e16c876553
The general idea is that each core will release all of its threads into the secondary thread startup code, which will eventually wait in the secondary core holding area, for the appropriate bit in the PACA to be set. The kick_cpu function pointer will set that bit in the PACA, and thus "release" the core/thread to boot. We also need to do a few things that U-Boot normally does for CPUs (like enable branch prediction). Signed-off-by: Andy Fleming <afleming@freescale.com> [scottwood@freescale.com: various changes, including only enabling threads if Linux wants to kick them] Signed-off-by: Scott Wood <scottwood@freescale.com>
505 lines
11 KiB
C
505 lines
11 KiB
C
/*
|
|
* Author: Andy Fleming <afleming@freescale.com>
|
|
* Kumar Gala <galak@kernel.crashing.org>
|
|
*
|
|
* Copyright 2006-2008, 2011-2012 Freescale Semiconductor Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/machdep.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mpic.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/dbell.h>
|
|
#include <asm/fsl_guts.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/cputhreads.h>
|
|
|
|
#include <sysdev/fsl_soc.h>
|
|
#include <sysdev/mpic.h>
|
|
#include "smp.h"
|
|
|
|
struct epapr_spin_table {
|
|
u32 addr_h;
|
|
u32 addr_l;
|
|
u32 r3_h;
|
|
u32 r3_l;
|
|
u32 reserved;
|
|
u32 pir;
|
|
};
|
|
|
|
static struct ccsr_guts __iomem *guts;
|
|
static u64 timebase;
|
|
static int tb_req;
|
|
static int tb_valid;
|
|
|
|
static void mpc85xx_timebase_freeze(int freeze)
|
|
{
|
|
uint32_t mask;
|
|
|
|
mask = CCSR_GUTS_DEVDISR_TB0 | CCSR_GUTS_DEVDISR_TB1;
|
|
if (freeze)
|
|
setbits32(&guts->devdisr, mask);
|
|
else
|
|
clrbits32(&guts->devdisr, mask);
|
|
|
|
in_be32(&guts->devdisr);
|
|
}
|
|
|
|
static void mpc85xx_give_timebase(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
while (!tb_req)
|
|
barrier();
|
|
tb_req = 0;
|
|
|
|
mpc85xx_timebase_freeze(1);
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* e5500/e6500 have a workaround for erratum A-006958 in place
|
|
* that will reread the timebase until TBL is non-zero.
|
|
* That would be a bad thing when the timebase is frozen.
|
|
*
|
|
* Thus, we read it manually, and instead of checking that
|
|
* TBL is non-zero, we ensure that TB does not change. We don't
|
|
* do that for the main mftb implementation, because it requires
|
|
* a scratch register
|
|
*/
|
|
{
|
|
u64 prev;
|
|
|
|
asm volatile("mfspr %0, %1" : "=r" (timebase) :
|
|
"i" (SPRN_TBRL));
|
|
|
|
do {
|
|
prev = timebase;
|
|
asm volatile("mfspr %0, %1" : "=r" (timebase) :
|
|
"i" (SPRN_TBRL));
|
|
} while (prev != timebase);
|
|
}
|
|
#else
|
|
timebase = get_tb();
|
|
#endif
|
|
mb();
|
|
tb_valid = 1;
|
|
|
|
while (tb_valid)
|
|
barrier();
|
|
|
|
mpc85xx_timebase_freeze(0);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void mpc85xx_take_timebase(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
tb_req = 1;
|
|
while (!tb_valid)
|
|
barrier();
|
|
|
|
set_tb(timebase >> 32, timebase & 0xffffffff);
|
|
isync();
|
|
tb_valid = 0;
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void smp_85xx_mach_cpu_die(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
u32 tmp;
|
|
|
|
local_irq_disable();
|
|
idle_task_exit();
|
|
generic_set_cpu_dead(cpu);
|
|
mb();
|
|
|
|
mtspr(SPRN_TCR, 0);
|
|
|
|
__flush_disable_L1();
|
