forked from Minki/linux
78577e294b
This function just check our software flag, while 'is_alive' may suggest that we are checking runtime firmware status. Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190522193203.23932-5-michal.wajdeczko@intel.com
1461 lines
42 KiB
C
1461 lines
42 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/circ_buf.h>
|
|
|
|
#include "gt/intel_engine_pm.h"
|
|
#include "gt/intel_lrc_reg.h"
|
|
|
|
#include "intel_guc_submission.h"
|
|
#include "i915_drv.h"
|
|
|
|
#define GUC_PREEMPT_FINISHED 0x1
|
|
#define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8
|
|
#define GUC_PREEMPT_BREADCRUMB_BYTES \
|
|
(sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
|
|
|
|
/**
|
|
* DOC: GuC-based command submission
|
|
*
|
|
* GuC client:
|
|
* A intel_guc_client refers to a submission path through GuC. Currently, there
|
|
* are two clients. One of them (the execbuf_client) is charged with all
|
|
* submissions to the GuC, the other one (preempt_client) is responsible for
|
|
* preempting the execbuf_client. This struct is the owner of a doorbell, a
|
|
* process descriptor and a workqueue (all of them inside a single gem object
|
|
* that contains all required pages for these elements).
|
|
*
|
|
* GuC stage descriptor:
|
|
* During initialization, the driver allocates a static pool of 1024 such
|
|
* descriptors, and shares them with the GuC.
|
|
* Currently, there exists a 1:1 mapping between a intel_guc_client and a
|
|
* guc_stage_desc (via the client's stage_id), so effectively only one
|
|
* gets used. This stage descriptor lets the GuC know about the doorbell,
|
|
* workqueue and process descriptor. