forked from Minki/linux
902cc69a08
This patch renames the SPINOR_OP_* macros of the 4-byte address instruction set so the new names all share a common pattern: the 4-byte address name is built from the 3-byte address name appending the "_4B" suffix. The patch also introduces new op codes to support other SPI protocols such as SPI 1-4-4 and SPI 1-2-2. This is a transitional patch and will help a later patch of spi-nor.c to automate the translation from the 3-byte address op codes into their 4-byte address version. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Marek Vasut <marek.vasut@gmail.com>
2178 lines
58 KiB
C
2178 lines
58 KiB
C
/*
|
|
* st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
|
|
*
|
|
* Author: Angus Clark <angus.clark@st.com>
|
|
*
|
|
* Copyright (C) 2010-2014 STMicroelectronics Limited
|
|
*
|
|
* JEDEC probe based on drivers/mtd/devices/m25p80.c
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/mfd/syscon.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/spi-nor.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/clk.h>
|
|
|
|
#include "serial_flash_cmds.h"
|
|
|
|
/*
|
|
* FSM SPI Controller Registers
|
|
*/
|
|
#define SPI_CLOCKDIV 0x0010
|
|
#define SPI_MODESELECT 0x0018
|
|
#define SPI_CONFIGDATA 0x0020
|
|
#define SPI_STA_MODE_CHANGE 0x0028
|
|
#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
|
|
#define SPI_FAST_SEQ_ADD1 0x0104
|
|
#define SPI_FAST_SEQ_ADD2 0x0108
|
|
#define SPI_FAST_SEQ_ADD_CFG 0x010c
|
|
#define SPI_FAST_SEQ_OPC1 0x0110
|
|
#define SPI_FAST_SEQ_OPC2 0x0114
|
|
#define SPI_FAST_SEQ_OPC3 0x0118
|
|
#define SPI_FAST_SEQ_OPC4 0x011c
|
|
#define SPI_FAST_SEQ_OPC5 0x0120
|
|
#define SPI_MODE_BITS 0x0124
|
|
#define SPI_DUMMY_BITS 0x0128
|
|
#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
|
|
#define SPI_FAST_SEQ_1 0x0130
|
|
#define SPI_FAST_SEQ_2 0x0134
|
|
#define SPI_FAST_SEQ_3 0x0138
|
|
#define SPI_FAST_SEQ_4 0x013c
|
|
#define SPI_FAST_SEQ_CFG 0x0140
|
|
#define SPI_FAST_SEQ_STA 0x0144
|
|
#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
|
|
#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
|
|
#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
|
|
#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
|
|
#define SPI_PROGRAM_ERASE_TIME 0x0158
|
|
#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
|
|
#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
|
|
#define SPI_STATUS_WR_TIME_REG 0x0164
|
|
#define SPI_FAST_SEQ_DATA_REG 0x0300
|
|
|
|
/*
|
|
* Register: SPI_MODESELECT
|
|
*/
|
|
#define SPI_MODESELECT_CONTIG 0x01
|
|
#define SPI_MODESELECT_FASTREAD 0x02
|
|
#define SPI_MODESELECT_DUALIO 0x04
|
|
#define SPI_MODESELECT_FSM 0x08
|
|
#define SPI_MODESELECT_QUADBOOT 0x10
|
|
|
|
/*
|
|
* Register: SPI_CONFIGDATA
|
|
*/
|
|
#define SPI_CFG_DEVICE_ST 0x1
|
|
#define SPI_CFG_DEVICE_ATMEL 0x4
|
|
#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
|
|
#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
|
|
#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
|
|
|
|
#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
|
|
#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
|
|
#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
|
|
|
|
/*
|
|
* Register: SPI_FAST_SEQ_TRANSFER_SIZE
|
|
*/
|
|
#define TRANSFER_SIZE(x) ((x) * 8)
|
|
|
|
/*
|
|
* Register: SPI_FAST_SEQ_ADD_CFG
|
|
*/
|
|
#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
|
|
#define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
|
|
#define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
|
|
#define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
|
|
#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
|
|
#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
|
|
#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
|
|
#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
|
|
#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
|
|
#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
|
|
|
|
/*
|
|
* Register: SPI_FAST_SEQ_n
|
|
*/
|
|
#define SEQ_OPC_OPCODE(x) ((x) << 0)
|
|
#define SEQ_OPC_CYCLES(x) ((x) << 8)
|
|
#define SEQ_OPC_PADS_1 (0x0 << 14)
|
|
#define SEQ_OPC_PADS_2 (0x1 << 14)
|
|
#define SEQ_OPC_PADS_4 (0x3 << 14)
|
|
#define SEQ_OPC_CSDEASSERT (1 << 16)
|
|
|
|
/*
|
|
* Register: SPI_FAST_SEQ_CFG
|
|
*/
|
|
#define SEQ_CFG_STARTSEQ (1 << 0)
|
|
#define SEQ_CFG_SWRESET (1 << 5)
|
|
#define SEQ_CFG_CSDEASSERT (1 << 6)
|
|
#define SEQ_CFG_READNOTWRITE (1 << 7)
|
|
#define SEQ_CFG_ERASE (1 << 8)
|
|
#define SEQ_CFG_PADS_1 (0x0 << 16)
|
|
#define SEQ_CFG_PADS_2 (0x1 << 16)
|
|
#define SEQ_CFG_PADS_4 (0x3 << 16)
|
|
|
|
/*
|
|
* Register: SPI_MODE_BITS
|
|
*/
|
|
#define MODE_DATA(x) (x & 0xff)
|
|
#define MODE_CYCLES(x) ((x & 0x3f) << 16)
|
|
#define MODE_PADS_1 (0x0 << 22)
|
|
#define MODE_PADS_2 (0x1 << 22)
|
|
#define MODE_PADS_4 (0x3 << 22)
|
|
#define DUMMY_CSDEASSERT (1 << 24)
|
|
|
|
/*
|
|
* Register: SPI_DUMMY_BITS
|
|
*/
|
|
#define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
|
|
#define DUMMY_PADS_1 (0x0 << 22)
|
|
#define DUMMY_PADS_2 (0x1 << 22)
|
|
#define DUMMY_PADS_4 (0x3 << 22)
|
|
#define DUMMY_CSDEASSERT (1 << 24)
|
|
|
|
/*
|
|
* Register: SPI_FAST_SEQ_FLASH_STA_DATA
|
|
*/
|
|
#define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
|
|
#define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
|
|
#define STA_PADS_1 (0x0 << 16)
|
|
#define STA_PADS_2 (0x1 << 16)
|
|
#define STA_PADS_4 (0x3 << 16)
|
|
#define STA_CSDEASSERT (0x1 << 20)
|
|
#define STA_RDNOTWR (0x1 << 21)
|
|
|
|
/*
|
|
* FSM SPI Instruction Opcodes
|
|
*/
|
|
#define STFSM_OPC_CMD 0x1
|
|
#define STFSM_OPC_ADD 0x2
|
|
#define STFSM_OPC_STA 0x3
|
|
#define STFSM_OPC_MODE 0x4
|
|
#define STFSM_OPC_DUMMY 0x5
|
|
#define STFSM_OPC_DATA 0x6
|
|
#define STFSM_OPC_WAIT 0x7
|
|
#define STFSM_OPC_JUMP 0x8
|
|
#define STFSM_OPC_GOTO 0x9
|
|
#define STFSM_OPC_STOP 0xF
|
|
|
|
/*
|
|
* FSM SPI Instructions (== opcode + operand).
|
|
*/
|
|
#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
|
|
|
|
#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
|
|
#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
|
|
#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
|
|
#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
|
|
#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
|
|
#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
|
|
#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
|
|
|
|
#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
|
|
#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
|
|
|
|
#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
|
|
#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
|
|
#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
|
|
#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
|
|
|
|
#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
|
|
#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
|
|
#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
|
|
#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
|
|
|
|
#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
|
|
#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
|
|
|
|
#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
|
|
|
|
#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
|
|
|
|
/* S25FLxxxS commands */
|
|
#define S25FL_CMD_WRITE4_1_1_4 0x34
|
|
#define S25FL_CMD_SE4 0xdc
|
|
#define S25FL_CMD_CLSR 0x30
|
|
#define S25FL_CMD_DYBWR 0xe1
|
|
#define S25FL_CMD_DYBRD 0xe0
|
|
#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
|
|
* 'SPINOR_OP_WRITE_1_4_4'
|
|
* as found on N25Qxxx devices! */
|
|
|
|
/* Status register */
|
|
#define FLASH_STATUS_BUSY 0x01
|
|
#define FLASH_STATUS_WEL 0x02
|
|
#define FLASH_STATUS_BP0 0x04
|
|
#define FLASH_STATUS_BP1 0x08
|
|
#define FLASH_STATUS_BP2 0x10
|
|
#define FLASH_STATUS_SRWP0 0x80
|
|
#define FLASH_STATUS_TIMEOUT 0xff
|
|
/* S25FL Error Flags */
|
|
#define S25FL_STATUS_E_ERR 0x20
|
|
#define S25FL_STATUS_P_ERR 0x40
|
|
|
|
#define N25Q_CMD_WRVCR 0x81
|
|
#define N25Q_CMD_RDVCR 0x85
|
|
#define N25Q_CMD_RDVECR 0x65
|
|
#define N25Q_CMD_RDNVCR 0xb5
|
|
#define N25Q_CMD_WRNVCR 0xb1
|
|
|
|
#define FLASH_PAGESIZE 256 /* In Bytes */
|
|
#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
|
|
#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
|
|
|
|
/*
|
|
* Flags to tweak operation of default read/write/erase routines
|
|
*/
|
|
#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
|
|
#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
|
|
#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
|
|
#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
|
|
|
|
struct stfsm_seq {
|
|
uint32_t data_size;
|
|
uint32_t addr1;
|
|
uint32_t addr2;
|
|
uint32_t addr_cfg;
|
|
uint32_t seq_opc[5];
|
|
uint32_t mode;
|
|
uint32_t dummy;
|
|
uint32_t status;
|
|
uint8_t seq[16];
|
|
uint32_t seq_cfg;
|
|
} __packed __aligned(4);
|
|
|
|
struct stfsm {
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
struct resource *region;
|
|
struct mtd_info mtd;
|
|
struct mutex lock;
|
|
struct flash_info *info;
|
|
struct clk *clk;
|
|
|
|
uint32_t configuration;
|
|
uint32_t fifo_dir_delay;
|
|
bool booted_from_spi;
|
|
bool reset_signal;
|
|
bool reset_por;
|
|
|
|
struct stfsm_seq stfsm_seq_read;
|
|
struct stfsm_seq stfsm_seq_write;
|
|
struct stfsm_seq stfsm_seq_en_32bit_addr;
|
|
};
|
|
|
|
/* Parameters to configure a READ or WRITE FSM sequence */
|
|
struct seq_rw_config {
|
|
uint32_t flags; /* flags to support config */
|
|
uint8_t cmd; /* FLASH command */
|
|
int write; /* Write Sequence */
|
|
uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
|
|
uint8_t data_pads; /* No. of data pads */
|
|
uint8_t mode_data; /* MODE data */
|
|
uint8_t mode_cycles; /* No. of MODE cycles */
|
|
uint8_t dummy_cycles; /* No. of DUMMY cycles */
|
|
};
|
|
|
|
/* SPI Flash Device Table */
|
|
struct flash_info {
|
|
char *name;
|
|
/*
|
|
* JEDEC id zero means "no ID" (most older chips); otherwise it has
|
|
* a high byte of zero plus three data bytes: the manufacturer id,
|
|
* then a two byte device id.
|
|
*/
|
|
u32 jedec_id;
|
|
u16 ext_id;
|
|
/*
|
|
* The size listed here is what works with SPINOR_OP_SE, which isn't
|
|
* necessarily called a "sector" by the vendor.
|
|
*/
|
|
unsigned sector_size;
|
|
u16 n_sectors;
|
|
u32 flags;
|
|
/*
|
|
* Note, where FAST_READ is supported, freq_max specifies the
|
|
* FAST_READ frequency, not the READ frequency.
|
|
*/
|
|
u32 max_freq;
|
|
int (*config)(struct stfsm *);
|
|
};
|
|
|
|
static int stfsm_n25q_config(struct stfsm *fsm);
|
|
static int stfsm_mx25_config(struct stfsm *fsm);
|
|
static int stfsm_s25fl_config(struct stfsm *fsm);
|
|
static int stfsm_w25q_config(struct stfsm *fsm);
|
|
|
|
static struct flash_info flash_types[] = {
|
|
/*
|
|
* ST Microelectronics/Numonyx --
|
|
* (newer production versions may have feature updates
|
|
* (eg faster operating frequency)
|
|
*/
|
|
#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
|
|
{ "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
|
|
{ "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
|
|
{ "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
|
|
{ "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
|
|
{ "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
|
|
{ "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
|
|
|
|
#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
|
|
FLASH_FLAG_READ_FAST | \
|
|
FLASH_FLAG_READ_1_1_2 | \
|
|
FLASH_FLAG_WRITE_1_1_2)
|
|
{ "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
|
|
{ "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
|
|
|
|
/* Macronix MX25xxx
|
|
* - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
|
|
* where operating frequency must be reduced.
|
|
*/
|
|
#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
|
|
FLASH_FLAG_READ_FAST | \
|
|
FLASH_FLAG_READ_1_1_2 | \
|
|
FLASH_FLAG_READ_1_2_2 | \
|
|
FLASH_FLAG_READ_1_1_4 | \
|
|
FLASH_FLAG_SE_4K | \
|
|
FLASH_FLAG_SE_32K)
|
|
{ "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64,
|
|
(MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
|
|
stfsm_mx25_config},
|
|
{ "mx25l25635e", 0xc22019, 0, 64*1024, 512,
|
|
(MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
|
|
stfsm_mx25_config },
|
|
{ "mx25l25655e", 0xc22619, 0, 64*1024, 512,
|
|
(MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
|
|
stfsm_mx25_config},
|
|
|
|
#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
|
|
FLASH_FLAG_READ_FAST | \
|
|
FLASH_FLAG_READ_1_1_2 | \
|
|
FLASH_FLAG_READ_1_2_2 | \
|
|
FLASH_FLAG_READ_1_1_4 | \
|
|
FLASH_FLAG_READ_1_4_4 | \
|
|
FLASH_FLAG_WRITE_1_1_2 | \
|
|
FLASH_FLAG_WRITE_1_2_2 | \
|
|
FLASH_FLAG_WRITE_1_1_4 | \
|
|
FLASH_FLAG_WRITE_1_4_4)
|
|
{ "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108,
|
|
stfsm_n25q_config },
|
|
{ "n25q256", 0x20ba19, 0, 64 * 1024, 512,
|
|
N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
|
|
|
|
/*
|
|
* Spansion S25FLxxxP
|
|
* - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
|
|
*/
|
|
#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
|
|
FLASH_FLAG_READ_1_1_2 | \
|
|
FLASH_FLAG_READ_1_2_2 | \
|
|
FLASH_FLAG_READ_1_1_4 | \
|
|
FLASH_FLAG_READ_1_4_4 | \
|
|
FLASH_FLAG_WRITE_1_1_4 | \
|
|
FLASH_FLAG_READ_FAST)
|
|
{ "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80,
|
|
stfsm_s25fl_config},
|
|
{ "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
|
|
stfsm_s25fl_config },
|
|
{ "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
|
|
stfsm_s25fl_config },
|
|
|
|
/*
|
|
* Spansion S25FLxxxS
|
|
* - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
|
|
* - RESET# signal supported by die but not bristled out on all
|
|
* package types. The package type is a function of board design,
|
|
* so this information is captured in the board's flags.
|
|
* - Supports 'DYB' sector protection. Depending on variant, sectors
|
|
* may default to locked state on power-on.
|
|
*/
|
|
#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
|
|
FLASH_FLAG_RESET | \
|
|
FLASH_FLAG_DYB_LOCKING)
|
|
{ "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
|
|
stfsm_s25fl_config },
|
|
{ "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
|
|
stfsm_s25fl_config },
|
|
{ "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
|
|
S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
|
|
{ "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
|
|
S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
|
|
|
|
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
|
|
FLASH_FLAG_READ_FAST | \
|
|
FLASH_FLAG_READ_1_1_2 | \
|
|
FLASH_FLAG_WRITE_1_1_2)
|
|
{ "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
|
|
{ "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
|
|
{ "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
|
|
{ "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
|
|
{ "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
|
|
|
|
/* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
|
|
#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
|
|
FLASH_FLAG_READ_FAST | \
|
|
FLASH_FLAG_READ_1_1_2 | \
|
|
FLASH_FLAG_READ_1_2_2 | \
|
|
FLASH_FLAG_READ_1_1_4 | \
|
|
FLASH_FLAG_READ_1_4_4 | \
|
|
FLASH_FLAG_WRITE_1_1_4)
|
|
{ "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80,
|
|
stfsm_w25q_config },
|
|
{ "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80,
|
|
stfsm_w25q_config },
|
|
{ "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80,
|
|
stfsm_w25q_config },
|
|
{ "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80,
|
|
stfsm_w25q_config },
|
|
|
|
/* Sentinel */
|
|
{ NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
|
|
};
|
|
|
|
/*
|
|
* FSM message sequence configurations:
|
|
*
|
|
* All configs are presented in order of preference
|
|
*/
|
|
|
|
/* Default READ configurations, in order of preference */
|
|
static struct seq_rw_config default_read_configs[] = {
|
|
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
|
|
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
|
|
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
|
|
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
|
|
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
|
|
};
|
|
|
|
/* Default WRITE configurations */
|
|
static struct seq_rw_config default_write_configs[] = {
|
|
{FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
|
|
{FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
|
|
{FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
|
|
{FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
|
|
{FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0},
|
|
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
|
|
};
|
|
|
|
/*
|
|
* [N25Qxxx] Configuration
|
|
*/
|
|
#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
|
|
#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
|
|
#define N25Q_VCR_WRAP_CONT 0x3
|
|
|
|
/* N25Q 3-byte Address READ configurations
|
|
* - 'FAST' variants configured for 8 dummy cycles.
|
|
*
|
|
* Note, the number of dummy cycles used for 'FAST' READ operations is
|
|
* configurable and would normally be tuned according to the READ command and
|
|
* operating frequency. However, this applies universally to all 'FAST' READ
|
|
* commands, including those used by the SPIBoot controller, and remains in
|
|
* force until the device is power-cycled. Since the SPIBoot controller is
|
|
* hard-wired to use 8 dummy cycles, we must configure the device to also use 8
|
|
* cycles.
|
|
*/
|
|
static struct seq_rw_config n25q_read3_configs[] = {
|
|
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
|
|
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
|
|
};
|
|
|
|
/* N25Q 4-byte Address READ configurations
|
|
* - use special 4-byte address READ commands (reduces overheads, and
|
|
* reduces risk of hitting watchdog reset issues).
|
|
* - 'FAST' variants configured for 8 dummy cycles (see note above.)
|
|
*/
|
|
static struct seq_rw_config n25q_read4_configs[] = {
|
|
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
|
|
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
|
|
};
|
|
|
|
/*
|
|
* [MX25xxx] Configuration
|
|
*/
|
|
#define MX25_STATUS_QE (0x1 << 6)
|
|
|
|
static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
|
|
{
|
|
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
|
|
SEQ_OPC_CSDEASSERT);
|
|
|
|
seq->seq[0] = STFSM_INST_CMD1;
|
|
seq->seq[1] = STFSM_INST_WAIT;
|
|
seq->seq[2] = STFSM_INST_STOP;
|
|
|
|
seq->seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_ERASE |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* [S25FLxxx] Configuration
|
|
*/
|
|
#define STFSM_S25FL_CONFIG_QE (0x1 << 1)
|
|
|
|
/*
|
|
* S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
|
|
* Register, Extended Address Modes, and a 32-bit address command set. The
|
|
* 32-bit address command set is used here, since it avoids any problems with
|
|
* entering a state that is incompatible with the SPIBoot Controller.
|
|
*/
|
|
static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
|
|
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 2, 4},
|
|
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 4, 0},
|
|
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
|
|
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
|
|
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
|
|
};
|
|
|
|
static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
|
|
{FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
|
|
{FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0},
|
|
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
|
|
};
|
|
|
|
/*
|
|
* [W25Qxxx] Configuration
|
|
*/
|
|
#define W25Q_STATUS_QE (0x1 << 1)
|
|
|
|
static struct stfsm_seq stfsm_seq_read_jedec = {
|
|
.data_size = TRANSFER_SIZE(8),
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_DATA_READ,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct stfsm_seq stfsm_seq_read_status_fifo = {
|
|
.data_size = TRANSFER_SIZE(4),
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_DATA_READ,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct stfsm_seq stfsm_seq_erase_sector = {
|
|
/* 'addr_cfg' configured during initialisation */
|
|
.seq_opc = {
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
|
|
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_SE)),
|
|
},
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_CMD2,
|
|
STFSM_INST_ADD1,
|
|
STFSM_INST_ADD2,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct stfsm_seq stfsm_seq_erase_chip = {
|
|
.seq_opc = {
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
|
|
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
|
|
},
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_CMD2,
|
|
STFSM_INST_WAIT,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_ERASE |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct stfsm_seq stfsm_seq_write_status = {
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
|
|
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_CMD2,
|
|
STFSM_INST_STA_WR1,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
/* Dummy sequence to read one byte of data from flash into the FIFO */
|
|
static const struct stfsm_seq stfsm_seq_load_fifo_byte = {
|
|
.data_size = TRANSFER_SIZE(1),
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_DATA_READ,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
|
|
{
|
|
seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
|
|
seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
|
|
SEQ_OPC_CSDEASSERT);
|
|
|
|
seq->seq[0] = STFSM_INST_CMD2;
|
|
seq->seq[1] = STFSM_INST_CMD1;
|
|
seq->seq[2] = STFSM_INST_WAIT;
|
|
seq->seq[3] = STFSM_INST_STOP;
|
|
|
|
seq->seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_ERASE |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int stfsm_is_idle(struct stfsm *fsm)
|
|
{
|
|
return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
|
|
}
|
|
|
|
static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
|
|
{
|
|
return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
|
|
}
|
|
|
|
static inline void stfsm_load_seq(struct stfsm *fsm,
|
|
const struct stfsm_seq *seq)
|
|
{
|
|
void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
|
|
const uint32_t *src = (const uint32_t *)seq;
|
|
int words = sizeof(*seq) / sizeof(*src);
|
|
|
|
BUG_ON(!stfsm_is_idle(fsm));
|
|
|
|
while (words--) {
|
|
writel(*src, dst);
|
|
src++;
|
|
dst += 4;
|
|
}
|
|
}
|
|
|
|
static void stfsm_wait_seq(struct stfsm *fsm)
|
|
{
|
|
unsigned long deadline;
|
|
int timeout = 0;
|
|
|
|
deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
|
|
|
|
while (!timeout) {
|
|
if (time_after_eq(jiffies, deadline))
|
|
timeout = 1;
|
|
|
|
if (stfsm_is_idle(fsm))
|
|
return;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
dev_err(fsm->dev, "timeout on sequence completion\n");
|
|
}
|
|
|
|
static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
|
|
{
|
|
uint32_t remaining = size >> 2;
|
|
uint32_t avail;
|
|
uint32_t words;
|
|
|
|
dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
|
|
|
|
BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
|
|
|
|
while (remaining) {
|
|
for (;;) {
|
|
avail = stfsm_fifo_available(fsm);
|
|
if (avail)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
words = min(avail, remaining);
|
|
remaining -= words;
|
|
|
|
readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
|
|
buf += words;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear the data FIFO
|
|
*
|
|
* Typically, this is only required during driver initialisation, where no
|
|
* assumptions can be made regarding the state of the FIFO.
