forked from Minki/linux
a07f624bd6
This function now only uses the mapping argument to look up the inode, and both callers already have the inode, so just pass the inode instead of the mapping. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Cc: Chao Yu <yuchao0@huawei.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: Gao Xiang <gaoxiang25@huawei.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com> Cc: Miklos Szeredi <mszeredi@redhat.com> Link: http://lkml.kernel.org/r/20200414150233.24495-22-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
436 lines
11 KiB
C
436 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/ext4/readpage.c
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds.
|
|
* Copyright (C) 2015, Google, Inc.
|
|
*
|
|
* This was originally taken from fs/mpage.c
|
|
*
|
|
* The ext4_mpage_readpages() function here is intended to
|
|
* replace mpage_readahead() in the general case, not just for
|
|
* encrypted files. It has some limitations (see below), where it
|
|
* will fall back to read_block_full_page(), but these limitations
|
|
* should only be hit when page_size != block_size.
|
|
*
|
|
* This will allow us to attach a callback function to support ext4
|
|
* encryption.
|
|
*
|
|
* If anything unusual happens, such as:
|
|
*
|
|
* - encountering a page which has buffers
|
|
* - encountering a page which has a non-hole after a hole
|
|
* - encountering a page with non-contiguous blocks
|
|
*
|
|
* then this code just gives up and calls the buffer_head-based read function.
|
|
* It does handle a page which has holes at the end - that is a common case:
|
|
* the end-of-file on blocksize < PAGE_SIZE setups.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kdev_t.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/cleancache.h>
|
|
|
|
#include "ext4.h"
|
|
|
|
#define NUM_PREALLOC_POST_READ_CTXS 128
|
|
|
|
static struct kmem_cache *bio_post_read_ctx_cache;
|
|
static mempool_t *bio_post_read_ctx_pool;
|
|
|
|
/* postprocessing steps for read bios */
|
|
enum bio_post_read_step {
|
|
STEP_INITIAL = 0,
|
|
STEP_DECRYPT,
|
|
STEP_VERITY,
|
|
STEP_MAX,
|
|
};
|
|
|
|
struct bio_post_read_ctx {
|
|
struct bio *bio;
|
|
struct work_struct work;
|
|
unsigned int cur_step;
|
|
unsigned int enabled_steps;
|
|
};
|
|
|
|
static void __read_end_io(struct bio *bio)
|
|
{
|
|
struct page *page;
|
|
struct bio_vec *bv;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter_all) {
|
|
page = bv->bv_page;
|
|
|
|
/* PG_error was set if any post_read step failed */
|
|
if (bio->bi_status || PageError(page)) {
|
|
ClearPageUptodate(page);
|
|
/* will re-read again later */
|
|
ClearPageError(page);
|
|
} else {
|
|
SetPageUptodate(page);
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
if (bio->bi_private)
|
|
mempool_free(bio->bi_private, bio_post_read_ctx_pool);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
|
|
|
|
static void decrypt_work(struct work_struct *work)
|
|
{
|
|
struct bio_post_read_ctx *ctx =
|
|
container_of(work, struct bio_post_read_ctx, work);
|
|
|
|
fscrypt_decrypt_bio(ctx->bio);
|
|
|
|
bio_post_read_processing(ctx);
|
|
}
|
|
|
|
static void verity_work(struct work_struct *work)
|
|
{
|
|
struct bio_post_read_ctx *ctx =
|
|
container_of(work, struct bio_post_read_ctx, work);
|
|
struct bio *bio = ctx->bio;
|
|
|
|
/*
|
|
* fsverity_verify_bio() may call readpages() again, and although verity
|
|
* will be disabled for that, decryption may still be needed, causing
|
|
* another bio_post_read_ctx to be allocated. So to guarantee that
|
|
* mempool_alloc() never deadlocks we must free the current ctx first.
|
|
* This is safe because verity is the last post-read step.
|
|
*/
|
|
BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
|
|
mempool_free(ctx, bio_post_read_ctx_pool);
|
|
bio->bi_private = NULL;
|
|
|
|
fsverity_verify_bio(bio);
|
|
|
|
__read_end_io(bio);
|
|
}
|
|
|
|
static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
|
|
{
|
|
/*
|
|
* We use different work queues for decryption and for verity because
|
|
* verity may require reading metadata pages that need decryption, and
|
|
* we shouldn't recurse to the same workqueue.
|
|
*/
|
|
switch (++ctx->cur_step) {
|
|
case STEP_DECRYPT:
|
|
if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
|
|
INIT_WORK(&ctx->work, decrypt_work);
|
|
fscrypt_enqueue_decrypt_work(&ctx->work);
|
|
return;
|
|
}
|
|
ctx->cur_step++;
|
|
/* fall-through */
|
|
case STEP_VERITY:
|
|
if (ctx->enabled_steps & (1 << STEP_VERITY)) {
|
|
INIT_WORK(&ctx->work, verity_work);
|
|
fsverity_enqueue_verify_work(&ctx->work);
|
|
return;
|
|
}
|
|
ctx->cur_step++;
|
|
/* fall-through */
|
|
default:
|
|
__read_end_io(ctx->bio);
|
|
}
|
|
}
|
|
|
|
static bool bio_post_read_required(struct bio *bio)
|
|
{
|
|
return bio->bi_private && !bio->bi_status;
|
|
}
|
|
|
|
/*
|
|
* I/O completion handler for multipage BIOs.
