9aba0adae8
Events like uncore_imc/cas_count_read/ on Skylake open multiple events and then aggregate in the metric leader. To determine the average value per event the number of these events is needed. Add a source_count function that returns this value by counting the number of events with the given metric leader. For most events the value is 1 but for uncore_imc/cas_count_read/ it can yield values like 6. Add a generic test, but manually tested with a test metric that uses the function. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul A . Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Song Liu <song@kernel.org> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Yury Norov <yury.norov@gmail.com> Link: https://lore.kernel.org/r/20211111002109.194172-9-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
428 lines
9.0 KiB
C
428 lines
9.0 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <stdbool.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "metricgroup.h"
|
|
#include "cpumap.h"
|
|
#include "cputopo.h"
|
|
#include "debug.h"
|
|
#include "expr.h"
|
|
#include "expr-bison.h"
|
|
#include "expr-flex.h"
|
|
#include "smt.h"
|
|
#include <linux/kernel.h>
|
|
#include <linux/zalloc.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#ifdef PARSER_DEBUG
|
|
extern int expr_debug;
|
|
#endif
|
|
|
|
struct expr_id_data {
|
|
union {
|
|
struct {
|
|
double val;
|
|
int source_count;
|
|
} val;
|
|
struct {
|
|
double val;
|
|
const char *metric_name;
|
|
const char *metric_expr;
|
|
} ref;
|
|
};
|
|
|
|
enum {
|
|
/* Holding a double value. */
|
|
EXPR_ID_DATA__VALUE,
|
|
/* Reference to another metric. */
|
|
EXPR_ID_DATA__REF,
|
|
/* A reference but the value has been computed. */
|
|
EXPR_ID_DATA__REF_VALUE,
|
|
} kind;
|
|
};
|
|
|
|
static size_t key_hash(const void *key, void *ctx __maybe_unused)
|
|
{
|
|
const char *str = (const char *)key;
|
|
size_t hash = 0;
|
|
|
|
while (*str != '\0') {
|
|
hash *= 31;
|
|
hash += *str;
|
|
str++;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
static bool key_equal(const void *key1, const void *key2,
|
|
void *ctx __maybe_unused)
|
|
{
|
|
return !strcmp((const char *)key1, (const char *)key2);
|
|
}
|
|
|
|
struct hashmap *ids__new(void)
|
|
{
|
|
return hashmap__new(key_hash, key_equal, NULL);
|
|
}
|
|
|
|
void ids__free(struct hashmap *ids)
|
|
{
|
|
struct hashmap_entry *cur;
|
|
size_t bkt;
|
|
|
|
if (ids == NULL)
|
|
return;
|
|
|
|
hashmap__for_each_entry(ids, cur, bkt) {
|
|
free((char *)cur->key);
|
|
free(cur->value);
|
|
}
|
|
|
|
hashmap__free(ids);
|
|
}
|
|
|
|
int ids__insert(struct hashmap *ids, const char *id)
|
|
{
|
|
struct expr_id_data *data_ptr = NULL, *old_data = NULL;
|
|
char *old_key = NULL;
|
|
int ret;
|
|
|
|
ret = hashmap__set(ids, id, data_ptr,
|
|
(const void **)&old_key, (void **)&old_data);
|
|
if (ret)
|
|
free(data_ptr);
|
|
free(old_key);
|
|
free(old_data);
|
|
return ret;
|
|
}
|
|
|
|
struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
|
|
{
|
|
size_t bkt;
|
|
struct hashmap_entry *cur;
|
|
int ret;
|
|
struct expr_id_data *old_data = NULL;
|
|
char *old_key = NULL;
|
|
|
|
if (!ids1)
|
|
return ids2;
|
|
|
|
if (!ids2)
|
|
return ids1;
|
|
|
|
if (hashmap__size(ids1) < hashmap__size(ids2)) {
|
|
struct hashmap *tmp = ids1;
|
|
|
|
ids1 = ids2;
|
|
ids2 = tmp;
|
|
}
|
|
hashmap__for_each_entry(ids2, cur, bkt) {
|
|
ret = hashmap__set(ids1, cur->key, cur->value,
|
|
(const void **)&old_key, (void **)&old_data);
|
|
free(old_key);
|
|
free(old_data);
|
|
|
|
if (ret) {
|
|
hashmap__free(ids1);
|
|
hashmap__free(ids2);
|
|
return NULL;
|
|
}
|
|
}
|
|
hashmap__free(ids2);
|
|