|
|
*
|
|
* The process of clearing the FIFO is complicated by fact that while it is
|
|
* possible for the FIFO to contain an arbitrary number of bytes [1], the
|
|
* SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words
|
|
* present. Furthermore, data can only be drained from the FIFO by reading
|
|
* complete 32-bit words.
|
|
*
|
|
* With this in mind, a two stage process is used to the clear the FIFO:
|
|
*
|
|
* 1. Read any complete 32-bit words from the FIFO, as reported by the
|
|
* SPI_FAST_SEQ_STA register.
|
|
*
|
|
* 2. Mop up any remaining bytes. At this point, it is not known if there
|
|
* are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM
|
|
* sequence is used to load one byte at a time, until a complete 32-bit
|
|
* word is formed; at most, 4 bytes will need to be loaded.
|
|
*
|
|
* [1] It is theoretically possible for the FIFO to contain an arbitrary number
|
|
* of bits. However, since there are no known use-cases that leave
|
|
* incomplete bytes in the FIFO, only words and bytes are considered here.
|
|
*/
|
|
static void stfsm_clear_fifo(struct stfsm *fsm)
|
|
{
|
|
const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte;
|
|
uint32_t words, i;
|
|
|
|
/* 1. Clear any 32-bit words */
|
|
words = stfsm_fifo_available(fsm);
|
|
if (words) {
|
|
for (i = 0; i < words; i++)
|
|
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
|
|
dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words);
|
|
}
|
|
|
|
/*
|
|
* 2. Clear any remaining bytes
|
|
* - Load the FIFO, one byte at a time, until a complete 32-bit word
|
|
* is available.
|
|
*/
|
|
for (i = 0, words = 0; i < 4 && !words; i++) {
|
|
stfsm_load_seq(fsm, seq);
|
|
stfsm_wait_seq(fsm);
|
|
words = stfsm_fifo_available(fsm);
|
|
}
|
|
|
|
/* - A single word must be available now */
|
|
if (words != 1) {
|
|
dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n");
|
|
return;
|
|
}
|
|
|
|
/* - Read the 32-bit word */
|
|
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
|
|
|
|
dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i);
|
|
}
|
|
|
|
static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
|
|
uint32_t size)
|
|
{
|
|
uint32_t words = size >> 2;
|
|
|
|
dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
|
|
|
|
BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
|
|
|
|
writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
|
|
{
|
|
struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
|
|
uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
|
|
|
|
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(cmd) |
|
|
SEQ_OPC_CSDEASSERT);
|
|
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
stfsm_wait_seq(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t stfsm_wait_busy(struct stfsm *fsm)
|
|
{
|
|
struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
|
|
unsigned long deadline;
|
|
uint32_t status;
|
|
int timeout = 0;
|
|
|
|
/* Use RDRS1 */
|
|
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
|
|
|
|
/* Load read_status sequence */
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
/*
|
|
* Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
|
|
*/
|
|
deadline = jiffies + FLASH_MAX_BUSY_WAIT;
|
|
while (!timeout) {
|
|
if (time_after_eq(jiffies, deadline))
|
|
timeout = 1;
|
|
|
|
stfsm_wait_seq(fsm);
|
|
|
|
stfsm_read_fifo(fsm, &status, 4);
|
|
|
|
if ((status & FLASH_STATUS_BUSY) == 0)
|
|
return 0;
|
|
|
|
if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
|
|
((status & S25FL_STATUS_P_ERR) ||
|
|
(status & S25FL_STATUS_E_ERR)))
|
|
return (uint8_t)(status & 0xff);
|
|
|
|
if (!timeout)
|
|
/* Restart */
|
|
writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
dev_err(fsm->dev, "timeout on wait_busy\n");
|
|
|
|
return FLASH_STATUS_TIMEOUT;
|
|
}
|
|
|
|
static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
|
|
uint8_t *data, int bytes)
|
|
{
|
|
struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
|
|
uint32_t tmp;
|
|
uint8_t *t = (uint8_t *)&tmp;
|
|
int i;
|
|
|
|
dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
|
|
cmd, bytes);
|
|
|
|
BUG_ON(bytes != 1 && bytes != 2);
|
|
|
|
seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(cmd)),
|
|
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
stfsm_read_fifo(fsm, &tmp, 4);
|
|
|
|
for (i = 0; i < bytes; i++)
|
|
data[i] = t[i];
|
|
|
|
stfsm_wait_seq(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
|
|
uint16_t data, int bytes, int wait_busy)
|
|
{
|
|
struct stfsm_seq *seq = &stfsm_seq_write_status;
|
|
|
|
dev_dbg(fsm->dev,
|
|
"write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
|
|
" %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
|
|
|
|
BUG_ON(bytes != 1 && bytes != 2);
|
|
|
|
seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(cmd));
|
|
|
|
seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
|
|
seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
|
|
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
stfsm_wait_seq(fsm);
|
|
|
|
if (wait_busy)
|
|
stfsm_wait_busy(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* SoC reset on 'boot-from-spi' systems
|
|
*
|
|
* Certain modes of operation cause the Flash device to enter a particular state
|
|
* for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
|
|
* Addr' commands). On boot-from-spi systems, it is important to consider what
|
|
* happens if a warm reset occurs during this period. The SPIBoot controller
|
|
* assumes that Flash device is in its default reset state, 24-bit address mode,
|
|
* and ready to accept commands. This can be achieved using some form of
|
|
* on-board logic/controller to force a device POR in response to a SoC-level
|
|
* reset or by making use of the device reset signal if available (limited
|
|
* number of devices only).
|
|
*
|
|
* Failure to take such precautions can cause problems following a warm reset.
|
|
* For some operations (e.g. ERASE), there is little that can be done. For
|
|
* other modes of operation (e.g. 32-bit addressing), options are often
|
|
* available that can help minimise the window in which a reset could cause a
|
|
* problem.
