linux/arch/tile/include/asm/cache.h
Chris Metcalf 14e73e78ee tile: use __ro_after_init instead of tile-specific __write_once
The semantics of the old tile __write_once are the same as the
newer generic __ro_after_init, so rename them all and get rid
of the tile-specific version.

This does not enable actual support for __ro_after_init,
which had been dropped from the tile architecture before the
initial upstreaming was done, since we had at that time switched
to using 16MB huge pages to map the kernel.

Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
2016-12-16 15:32:29 -05:00

65 lines
2.6 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _ASM_TILE_CACHE_H
#define _ASM_TILE_CACHE_H
#include <arch/chip.h>
/* bytes per L1 data cache line */
#define L1_CACHE_SHIFT CHIP_L1D_LOG_LINE_SIZE()
#define L1_CACHE_BYTES (1 << L1_CACHE_SHIFT)
/* bytes per L2 cache line */
#define L2_CACHE_SHIFT CHIP_L2_LOG_LINE_SIZE()
#define L2_CACHE_BYTES (1 << L2_CACHE_SHIFT)
#define L2_CACHE_ALIGN(x) (((x)+(L2_CACHE_BYTES-1)) & -L2_CACHE_BYTES)
/*
* TILEPro I/O is not always coherent (networking typically uses coherent
* I/O, but PCI traffic does not) and setting ARCH_DMA_MINALIGN to the
* L2 cacheline size helps ensure that kernel heap allocations are aligned.
* TILE-Gx I/O is always coherent when used on hash-for-home pages.
*
* However, it's possible at runtime to request not to use hash-for-home
* for the kernel heap, in which case the kernel will use flush-and-inval
* to manage coherence. As a result, we use L2_CACHE_BYTES for the
* DMA minimum alignment to avoid false sharing in the kernel heap.
*/
#define ARCH_DMA_MINALIGN L2_CACHE_BYTES
/* use the cache line size for the L2, which is where it counts */
#define SMP_CACHE_BYTES_SHIFT L2_CACHE_SHIFT
#define SMP_CACHE_BYTES L2_CACHE_BYTES
#define INTERNODE_CACHE_SHIFT L2_CACHE_SHIFT
#define INTERNODE_CACHE_BYTES L2_CACHE_BYTES
/* Group together read-mostly things to avoid cache false sharing */
#define __read_mostly __attribute__((__section__(".data..read_mostly")))
/*
* Originally we used small TLB pages for kernel data and grouped some
* things together as ro-after-init, enforcing the property at the end
* of initialization by making those pages read-only and non-coherent.
* This allowed better cache utilization since cache inclusion did not
* need to be maintained. However, to do this requires an extra TLB
* entry, which on balance is more of a performance hit than the
* non-coherence is a performance gain, so we now just make "read
* mostly" and "ro-after-init" be synonyms. We keep the attribute
* separate in case we change our minds at a future date.
*/
#define __ro_after_init __read_mostly
#endif /* _ASM_TILE_CACHE_H */