|
|
*
|
|
* The mpage code never puts partial pages into a BIO (except for end-of-file).
|
|
* If a page does not map to a contiguous run of blocks then it simply falls
|
|
* back to block_read_full_page().
|
|
*
|
|
* Why is this? If a page's completion depends on a number of different BIOs
|
|
* which can complete in any order (or at the same time) then determining the
|
|
* status of that page is hard. See end_buffer_async_read() for the details.
|
|
* There is no point in duplicating all that complexity.
|
|
*/
|
|
static void mpage_end_io(struct bio *bio)
|
|
{
|
|
if (bio_post_read_required(bio)) {
|
|
struct bio_post_read_ctx *ctx = bio->bi_private;
|
|
|
|
ctx->cur_step = STEP_INITIAL;
|
|
bio_post_read_processing(ctx);
|
|
return;
|
|
}
|
|
__read_end_io(bio);
|
|
}
|
|
|
|
static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
|
|
{
|
|
return fsverity_active(inode) &&
|
|
idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
|
|
}
|
|
|
|
static void ext4_set_bio_post_read_ctx(struct bio *bio,
|
|
const struct inode *inode,
|
|
pgoff_t first_idx)
|
|
{
|
|
unsigned int post_read_steps = 0;
|
|
|
|
if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
|
|
post_read_steps |= 1 << STEP_DECRYPT;
|
|
|
|
if (ext4_need_verity(inode, first_idx))
|
|
post_read_steps |= 1 << STEP_VERITY;
|
|
|
|
if (post_read_steps) {
|
|
/* Due to the mempool, this never fails. */
|
|
struct bio_post_read_ctx *ctx =
|
|
mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
|
|
|
|
ctx->bio = bio;
|
|
ctx->enabled_steps = post_read_steps;
|
|
bio->bi_private = ctx;
|
|
}
|
|
}
|
|
|
|
static inline loff_t ext4_readpage_limit(struct inode *inode)
|
|
{
|
|
if (IS_ENABLED(CONFIG_FS_VERITY) &&
|
|
(IS_VERITY(inode) || ext4_verity_in_progress(inode)))
|
|
return inode->i_sb->s_maxbytes;
|
|
|
|
return i_size_read(inode);
|
|
}
|
|
|
|
int ext4_mpage_readpages(struct inode *inode,
|
|
struct readahead_control *rac, struct page *page)
|
|
{
|
|
struct bio *bio = NULL;
|
|
sector_t last_block_in_bio = 0;
|
|
|
|
const unsigned blkbits = inode->i_blkbits;
|
|
const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
|
|
const unsigned blocksize = 1 << blkbits;
|
|
sector_t block_in_file;
|
|
sector_t last_block;
|
|
sector_t last_block_in_file;
|
|
sector_t blocks[MAX_BUF_PER_PAGE];
|
|
unsigned page_block;
|
|
struct block_device *bdev = inode->i_sb->s_bdev;
|
|
int length;
|
|
unsigned relative_block = 0;
|
|
struct ext4_map_blocks map;
|
|
unsigned int nr_pages = rac ? readahead_count(rac) : 1;
|
|
|
|
map.m_pblk = 0;
|
|
map.m_lblk = 0;
|
|
map.m_len = 0;
|
|
map.m_flags = 0;
|
|
|
|
for (; nr_pages; nr_pages--) {
|
|
int fully_mapped = 1;
|
|
unsigned first_hole = blocks_per_page;
|
|
|
|
if (rac) {
|
|
page = readahead_page(rac);
|
|
prefetchw(&page->flags);
|
|
}
|
|
|
|
if (page_has_buffers(page))
|
|
goto confused;
|
|
|
|
block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
|
|
last_block = block_in_file + nr_pages * blocks_per_page;
|
|
last_block_in_file = (ext4_readpage_limit(inode) +
|
|
blocksize - 1) >> blkbits;
|
|
if (last_block > last_block_in_file)
|
|
last_block = last_block_in_file;
|
|
page_block = 0;
|
|
|
|
/*
|
|
* Map blocks using the previous result first.
|
|
*/
|
|
if ((map.m_flags & EXT4_MAP_MAPPED) &&
|
|
block_in_file > map.m_lblk &&
|
|
block_in_file < (map.m_lblk + map.m_len)) {
|
|
unsigned map_offset = block_in_file - map.m_lblk;
|
|
unsigned last = map.m_len - map_offset;
|
|
|
|
for (relative_block = 0; ; relative_block++) {
|
|
if (relative_block == last) {
|
|
/* needed? */
|
|
map.m_flags &= ~EXT4_MAP_MAPPED;
|
|
break;
|
|
}
|
|
if (page_block == blocks_per_page)
|
|
break;
|
|
blocks[page_block] = map.m_pblk + map_offset +
|
|
relative_block;
|
|
page_block++;
|
|
block_in_file++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Then do more ext4_map_blocks() calls until we are
|
|
* done with this page.