|
|
*
|
|
*/
|
|
static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
|
|
{
|
|
/* Reset signal is available on the board and supported by the device */
|
|
if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
|
|
return true;
|
|
|
|
/* Board-level logic forces a power-on-reset */
|
|
if (fsm->reset_por)
|
|
return true;
|
|
|
|
/* Reset is not properly handled and may result in failure to reboot */
|
|
return false;
|
|
}
|
|
|
|
/* Configure 'addr_cfg' according to addressing mode */
|
|
static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
|
|
struct stfsm_seq *seq)
|
|
{
|
|
int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
|
|
|
|
seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
|
|
ADR_CFG_PADS_1_ADD1 |
|
|
ADR_CFG_CYCLES_ADD2(16) |
|
|
ADR_CFG_PADS_1_ADD2 |
|
|
ADR_CFG_CSDEASSERT_ADD2);
|
|
}
|
|
|
|
/* Search for preferred configuration based on available flags */
|
|
static struct seq_rw_config *
|
|
stfsm_search_seq_rw_configs(struct stfsm *fsm,
|
|
struct seq_rw_config cfgs[])
|
|
{
|
|
struct seq_rw_config *config;
|
|
int flags = fsm->info->flags;
|
|
|
|
for (config = cfgs; config->cmd != 0; config++)
|
|
if ((config->flags & flags) == config->flags)
|
|
return config;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Prepare a READ/WRITE sequence according to configuration parameters */
|
|
static void stfsm_prepare_rw_seq(struct stfsm *fsm,
|
|
struct stfsm_seq *seq,
|
|
struct seq_rw_config *cfg)
|
|
{
|
|
int addr1_cycles, addr2_cycles;
|
|
int i = 0;
|
|
|
|
memset(seq, 0, sizeof(*seq));
|
|
|
|
/* Add READ/WRITE OPC */
|
|
seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(cfg->cmd));
|
|
|
|
/* Add WREN OPC for a WRITE sequence */
|
|
if (cfg->write)
|
|
seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
|
|
SEQ_OPC_CSDEASSERT);
|
|
|
|
/* Address configuration (24 or 32-bit addresses) */
|
|
addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
|
|
addr1_cycles /= cfg->addr_pads;
|
|
addr2_cycles = 16 / cfg->addr_pads;
|
|
seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
|
|
(cfg->addr_pads - 1) << 6 | /* ADD1 pads */
|
|
(addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
|
|
((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
|
|
|
|
/* Data/Sequence configuration */
|
|
seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
|
|
SEQ_CFG_STARTSEQ |
|
|
SEQ_CFG_CSDEASSERT);
|
|
if (!cfg->write)
|
|
seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
|
|
|
|
/* Mode configuration (no. of pads taken from addr cfg) */
|
|
seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
|
|
(cfg->mode_cycles & 0x3f) << 16 | /* cycles */
|
|
(cfg->addr_pads - 1) << 22); /* pads */
|
|
|
|
/* Dummy configuration (no. of pads taken from addr cfg) */
|
|
seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
|
|
(cfg->addr_pads - 1) << 22); /* pads */
|
|
|
|
|
|
/* Instruction sequence */
|
|
i = 0;
|
|
if (cfg->write)
|
|
seq->seq[i++] = STFSM_INST_CMD2;
|
|
|
|
seq->seq[i++] = STFSM_INST_CMD1;
|
|
|
|
seq->seq[i++] = STFSM_INST_ADD1;
|
|
seq->seq[i++] = STFSM_INST_ADD2;
|
|
|
|
if (cfg->mode_cycles)
|
|
seq->seq[i++] = STFSM_INST_MODE;
|
|
|
|
if (cfg->dummy_cycles)
|
|
seq->seq[i++] = STFSM_INST_DUMMY;
|
|
|
|
seq->seq[i++] =
|
|
cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
|
|
seq->seq[i++] = STFSM_INST_STOP;
|
|
}
|
|
|
|
static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
|
|
struct stfsm_seq *seq,
|
|
struct seq_rw_config *cfgs)
|
|
{
|
|
struct seq_rw_config *config;
|
|
|
|
config = stfsm_search_seq_rw_configs(fsm, cfgs);
|
|
if (!config) {
|
|
dev_err(fsm->dev, "failed to find suitable config\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
stfsm_prepare_rw_seq(fsm, seq, config);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare a READ/WRITE/ERASE 'default' sequences */
|
|
static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
|
|
{
|
|
uint32_t flags = fsm->info->flags;
|
|
int ret;
|
|
|
|
/* Configure 'READ' sequence */
|
|
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
|
|
default_read_configs);
|
|
if (ret) {
|
|
dev_err(fsm->dev,
|
|
"failed to prep READ sequence with flags [0x%08x]\n",
|
|
flags);
|
|
return ret;
|
|
}
|
|
|
|
/* Configure 'WRITE' sequence */
|
|
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
|
|
default_write_configs);
|
|
if (ret) {
|
|
dev_err(fsm->dev,
|
|
"failed to prep WRITE sequence with flags [0x%08x]\n",
|
|
flags);
|
|
return ret;
|
|
}
|
|
|
|
/* Configure 'ERASE_SECTOR' sequence */
|
|
stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_mx25_config(struct stfsm *fsm)
|
|
{
|
|
uint32_t flags = fsm->info->flags;
|
|
uint32_t data_pads;
|
|
uint8_t sta;
|
|
int ret;
|
|
bool soc_reset;
|
|
|
|
/*
|
|
* Use default READ/WRITE sequences
|
|
*/
|
|
ret = stfsm_prepare_rwe_seqs_default(fsm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Configure 32-bit Address Support
|
|
*/
|
|
if (flags & FLASH_FLAG_32BIT_ADDR) {
|
|
/* Configure 'enter_32bitaddr' FSM sequence */
|
|
stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
|
|
|
|
soc_reset = stfsm_can_handle_soc_reset(fsm);
|
|
if (soc_reset || !fsm->booted_from_spi)
|
|
/* If we can handle SoC resets, we enable 32-bit address
|
|
* mode pervasively */
|
|
stfsm_enter_32bit_addr(fsm, 1);
|
|
|
|
else
|
|
/* Else, enable/disable 32-bit addressing before/after
|
|
* each operation */
|
|
fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
|
|
CFG_WRITE_TOGGLE_32BIT_ADDR |
|
|
CFG_ERASESEC_TOGGLE_32BIT_ADDR);
|
|
}
|
|
|
|
/* Check status of 'QE' bit, update if required. */
|
|
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
|
|
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
|
|
if (data_pads == 4) {
|
|
if (!(sta & MX25_STATUS_QE)) {
|
|
/* Set 'QE' */
|
|
sta |= MX25_STATUS_QE;
|
|
|
|
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
|
|
}
|
|
} else {
|
|
if (sta & MX25_STATUS_QE) {
|
|
/* Clear 'QE' */
|
|
sta &= ~MX25_STATUS_QE;
|
|
|
|
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_n25q_config(struct stfsm *fsm)
|
|
{
|
|
uint32_t flags = fsm->info->flags;
|
|
uint8_t vcr;
|
|
int ret = 0;
|
|
bool soc_reset;
|
|
|
|
/* Configure 'READ' sequence */
|
|
if (flags & FLASH_FLAG_32BIT_ADDR)
|
|
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
|
|
n25q_read4_configs);
|
|
else
|
|
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
|
|
n25q_read3_configs);
|
|
if (ret) {
|
|
dev_err(fsm->dev,
|
|
"failed to prepare READ sequence with flags [0x%08x]\n",
|
|
flags);
|
|
return ret;
|
|
}
|
|
|
|
/* Configure 'WRITE' sequence (default configs) */
|
|
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
|
|
default_write_configs);
|
|
if (ret) {
|
|
dev_err(fsm->dev,
|
|
"preparing WRITE sequence using flags [0x%08x] failed\n",
|
|
flags);
|
|
return ret;
|
|
}
|
|
|
|
/* * Configure 'ERASE_SECTOR' sequence */
|
|
stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
|
|
|
|
/* Configure 32-bit address support */
|
|
if (flags & FLASH_FLAG_32BIT_ADDR) {
|
|
stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
|
|
|
|
soc_reset = stfsm_can_handle_soc_reset(fsm);
|
|
if (soc_reset || !fsm->booted_from_spi) {
|
|
/*
|
|
* If we can handle SoC resets, we enable 32-bit
|
|
* address mode pervasively
|
|
*/
|
|
stfsm_enter_32bit_addr(fsm, 1);
|
|
} else {
|
|
/*
|
|
* If not, enable/disable for WRITE and ERASE
|
|
* operations (READ uses special commands)
|
|
*/
|
|
fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
|
|
CFG_ERASESEC_TOGGLE_32BIT_ADDR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure device to use 8 dummy cycles
|
|
*/
|
|
vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
|
|
N25Q_VCR_WRAP_CONT);
|
|
stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
|
|
{
|
|
seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(S25FL_CMD_SE4));
|
|
|
|
seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
|
|
ADR_CFG_PADS_1_ADD1 |
|
|
ADR_CFG_CYCLES_ADD2(16) |
|
|
ADR_CFG_PADS_1_ADD2 |
|
|
ADR_CFG_CSDEASSERT_ADD2);
|
|
}
|
|
|
|
static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
|
|
{
|
|
uint32_t tmp;
|
|
struct stfsm_seq seq = {
|
|
.data_size = TRANSFER_SIZE(4),