return ids1;
|
|
}
|
|
|
|
/* Caller must make sure id is allocated */
|
|
int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
|
|
{
|
|
return ids__insert(ctx->ids, id);
|
|
}
|
|
|
|
/* Caller must make sure id is allocated */
|
|
int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
|
|
{
|
|
return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
|
|
}
|
|
|
|
/* Caller must make sure id is allocated */
|
|
int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
|
|
double val, int source_count)
|
|
{
|
|
struct expr_id_data *data_ptr = NULL, *old_data = NULL;
|
|
char *old_key = NULL;
|
|
int ret;
|
|
|
|
data_ptr = malloc(sizeof(*data_ptr));
|
|
if (!data_ptr)
|
|
return -ENOMEM;
|
|
data_ptr->val.val = val;
|
|
data_ptr->val.source_count = source_count;
|
|
data_ptr->kind = EXPR_ID_DATA__VALUE;
|
|
|
|
ret = hashmap__set(ctx->ids, id, data_ptr,
|
|
(const void **)&old_key, (void **)&old_data);
|
|
if (ret)
|
|
free(data_ptr);
|
|
free(old_key);
|
|
free(old_data);
|
|
return ret;
|
|
}
|
|
|
|
int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
|
|
{
|
|
struct expr_id_data *data_ptr = NULL, *old_data = NULL;
|
|
char *old_key = NULL;
|
|
char *name, *p;
|
|
int ret;
|
|
|
|
data_ptr = zalloc(sizeof(*data_ptr));
|
|
if (!data_ptr)
|
|
return -ENOMEM;
|
|
|
|
name = strdup(ref->metric_name);
|
|
if (!name) {
|
|
free(data_ptr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* The jevents tool converts all metric expressions
|
|
* to lowercase, including metric references, hence
|
|
* we need to add lowercase name for metric, so it's
|
|
* properly found.
|
|
*/
|
|
for (p = name; *p; p++)
|
|
*p = tolower(*p);
|
|
|
|
/*
|
|
* Intentionally passing just const char pointers,
|
|
* originally from 'struct pmu_event' object.
|
|
* We don't need to change them, so there's no
|
|
* need to create our own copy.
|
|
*/
|
|
data_ptr->ref.metric_name = ref->metric_name;
|
|
data_ptr->ref.metric_expr = ref->metric_expr;
|
|
data_ptr->kind = EXPR_ID_DATA__REF;
|
|
|
|
ret = hashmap__set(ctx->ids, name, data_ptr,
|
|
(const void **)&old_key, (void **)&old_data);
|
|
if (ret)
|
|
free(data_ptr);
|
|
|
|
pr_debug2("adding ref metric %s: %s\n",
|
|
ref->metric_name, ref->metric_expr);
|
|
|
|
free(old_key);
|
|
free(old_data);
|
|
return ret;
|
|
}
|
|
|
|
int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
|
|
struct expr_id_data **data)
|
|
{
|
|
return hashmap__find(ctx->ids, id, (void **)data) ? 0 : -1;
|
|
}
|
|
|
|
bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
|
|
struct expr_parse_ctx *needles)
|
|
{
|
|
struct hashmap_entry *cur;
|
|
size_t bkt;
|
|
struct expr_id_data *data;
|
|
|
|
hashmap__for_each_entry(needles->ids, cur, bkt) {
|
|
if (expr__get_id(haystack, cur->key, &data))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
|
|
struct expr_id_data **datap)
|
|
{
|
|
struct expr_id_data *data;
|
|
|
|
if (expr__get_id(ctx, id, datap) || !*datap) {
|
|
pr_debug("%s not found\n", id);
|
|
return -1;
|
|
}
|
|
|
|
data = *datap;
|
|
|
|
switch (data->kind) {
|
|
case EXPR_ID_DATA__VALUE:
|
|
pr_debug2("lookup(%s): val %f\n", id, data->val.val);
|
|
break;
|
|
case EXPR_ID_DATA__REF:
|
|
pr_debug2("lookup(%s): ref metric name %s\n", id,
|
|
data->ref.metric_name);
|
|
pr_debug("processing metric: %s ENTRY\n", id);
|
|
data->kind = EXPR_ID_DATA__REF_VALUE;
|
|
if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
|
|
pr_debug("%s failed to count\n", id);
|
|
return -1;
|
|
}
|
|
pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
|
|
break;
|
|
case EXPR_ID_DATA__REF_VALUE:
|
|
pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
|
|
data->ref.val, data->ref.metric_name);