|
|
*/
|
|
while (page_block < blocks_per_page) {
|
|
if (block_in_file < last_block) {
|
|
map.m_lblk = block_in_file;
|
|
map.m_len = last_block - block_in_file;
|
|
|
|
if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
|
|
set_error_page:
|
|
SetPageError(page);
|
|
zero_user_segment(page, 0,
|
|
PAGE_SIZE);
|
|
unlock_page(page);
|
|
goto next_page;
|
|
}
|
|
}
|
|
if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
|
|
fully_mapped = 0;
|
|
if (first_hole == blocks_per_page)
|
|
first_hole = page_block;
|
|
page_block++;
|
|
block_in_file++;
|
|
continue;
|
|
}
|
|
if (first_hole != blocks_per_page)
|
|
goto confused; /* hole -> non-hole */
|
|
|
|
/* Contiguous blocks? */
|
|
if (page_block && blocks[page_block-1] != map.m_pblk-1)
|
|
goto confused;
|
|
for (relative_block = 0; ; relative_block++) {
|
|
if (relative_block == map.m_len) {
|
|
/* needed? */
|
|
map.m_flags &= ~EXT4_MAP_MAPPED;
|
|
break;
|
|
} else if (page_block == blocks_per_page)
|
|
break;
|
|
blocks[page_block] = map.m_pblk+relative_block;
|
|
page_block++;
|
|
block_in_file++;
|
|
}
|
|
}
|
|
if (first_hole != blocks_per_page) {
|
|
zero_user_segment(page, first_hole << blkbits,
|
|
PAGE_SIZE);
|
|
if (first_hole == 0) {
|
|
if (ext4_need_verity(inode, page->index) &&
|
|
!fsverity_verify_page(page))
|
|
goto set_error_page;
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
goto next_page;
|
|
}
|
|
} else if (fully_mapped) {
|
|
SetPageMappedToDisk(page);
|
|
}
|
|
if (fully_mapped && blocks_per_page == 1 &&
|
|
!PageUptodate(page) && cleancache_get_page(page) == 0) {
|
|
SetPageUptodate(page);
|
|
goto confused;
|
|
}
|
|
|
|
/*
|
|
* This page will go to BIO. Do we need to send this
|
|
* BIO off first?
|
|
*/
|
|
if (bio && (last_block_in_bio != blocks[0] - 1)) {
|
|
submit_and_realloc:
|
|
submit_bio(bio);
|
|
bio = NULL;
|
|
}
|
|
if (bio == NULL) {
|
|
/*
|
|
* bio_alloc will _always_ be able to allocate a bio if
|
|
* __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
|
|
*/
|
|
bio = bio_alloc(GFP_KERNEL,
|
|
min_t(int, nr_pages, BIO_MAX_PAGES));
|
|
ext4_set_bio_post_read_ctx(bio, inode, page->index);
|
|
bio_set_dev(bio, bdev);
|
|
bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
|
|
bio->bi_end_io = mpage_end_io;
|
|
bio_set_op_attrs(bio, REQ_OP_READ,
|
|
rac ? REQ_RAHEAD : 0);
|
|
}
|
|
|
|
length = first_hole << blkbits;
|
|
if (bio_add_page(bio, page, length, 0) < length)
|
|
goto submit_and_realloc;
|
|
|
|
if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
|
|
(relative_block == map.m_len)) ||
|
|
(first_hole != blocks_per_page)) {
|
|
submit_bio(bio);
|
|
bio = NULL;
|
|
} else
|
|
last_block_in_bio = blocks[blocks_per_page - 1];
|
|
goto next_page;
|
|
confused:
|
|
if (bio) {
|
|
submit_bio(bio);
|
|
bio = NULL;
|
|
}
|
|
if (!PageUptodate(page))
|
|
block_read_full_page(page, ext4_get_block);
|
|
else
|
|
unlock_page(page);
|
|
next_page:
|
|
if (rac)
|
|
put_page(page);
|
|
}
|
|
if (bio)
|
|
submit_bio(bio);
|
|
return 0;
|
|
}
|
|
|
|
int __init ext4_init_post_read_processing(void)
|
|
{
|
|
bio_post_read_ctx_cache =
|
|
kmem_cache_create("ext4_bio_post_read_ctx",
|
|
sizeof(struct bio_post_read_ctx), 0, 0, NULL);
|
|
if (!bio_post_read_ctx_cache)
|
|
goto fail;
|
|
bio_post_read_ctx_pool =
|
|
mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
|
|
bio_post_read_ctx_cache);
|
|
if (!bio_post_read_ctx_pool)
|
|
goto fail_free_cache;
|
|
return 0;
|
|
|
|
fail_free_cache:
|
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void ext4_exit_post_read_processing(void)
|
|
{
|
|
mempool_destroy(bio_post_read_ctx_pool);
|
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
|
}
|