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
|
|
.addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
|
|
ADR_CFG_PADS_1_ADD1 |
|
|
ADR_CFG_CYCLES_ADD2(16) |
|
|
ADR_CFG_PADS_1_ADD2),
|
|
.addr1 = (offs >> 16) & 0xffff,
|
|
.addr2 = offs & 0xffff,
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_ADD1,
|
|
STFSM_INST_ADD2,
|
|
STFSM_INST_DATA_READ,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
stfsm_load_seq(fsm, &seq);
|
|
|
|
stfsm_read_fifo(fsm, &tmp, 4);
|
|
|
|
*dby = (uint8_t)(tmp >> 24);
|
|
|
|
stfsm_wait_seq(fsm);
|
|
}
|
|
|
|
static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
|
|
{
|
|
struct stfsm_seq seq = {
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
|
|
SEQ_OPC_CSDEASSERT),
|
|
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
|
|
.addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
|
|
ADR_CFG_PADS_1_ADD1 |
|
|
ADR_CFG_CYCLES_ADD2(16) |
|
|
ADR_CFG_PADS_1_ADD2),
|
|
.status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
|
|
.addr1 = (offs >> 16) & 0xffff,
|
|
.addr2 = offs & 0xffff,
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_CMD2,
|
|
STFSM_INST_ADD1,
|
|
STFSM_INST_ADD2,
|
|
STFSM_INST_STA_WR1,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
stfsm_load_seq(fsm, &seq);
|
|
stfsm_wait_seq(fsm);
|
|
|
|
stfsm_wait_busy(fsm);
|
|
}
|
|
|
|
static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
|
|
{
|
|
struct stfsm_seq seq = {
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
|
|
SEQ_OPC_CSDEASSERT),
|
|
.seq_opc[1] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
|
|
SEQ_OPC_CSDEASSERT),
|
|
.seq = {
|
|
STFSM_INST_CMD1,
|
|
STFSM_INST_CMD2,
|
|
STFSM_INST_WAIT,
|
|
STFSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_ERASE |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
stfsm_load_seq(fsm, &seq);
|
|
|
|
stfsm_wait_seq(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_s25fl_config(struct stfsm *fsm)
|
|
{
|
|
struct flash_info *info = fsm->info;
|
|
uint32_t flags = info->flags;
|
|
uint32_t data_pads;
|
|
uint32_t offs;
|
|
uint16_t sta_wr;
|
|
uint8_t sr1, cr1, dyb;
|
|
int update_sr = 0;
|
|
int ret;
|
|
|
|
if (flags & FLASH_FLAG_32BIT_ADDR) {
|
|
/*
|
|
* Prepare Read/Write/Erase sequences according to S25FLxxx
|
|
* 32-bit address command set
|
|
*/
|
|
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
|
|
stfsm_s25fl_read4_configs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
|
|
stfsm_s25fl_write4_configs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
|
|
|
|
} else {
|
|
/* Use default configurations for 24-bit addressing */
|
|
ret = stfsm_prepare_rwe_seqs_default(fsm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* For devices that support 'DYB' sector locking, check lock status and
|
|
* unlock sectors if necessary (some variants power-on with sectors
|
|
* locked by default)
|
|
*/
|
|
if (flags & FLASH_FLAG_DYB_LOCKING) {
|
|
offs = 0;
|
|
for (offs = 0; offs < info->sector_size * info->n_sectors;) {
|
|
stfsm_s25fl_read_dyb(fsm, offs, &dyb);
|
|
if (dyb == 0x00)
|
|
stfsm_s25fl_write_dyb(fsm, offs, 0xff);
|
|
|
|
/* Handle bottom/top 4KiB parameter sectors */
|
|
if ((offs < info->sector_size * 2) ||
|
|
(offs >= (info->sector_size - info->n_sectors * 4)))
|
|
offs += 0x1000;
|
|
else
|
|
offs += 0x10000;
|
|
}
|
|
}
|
|
|
|
/* Check status of 'QE' bit, update if required. */
|
|
stfsm_read_status(fsm, SPINOR_OP_RDSR2, &cr1, 1);
|
|
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
|
|
if (data_pads == 4) {
|
|
if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
|
|
/* Set 'QE' */
|
|
cr1 |= STFSM_S25FL_CONFIG_QE;
|
|
|
|
update_sr = 1;
|
|
}
|
|
} else {
|
|
if (cr1 & STFSM_S25FL_CONFIG_QE) {
|
|
/* Clear 'QE' */
|
|
cr1 &= ~STFSM_S25FL_CONFIG_QE;
|
|
|
|
update_sr = 1;
|
|
}
|
|
}
|
|
if (update_sr) {
|
|
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
|
|
sta_wr = ((uint16_t)cr1 << 8) | sr1;
|
|
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
|
|
}
|
|
|
|
/*
|
|
* S25FLxxx devices support Program and Error error flags.
|
|
* Configure driver to check flags and clear if necessary.
|
|
*/
|
|
fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_w25q_config(struct stfsm *fsm)
|
|
{
|
|
uint32_t data_pads;
|
|
uint8_t sr1, sr2;
|
|
uint16_t sr_wr;
|
|
int update_sr = 0;
|
|
int ret;
|
|
|
|
ret = stfsm_prepare_rwe_seqs_default(fsm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check status of 'QE' bit, update if required. */
|
|
stfsm_read_status(fsm, SPINOR_OP_RDSR2, &sr2, 1);
|
|
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
|
|
if (data_pads == 4) {
|
|
if (!(sr2 & W25Q_STATUS_QE)) {
|
|
/* Set 'QE' */
|
|
sr2 |= W25Q_STATUS_QE;
|
|
update_sr = 1;
|
|
}
|
|
} else {
|
|
if (sr2 & W25Q_STATUS_QE) {
|
|
/* Clear 'QE' */
|
|
sr2 &= ~W25Q_STATUS_QE;
|
|
update_sr = 1;
|
|
}
|
|
}
|
|
if (update_sr) {
|
|
/* Write status register */
|
|
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
|
|
sr_wr = ((uint16_t)sr2 << 8) | sr1;
|
|
stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
|
|
uint32_t offset)
|
|
{
|
|
struct stfsm_seq *seq = &fsm->stfsm_seq_read;
|
|
uint32_t data_pads;
|
|
uint32_t read_mask;
|
|
uint32_t size_ub;
|
|
uint32_t size_lb;
|
|
uint32_t size_mop;
|
|
uint32_t tmp[4];
|
|
uint32_t page_buf[FLASH_PAGESIZE_32];
|
|
uint8_t *p;
|
|
|
|
dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
|
|
|
|
/* Enter 32-bit address mode, if required */
|
|
if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
|
|
stfsm_enter_32bit_addr(fsm, 1);
|
|
|
|
/* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
|
|
data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
|
|
read_mask = (data_pads << 2) - 1;
|
|
|
|
/* Handle non-aligned buf */
|
|
p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
|
|
|
|
/* Handle non-aligned size */
|
|
size_ub = (size + read_mask) & ~read_mask;
|
|
size_lb = size & ~read_mask;
|
|
size_mop = size & read_mask;
|
|
|
|
seq->data_size = TRANSFER_SIZE(size_ub);
|
|
seq->addr1 = (offset >> 16) & 0xffff;
|
|
seq->addr2 = offset & 0xffff;
|
|
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
if (size_lb)
|
|
stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
|
|
|
|
if (size_mop) {
|
|
stfsm_read_fifo(fsm, tmp, read_mask + 1);
|
|
memcpy(p + size_lb, &tmp, size_mop);
|
|
}
|
|
|
|
/* Handle non-aligned buf */
|
|
if ((uintptr_t)buf & 0x3)
|
|
memcpy(buf, page_buf, size);
|
|
|
|
/* Wait for sequence to finish */
|
|
stfsm_wait_seq(fsm);
|
|
|
|
stfsm_clear_fifo(fsm);
|
|
|
|
/* Exit 32-bit address mode, if required */
|
|
if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
|
|
stfsm_enter_32bit_addr(fsm, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
|
|
uint32_t size, uint32_t offset)
|
|
{
|
|
struct stfsm_seq *seq = &fsm->stfsm_seq_write;
|
|
uint32_t data_pads;
|
|
uint32_t write_mask;
|
|
uint32_t size_ub;
|
|
uint32_t size_lb;
|
|
uint32_t size_mop;
|
|
uint32_t tmp[4];
|
|
uint32_t i;
|
|
uint32_t page_buf[FLASH_PAGESIZE_32];
|
|
uint8_t *t = (uint8_t *)&tmp;
|
|
const uint8_t *p;
|
|
int ret;
|
|
|
|
dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
|
|
|
|
/* Enter 32-bit address mode, if required */
|
|
if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
|
|
stfsm_enter_32bit_addr(fsm, 1);
|
|
|
|
/* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
|
|
data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
|
|
write_mask = (data_pads << 2) - 1;
|
|
|
|
/* Handle non-aligned buf */
|
|
if ((uintptr_t)buf & 0x3) {
|
|
memcpy(page_buf, buf, size);
|
|
p = (uint8_t *)page_buf;
|
|
} else {
|
|
p = buf;
|
|
}
|
|
|
|
/* Handle non-aligned size */
|
|
size_ub = (size + write_mask) & ~write_mask;
|
|
size_lb = size & ~write_mask;
|
|
size_mop = size & write_mask;
|
|
|
|
seq->data_size = TRANSFER_SIZE(size_ub);
|
|
seq->addr1 = (offset >> 16) & 0xffff;
|
|
seq->addr2 = offset & 0xffff;
|
|
|
|
/* Need to set FIFO to write mode, before writing data to FIFO (see
|
|
* GNBvb79594)
|
|
*/
|
|
writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
|
|
|
|
/*
|
|
* Before writing data to the FIFO, apply a small delay to allow a
|
|
* potential change of FIFO direction to complete.