|
tmp = (mfspr(SPRN_HID0) & ~(HID0_DOZE|HID0_SLEEP)) | HID0_NAP;
|
|
mtspr(SPRN_HID0, tmp);
|
|
isync();
|
|
|
|
/* Enter NAP mode. */
|
|
tmp = mfmsr();
|
|
tmp |= MSR_WE;
|
|
mb();
|
|
mtmsr(tmp);
|
|
isync();
|
|
|
|
while (1)
|
|
;
|
|
}
|
|
#endif
|
|
|
|
static inline void flush_spin_table(void *spin_table)
|
|
{
|
|
flush_dcache_range((ulong)spin_table,
|
|
(ulong)spin_table + sizeof(struct epapr_spin_table));
|
|
}
|
|
|
|
static inline u32 read_spin_table_addr_l(void *spin_table)
|
|
{
|
|
flush_dcache_range((ulong)spin_table,
|
|
(ulong)spin_table + sizeof(struct epapr_spin_table));
|
|
return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static void wake_hw_thread(void *info)
|
|
{
|
|
void fsl_secondary_thread_init(void);
|
|
unsigned long imsr1, inia1;
|
|
int nr = *(const int *)info;
|
|
|
|
imsr1 = MSR_KERNEL;
|
|
inia1 = *(unsigned long *)fsl_secondary_thread_init;
|
|
|
|
mttmr(TMRN_IMSR1, imsr1);
|
|
mttmr(TMRN_INIA1, inia1);
|
|
mtspr(SPRN_TENS, TEN_THREAD(1));
|
|
|
|
smp_generic_kick_cpu(nr);
|
|
}
|
|
#endif
|
|
|
|
static int smp_85xx_kick_cpu(int nr)
|
|
{
|
|
unsigned long flags;
|
|
const u64 *cpu_rel_addr;
|
|
__iomem struct epapr_spin_table *spin_table;
|
|
struct device_node *np;
|
|
int hw_cpu = get_hard_smp_processor_id(nr);
|
|
int ioremappable;
|
|
int ret = 0;
|
|
|
|
WARN_ON(nr < 0 || nr >= NR_CPUS);
|
|
WARN_ON(hw_cpu < 0 || hw_cpu >= NR_CPUS);
|
|
|
|
pr_debug("smp_85xx_kick_cpu: kick CPU #%d\n", nr);
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Threads don't use the spin table */
|
|
if (cpu_thread_in_core(nr) != 0) {
|
|
int primary = cpu_first_thread_sibling(nr);
|
|
|
|
if (WARN_ON_ONCE(!cpu_has_feature(CPU_FTR_SMT)))
|
|
return -ENOENT;
|
|
|
|
if (cpu_thread_in_core(nr) != 1) {
|
|
pr_err("%s: cpu %d: invalid hw thread %d\n",
|
|
__func__, nr, cpu_thread_in_core(nr));
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (!cpu_online(primary)) {
|
|
pr_err("%s: cpu %d: primary %d not online\n",
|
|
__func__, nr, primary);
|
|
return -ENOENT;
|
|
}
|
|
|
|
smp_call_function_single(primary, wake_hw_thread, &nr, 0);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
np = of_get_cpu_node(nr, NULL);
|
|
cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);
|
|
|
|
if (cpu_rel_addr == NULL) {
|
|
printk(KERN_ERR "No cpu-release-addr for cpu %d\n", nr);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* A secondary core could be in a spinloop in the bootpage
|
|
* (0xfffff000), somewhere in highmem, or somewhere in lowmem.
|
|
* The bootpage and highmem can be accessed via ioremap(), but
|
|
* we need to directly access the spinloop if its in lowmem.
|
|
*/
|
|
ioremappable = *cpu_rel_addr > virt_to_phys(high_memory);
|
|
|
|
/* Map the spin table */
|
|
if (ioremappable)
|
|
spin_table = ioremap_prot(*cpu_rel_addr,
|
|
sizeof(struct epapr_spin_table), _PAGE_COHERENT);
|
|
else
|
|
spin_table = phys_to_virt(*cpu_rel_addr);
|
|
|
|
local_irq_save(flags);
|
|
#ifdef CONFIG_PPC32
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* Corresponding to generic_set_cpu_dead() */
|
|
generic_set_cpu_up(nr);
|
|
|
|
if (system_state == SYSTEM_RUNNING) {
|
|
/*
|
|
* To keep it compatible with old boot program which uses
|
|
* cache-inhibit spin table, we need to flush the cache
|
|
* before accessing spin table to invalidate any staled data.
