsigned long v, r, rb, mask, bits;
if (pte_index >= HPT_NPTE)
return H_PARAMETER;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if ((hpte[0] & HPTE_V_VALID) == 0 ||
((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
hpte[0] &= ~HPTE_V_HVLOCK;
return H_NOT_FOUND;
}
if (atomic_read(&kvm->online_vcpus) == 1)
flags |= H_LOCAL;
v = hpte[0];
bits = (flags << 55) & HPTE_R_PP0;
bits |= (flags << 48) & HPTE_R_KEY_HI;
bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
/* Update guest view of 2nd HPTE dword */
mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
HPTE_R_KEY_HI | HPTE_R_KEY_LO;
rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
if (rev) {
r = (rev->guest_rpte & ~mask) | bits;
rev->guest_rpte = r;
}
r = (hpte[1] & ~mask) | bits;
/* Update HPTE */
rb = compute_tlbie_rb(v, r, pte_index);
hpte[0] = v & ~HPTE_V_VALID;
if (!(flags & H_LOCAL)) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
asm volatile("tlbiel %0" : : "r" (rb));
asm volatile("ptesync" : : : "memory");
}
hpte[1] = r;
eieio();
hpte[0] = v & ~HPTE_V_HVLOCK;
asm volatile("ptesync" : : : "memory");
return H_SUCCESS;
}
long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte, r;
int i, n = 1;
struct revmap_entry *rev = NULL;
if (pte_index >= HPT_NPTE)
return H_PARAMETER;
if (flags & H_READ_4) {
pte_index &= ~3;
n = 4;
}
if (flags & H_R_XLATE)
rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
for (i = 0; i < n; ++i, ++pte_index) {
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
r = hpte[1];
if (hpte[0] & HPTE_V_VALID) {
if (rev)
r = rev[i].guest_rpte;
else
r = hpte[1] | HPTE_R_RPN;
}
vcpu->arch.gpr[4 + i * 2] = hpte[0];
vcpu->arch.gpr[5 + i * 2] = r;
}
return H_SUCCESS;
}