|
|
break;
|
|
default:
|
|
assert(0); /* Unreachable. */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
|
|
{
|
|
struct expr_id_data *old_val = NULL;
|
|
char *old_key = NULL;
|
|
|
|
hashmap__delete(ctx->ids, id,
|
|
(const void **)&old_key, (void **)&old_val);
|
|
free(old_key);
|
|
free(old_val);
|
|
}
|
|
|
|
struct expr_parse_ctx *expr__ctx_new(void)
|
|
{
|
|
struct expr_parse_ctx *ctx;
|
|
|
|
ctx = malloc(sizeof(struct expr_parse_ctx));
|
|
if (!ctx)
|
|
return NULL;
|
|
|
|
ctx->ids = hashmap__new(key_hash, key_equal, NULL);
|
|
ctx->runtime = 0;
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void expr__ctx_clear(struct expr_parse_ctx *ctx)
|
|
{
|
|
struct hashmap_entry *cur;
|
|
size_t bkt;
|
|
|
|
hashmap__for_each_entry(ctx->ids, cur, bkt) {
|
|
free((char *)cur->key);
|
|
free(cur->value);
|
|
}
|
|
hashmap__clear(ctx->ids);
|
|
}
|
|
|
|
void expr__ctx_free(struct expr_parse_ctx *ctx)
|
|
{
|
|
struct hashmap_entry *cur;
|
|
size_t bkt;
|
|
|
|
hashmap__for_each_entry(ctx->ids, cur, bkt) {
|
|
free((char *)cur->key);
|
|
free(cur->value);
|
|
}
|
|
hashmap__free(ctx->ids);
|
|
free(ctx);
|
|
}
|
|
|
|
static int
|
|
__expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
|
|
bool compute_ids)
|
|
{
|
|
struct expr_scanner_ctx scanner_ctx = {
|
|
.runtime = ctx->runtime,
|
|
};
|
|
YY_BUFFER_STATE buffer;
|
|
void *scanner;
|
|
int ret;
|
|
|
|
pr_debug2("parsing metric: %s\n", expr);
|
|
|
|
ret = expr_lex_init_extra(&scanner_ctx, &scanner);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buffer = expr__scan_string(expr, scanner);
|
|
|
|
#ifdef PARSER_DEBUG
|
|
expr_debug = 1;
|
|
expr_set_debug(1, scanner);
|
|
#endif
|
|
|
|
ret = expr_parse(val, ctx, compute_ids, scanner);
|
|
|
|
expr__flush_buffer(buffer, scanner);
|
|
expr__delete_buffer(buffer, scanner);
|
|
expr_lex_destroy(scanner);
|
|
return ret;
|
|
}
|
|
|
|
int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
|
|
const char *expr)
|
|
{
|
|
return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
|
|
}
|
|
|
|
int expr__find_ids(const char *expr, const char *one,
|
|
struct expr_parse_ctx *ctx)
|
|
{
|
|
int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
|
|
|
|
if (one)
|
|
expr__del_id(ctx, one);
|
|
|
|
return ret;
|
|
}
|
|
|
|
double expr_id_data__value(const struct expr_id_data *data)
|
|
{
|
|
if (data->kind == EXPR_ID_DATA__VALUE)
|
|
return data->val.val;
|
|
assert(data->kind == EXPR_ID_DATA__REF_VALUE);
|
|
return data->ref.val;
|
|
}
|
|
|
|
double expr_id_data__source_count(const struct expr_id_data *data)
|
|
{
|
|
assert(data->kind == EXPR_ID_DATA__VALUE);
|
|
return data->val.source_count;
|
|
}
|
|
|
|
double expr__get_literal(const char *literal)
|
|
{
|
|
static struct cpu_topology *topology;
|
|
|
|
if (!strcmp("#smt_on", literal))
|
|
return smt_on() > 0 ? 1.0 : 0.0;
|
|
|
|
if (!strcmp("#num_cpus", literal))
|
|
return cpu__max_present_cpu();
|
|
|
|
/*
|
|
* Assume that topology strings are consistent, such as CPUs "0-1"
|
|
* wouldn't be listed as "0,1", and so after deduplication the number of
|
|
* these strings gives an indication of the number of packages, dies,
|
|
* etc.
|
|
*/
|
|
if (!topology) {
|
|
topology = cpu_topology__new();
|
|
if (!topology) {
|
|
pr_err("Error creating CPU topology");
|
|
return NAN;
|
|
}
|
|
}
|
|
if (!strcmp("#num_packages", literal))
|
|
return topology->package_cpus_lists;
|
|
if (!strcmp("#num_dies", literal))
|
|
return topology->die_cpus_lists;
|
|
if (!strcmp("#num_cores", literal))
|
|
return topology->core_cpus_lists;
|
|
|
|
pr_err("Unrecognized literal '%s'", literal);
|
|
return NAN;
|
|
}
|