|
|
* We also need to flush the cache after writing to spin
|
|
* table to push data out.
|
|
*/
|
|
flush_spin_table(spin_table);
|
|
out_be32(&spin_table->addr_l, 0);
|
|
flush_spin_table(spin_table);
|
|
|
|
/*
|
|
* We don't set the BPTR register here since it already points
|
|
* to the boot page properly.
|
|
*/
|
|
mpic_reset_core(nr);
|
|
|
|
/*
|
|
* wait until core is ready...
|
|
* We need to invalidate the stale data, in case the boot
|
|
* loader uses a cache-inhibited spin table.
|
|
*/
|
|
if (!spin_event_timeout(
|
|
read_spin_table_addr_l(spin_table) == 1,
|
|
10000, 100)) {
|
|
pr_err("%s: timeout waiting for core %d to reset\n",
|
|
__func__, hw_cpu);
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
/* clear the acknowledge status */
|
|
__secondary_hold_acknowledge = -1;
|
|
}
|
|
#endif
|
|
flush_spin_table(spin_table);
|
|
out_be32(&spin_table->pir, hw_cpu);
|
|
out_be32(&spin_table->addr_l, __pa(__early_start));
|
|
flush_spin_table(spin_table);
|
|
|
|
/* Wait a bit for the CPU to ack. */
|
|
if (!spin_event_timeout(__secondary_hold_acknowledge == hw_cpu,
|
|
10000, 100)) {
|
|
pr_err("%s: timeout waiting for core %d to ack\n",
|
|
__func__, hw_cpu);
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
out:
|
|
#else
|
|
smp_generic_kick_cpu(nr);
|
|
|
|
flush_spin_table(spin_table);
|
|
out_be32(&spin_table->pir, hw_cpu);
|
|
out_be64((u64 *)(&spin_table->addr_h),
|
|
__pa(ppc_function_entry(generic_secondary_smp_init)));
|
|
flush_spin_table(spin_table);
|
|
#endif
|
|
|
|
local_irq_restore(flags);
|
|
|
|
if (ioremappable)
|
|
iounmap(spin_table);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct smp_ops_t smp_85xx_ops = {
|
|
.kick_cpu = smp_85xx_kick_cpu,
|
|
.cpu_bootable = smp_generic_cpu_bootable,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_disable = generic_cpu_disable,
|
|
.cpu_die = generic_cpu_die,
|
|
#endif
|
|
#ifdef CONFIG_KEXEC
|
|
.give_timebase = smp_generic_give_timebase,
|
|
.take_timebase = smp_generic_take_timebase,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
atomic_t kexec_down_cpus = ATOMIC_INIT(0);
|
|
|
|
void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
|
|
{
|
|
local_irq_disable();
|
|
|
|
if (secondary) {
|
|
atomic_inc(&kexec_down_cpus);
|
|
/* loop forever */
|
|
while (1);
|
|
}
|
|
}
|
|
|
|
static void mpc85xx_smp_kexec_down(void *arg)
|
|
{
|
|
if (ppc_md.kexec_cpu_down)
|
|
ppc_md.kexec_cpu_down(0,1);
|
|
}
|
|
|
|
static void map_and_flush(unsigned long paddr)
|
|
{
|
|
struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
|
|
unsigned long kaddr = (unsigned long)kmap(page);
|
|
|
|
flush_dcache_range(kaddr, kaddr + PAGE_SIZE);
|
|
kunmap(page);
|
|
}
|
|
|
|
/**
|
|
* Before we reset the other cores, we need to flush relevant cache
|
|
* out to memory so we don't get anything corrupted, some of these flushes
|
|
* are performed out of an overabundance of caution as interrupts are not
|
|
* disabled yet and we can switch cores
|
|
*/
|
|
static void mpc85xx_smp_flush_dcache_kexec(struct kimage *image)
|
|
{
|
|
kimage_entry_t *ptr, entry;
|
|
unsigned long paddr;
|
|
int i;
|
|
|
|
if (image->type == KEXEC_TYPE_DEFAULT) {
|
|
/* normal kexec images are stored in temporary pages */
|
|
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
|
|
ptr = (entry & IND_INDIRECTION) ?