|
|
*/
|
|
if (fsm->fifo_dir_delay == 0)
|
|
readl(fsm->base + SPI_FAST_SEQ_CFG);
|
|
else
|
|
udelay(fsm->fifo_dir_delay);
|
|
|
|
|
|
/* Write data to FIFO, before starting sequence (see GNBvd79593) */
|
|
if (size_lb) {
|
|
stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
|
|
p += size_lb;
|
|
}
|
|
|
|
/* Handle non-aligned size */
|
|
if (size_mop) {
|
|
memset(t, 0xff, write_mask + 1); /* fill with 0xff's */
|
|
for (i = 0; i < size_mop; i++)
|
|
t[i] = *p++;
|
|
|
|
stfsm_write_fifo(fsm, tmp, write_mask + 1);
|
|
}
|
|
|
|
/* Start sequence */
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
/* Wait for sequence to finish */
|
|
stfsm_wait_seq(fsm);
|
|
|
|
/* Wait for completion */
|
|
ret = stfsm_wait_busy(fsm);
|
|
if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
|
|
stfsm_s25fl_clear_status_reg(fsm);
|
|
|
|
/* Exit 32-bit address mode, if required */
|
|
if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
|
|
stfsm_enter_32bit_addr(fsm, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read an address range from the flash chip. The address range
|
|
* may be any size provided it is within the physical boundaries.
|
|
*/
|
|
static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
|
|
uint32_t bytes;
|
|
|
|
dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
|
|
__func__, (u32)from, len);
|
|
|
|
mutex_lock(&fsm->lock);
|
|
|
|
while (len > 0) {
|
|
bytes = min_t(size_t, len, FLASH_PAGESIZE);
|
|
|
|
stfsm_read(fsm, buf, bytes, from);
|
|
|
|
buf += bytes;
|
|
from += bytes;
|
|
len -= bytes;
|
|
|
|
*retlen += bytes;
|
|
}
|
|
|
|
mutex_unlock(&fsm->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
|
|
{
|
|
struct stfsm_seq *seq = &stfsm_seq_erase_sector;
|
|
int ret;
|
|
|
|
dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
|
|
|
|
/* Enter 32-bit address mode, if required */
|
|
if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
|
|
stfsm_enter_32bit_addr(fsm, 1);
|
|
|
|
seq->addr1 = (offset >> 16) & 0xffff;
|
|
seq->addr2 = offset & 0xffff;
|
|
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
stfsm_wait_seq(fsm);
|
|
|
|
/* Wait for completion */
|
|
ret = stfsm_wait_busy(fsm);
|
|
if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
|
|
stfsm_s25fl_clear_status_reg(fsm);
|
|
|
|
/* Exit 32-bit address mode, if required */
|
|
if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
|
|
stfsm_enter_32bit_addr(fsm, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int stfsm_erase_chip(struct stfsm *fsm)
|
|
{
|
|
const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
|
|
|
|
dev_dbg(fsm->dev, "erasing chip\n");
|
|
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
stfsm_wait_seq(fsm);
|
|
|
|
return stfsm_wait_busy(fsm);
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the flash chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
|
|
|
|
u32 page_offs;
|
|
u32 bytes;
|
|
uint8_t *b = (uint8_t *)buf;
|
|
int ret = 0;
|
|
|
|
dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
|
|
|
|
/* Offset within page */
|
|
page_offs = to % FLASH_PAGESIZE;
|
|
|
|
mutex_lock(&fsm->lock);
|
|
|
|
while (len) {
|
|
/* Write up to page boundary */
|
|
bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
|
|
|
|
ret = stfsm_write(fsm, b, bytes, to);
|
|
if (ret)
|
|
goto out1;
|
|
|
|
b += bytes;
|
|
len -= bytes;
|
|
to += bytes;
|
|
|
|
/* We are now page-aligned */
|
|
page_offs = 0;
|
|
|
|
*retlen += bytes;
|
|
|
|
}
|
|
|
|
out1:
|
|
mutex_unlock(&fsm->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Erase an address range on the flash chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
|
|
u32 addr, len;
|
|
int ret;
|
|
|
|
dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
|
|
(long long)instr->addr, (long long)instr->len);
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
mutex_lock(&fsm->lock);
|
|
|
|
/* Whole-chip erase? */
|
|
if (len == mtd->size) {
|
|
ret = stfsm_erase_chip(fsm);
|
|
if (ret)
|
|
goto out1;
|
|
} else {
|
|
while (len) {
|
|
ret = stfsm_erase_sector(fsm, addr);
|
|
if (ret)
|
|
goto out1;
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&fsm->lock);
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
|
|
out1:
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&fsm->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
|
|
{
|
|
const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
|
|
uint32_t tmp[2];
|
|
|
|
stfsm_load_seq(fsm, seq);
|
|
|
|
stfsm_read_fifo(fsm, tmp, 8);
|
|
|
|
memcpy(jedec, tmp, 5);
|
|
|
|
stfsm_wait_seq(fsm);
|
|
}
|
|
|
|
static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
|
|
{
|
|
struct flash_info *info;
|
|
u16 ext_jedec;
|
|
u32 jedec;
|
|
u8 id[5];
|
|
|
|
stfsm_read_jedec(fsm, id);
|
|
|
|
jedec = id[0] << 16 | id[1] << 8 | id[2];
|
|
/*
|
|
* JEDEC also defines an optional "extended device information"
|
|
* string for after vendor-specific data, after the three bytes
|
|
* we use here. Supporting some chips might require using it.
|
|
*/
|
|
ext_jedec = id[3] << 8 | id[4];
|
|
|
|
dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
|
|
jedec, id[0], id[1], id[2], id[3], id[4]);
|
|
|
|
for (info = flash_types; info->name; info++) {
|
|
if (info->jedec_id == jedec) {
|
|
if (info->ext_id && info->ext_id != ext_jedec)
|
|
continue;
|
|
return info;
|
|
}
|
|
}
|
|
dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
|
|
{
|
|
int ret, timeout = 10;
|
|
|
|
/* Wait for controller to accept mode change */
|
|
while (--timeout) {
|
|
ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
|
|
if (ret & 0x1)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (!timeout)
|
|
return -EBUSY;
|
|
|
|
writel(mode, fsm->base + SPI_MODESELECT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
|
|
{
|
|
uint32_t emi_freq;
|
|
uint32_t clk_div;
|
|
|
|
emi_freq = clk_get_rate(fsm->clk);
|
|
|
|
/*
|
|
* Calculate clk_div - values between 2 and 128
|
|
* Multiple of 2, rounded up
|
|
*/
|
|
clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
|
|
if (clk_div < 2)
|
|
clk_div = 2;
|
|
else if (clk_div > 128)
|
|
clk_div = 128;
|
|
|
|
/*
|
|
* Determine a suitable delay for the IP to complete a change of
|
|
* direction of the FIFO. The required delay is related to the clock
|
|
* divider used. The following heuristics are based on empirical tests,
|
|
* using a 100MHz EMI clock.