|
|
phys_to_virt(entry & PAGE_MASK) : ptr + 1) {
|
|
if (!(entry & IND_DESTINATION)) {
|
|
map_and_flush(entry);
|
|
}
|
|
}
|
|
/* flush out last IND_DONE page */
|
|
map_and_flush(entry);
|
|
} else {
|
|
/* crash type kexec images are copied to the crash region */
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
struct kexec_segment *seg = &image->segment[i];
|
|
for (paddr = seg->mem; paddr < seg->mem + seg->memsz;
|
|
paddr += PAGE_SIZE) {
|
|
map_and_flush(paddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* also flush the kimage struct to be passed in as well */
|
|
flush_dcache_range((unsigned long)image,
|
|
(unsigned long)image + sizeof(*image));
|
|
}
|
|
|
|
static void mpc85xx_smp_machine_kexec(struct kimage *image)
|
|
{
|
|
int timeout = INT_MAX;
|
|
int i, num_cpus = num_present_cpus();
|
|
|
|
mpc85xx_smp_flush_dcache_kexec(image);
|
|
|
|
if (image->type == KEXEC_TYPE_DEFAULT)
|
|
smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
|
|
|
|
while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
|
|
( timeout > 0 ) )
|
|
{
|
|
timeout--;
|
|
}
|
|
|
|
if ( !timeout )
|
|
printk(KERN_ERR "Unable to bring down secondary cpu(s)");
|
|
|
|
for_each_online_cpu(i)
|
|
{
|
|
if ( i == smp_processor_id() ) continue;
|
|
mpic_reset_core(i);
|
|
}
|
|
|
|
default_machine_kexec(image);
|
|
}
|
|
#endif /* CONFIG_KEXEC */
|
|
|
|
static void smp_85xx_basic_setup(int cpu_nr)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_DBELL))
|
|
doorbell_setup_this_cpu();
|
|
}
|
|
|
|
static void smp_85xx_setup_cpu(int cpu_nr)
|
|
{
|
|
mpic_setup_this_cpu();
|
|
smp_85xx_basic_setup(cpu_nr);
|
|
}
|
|
|
|
static const struct of_device_id mpc85xx_smp_guts_ids[] = {
|
|
{ .compatible = "fsl,mpc8572-guts", },
|
|
{ .compatible = "fsl,p1020-guts", },
|
|
{ .compatible = "fsl,p1021-guts", },
|
|
{ .compatible = "fsl,p1022-guts", },
|
|
{ .compatible = "fsl,p1023-guts", },
|
|
{ .compatible = "fsl,p2020-guts", },
|
|
{},
|
|
};
|
|
|
|
void __init mpc85xx_smp_init(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
|
|
np = of_find_node_by_type(NULL, "open-pic");
|
|
if (np) {
|
|
smp_85xx_ops.probe = smp_mpic_probe;
|
|
smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;
|
|
smp_85xx_ops.message_pass = smp_mpic_message_pass;
|
|
} else
|
|
smp_85xx_ops.setup_cpu = smp_85xx_basic_setup;
|
|
|
|
if (cpu_has_feature(CPU_FTR_DBELL)) {
|
|
/*
|
|
* If left NULL, .message_pass defaults to
|
|
* smp_muxed_ipi_message_pass
|
|
*/
|
|
smp_85xx_ops.message_pass = NULL;
|
|
smp_85xx_ops.cause_ipi = doorbell_cause_ipi;
|
|
smp_85xx_ops.probe = NULL;
|
|
}
|
|
|
|
np = of_find_matching_node(NULL, mpc85xx_smp_guts_ids);
|
|
if (np) {
|
|
guts = of_iomap(np, 0);
|
|
of_node_put(np);
|
|
if (!guts) {
|
|
pr_err("%s: Could not map guts node address\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
smp_85xx_ops.give_timebase = mpc85xx_give_timebase;
|
|
smp_85xx_ops.take_timebase = mpc85xx_take_timebase;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
ppc_md.cpu_die = smp_85xx_mach_cpu_die;
|
|
#endif
|
|
}
|
|
|
|
smp_ops = &smp_85xx_ops;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
|
|
ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
|
|
#endif
|
|
}
|