|
|
*/
|
|
if (clk_div <= 4)
|
|
fsm->fifo_dir_delay = 0;
|
|
else if (clk_div <= 10)
|
|
fsm->fifo_dir_delay = 1;
|
|
else
|
|
fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
|
|
|
|
dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
|
|
emi_freq, spi_freq, clk_div);
|
|
|
|
writel(clk_div, fsm->base + SPI_CLOCKDIV);
|
|
}
|
|
|
|
static int stfsm_init(struct stfsm *fsm)
|
|
{
|
|
int ret;
|
|
|
|
/* Perform a soft reset of the FSM controller */
|
|
writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
|
|
udelay(1);
|
|
writel(0, fsm->base + SPI_FAST_SEQ_CFG);
|
|
|
|
/* Set clock to 'safe' frequency initially */
|
|
stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
|
|
|
|
/* Switch to FSM */
|
|
ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Set timing parameters */
|
|
writel(SPI_CFG_DEVICE_ST |
|
|
SPI_CFG_DEFAULT_MIN_CS_HIGH |
|
|
SPI_CFG_DEFAULT_CS_SETUPHOLD |
|
|
SPI_CFG_DEFAULT_DATA_HOLD,
|
|
fsm->base + SPI_CONFIGDATA);
|
|
writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
|
|
|
|
/*
|
|
* Set the FSM 'WAIT' delay to the minimum workable value. Note, for
|
|
* our purposes, the WAIT instruction is used purely to achieve
|
|
* "sequence validity" rather than actually implement a delay.
|
|
*/
|
|
writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
|
|
|
|
/* Clear FIFO, just in case */
|
|
stfsm_clear_fifo(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stfsm_fetch_platform_configs(struct platform_device *pdev)
|
|
{
|
|
struct stfsm *fsm = platform_get_drvdata(pdev);
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct regmap *regmap;
|
|
uint32_t boot_device_reg;
|
|
uint32_t boot_device_spi;
|
|
uint32_t boot_device; /* Value we read from *boot_device_reg */
|
|
int ret;
|
|
|
|
/* Booting from SPI NOR Flash is the default */
|
|
fsm->booted_from_spi = true;
|
|
|
|
regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
|
|
if (IS_ERR(regmap))
|
|
goto boot_device_fail;
|
|
|
|
fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
|
|
|
|
fsm->reset_por = of_property_read_bool(np, "st,reset-por");
|
|
|
|
/* Where in the syscon the boot device information lives */
|
|
ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
|
|
if (ret)
|
|
goto boot_device_fail;
|
|
|
|
/* Boot device value when booted from SPI NOR */
|
|
ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
|
|
if (ret)
|
|
goto boot_device_fail;
|
|
|
|
ret = regmap_read(regmap, boot_device_reg, &boot_device);
|
|
if (ret)
|
|
goto boot_device_fail;
|
|
|
|
if (boot_device != boot_device_spi)
|
|
fsm->booted_from_spi = false;
|
|
|
|
return;
|
|
|
|
boot_device_fail:
|
|
dev_warn(&pdev->dev,
|
|
"failed to fetch boot device, assuming boot from SPI\n");
|
|
}
|
|
|
|
static int stfsm_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct flash_info *info;
|
|
struct resource *res;
|
|
struct stfsm *fsm;
|
|
int ret;
|
|
|
|
if (!np) {
|
|
dev_err(&pdev->dev, "No DT found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
|
|
if (!fsm)
|
|
return -ENOMEM;
|
|
|
|
fsm->dev = &pdev->dev;
|
|
|
|
platform_set_drvdata(pdev, fsm);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!res) {
|
|
dev_err(&pdev->dev, "Resource not found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
fsm->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(fsm->base)) {
|
|
dev_err(&pdev->dev,
|
|
"Failed to reserve memory region %pR\n", res);
|
|
return PTR_ERR(fsm->base);
|
|
}
|
|
|
|
fsm->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(fsm->clk)) {
|
|
dev_err(fsm->dev, "Couldn't find EMI clock.\n");
|
|
return PTR_ERR(fsm->clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(fsm->clk);
|
|
if (ret) {
|
|
dev_err(fsm->dev, "Failed to enable EMI clock.\n");
|
|
return ret;
|
|
}
|
|
|
|
mutex_init(&fsm->lock);
|
|
|
|
ret = stfsm_init(fsm);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
|
|
return ret;
|
|
}
|
|
|
|
stfsm_fetch_platform_configs(pdev);
|
|
|
|
/* Detect SPI FLASH device */
|
|
info = stfsm_jedec_probe(fsm);
|
|
if (!info)
|
|
return -ENODEV;
|
|
fsm->info = info;
|
|
|
|
/* Use device size to determine address width */
|
|
if (info->sector_size * info->n_sectors > 0x1000000)
|
|
info->flags |= FLASH_FLAG_32BIT_ADDR;
|
|
|
|
/*
|
|
* Configure READ/WRITE/ERASE sequences according to platform and
|
|
* device flags.
|
|
*/
|
|
if (info->config) {
|
|
ret = info->config(fsm);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
ret = stfsm_prepare_rwe_seqs_default(fsm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
fsm->mtd.name = info->name;
|
|
fsm->mtd.dev.parent = &pdev->dev;
|
|
mtd_set_of_node(&fsm->mtd, np);
|
|
fsm->mtd.type = MTD_NORFLASH;
|
|
fsm->mtd.writesize = 4;
|
|
fsm->mtd.writebufsize = fsm->mtd.writesize;
|
|
fsm->mtd.flags = MTD_CAP_NORFLASH;
|
|
fsm->mtd.size = info->sector_size * info->n_sectors;
|
|
fsm->mtd.erasesize = info->sector_size;
|
|
|
|
fsm->mtd._read = stfsm_mtd_read;
|
|
fsm->mtd._write = stfsm_mtd_write;
|
|
fsm->mtd._erase = stfsm_mtd_erase;
|
|
|
|
dev_info(&pdev->dev,
|
|
"Found serial flash device: %s\n"
|
|
" size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
|
|
info->name,
|
|
(long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
|
|
fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
|
|
|
|
return mtd_device_register(&fsm->mtd, NULL, 0);
|
|
}
|
|
|
|
static int stfsm_remove(struct platform_device *pdev)
|
|
{
|
|
struct stfsm *fsm = platform_get_drvdata(pdev);
|
|
|
|
return mtd_device_unregister(&fsm->mtd);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int stfsmfsm_suspend(struct device *dev)
|
|
{
|
|
struct stfsm *fsm = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(fsm->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stfsmfsm_resume(struct device *dev)
|
|
{
|
|
struct stfsm *fsm = dev_get_drvdata(dev);
|
|
|
|
clk_prepare_enable(fsm->clk);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume);
|
|
|
|
static const struct of_device_id stfsm_match[] = {
|
|
{ .compatible = "st,spi-fsm", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stfsm_match);
|
|
|
|
static struct platform_driver stfsm_driver = {
|
|
.probe = stfsm_probe,
|
|
.remove = stfsm_remove,
|
|
.driver = {
|
|
.name = "st-spi-fsm",
|
|
.of_match_table = stfsm_match,
|
|
.pm = &stfsm_pm_ops,
|
|
},
|
|
};
|
|
module_platform_driver(stfsm_driver);
|
|
|
|
MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
|
|
MODULE_DESCRIPTION("ST SPI FSM driver");
|
|
MODULE_LICENSE("GPL");
|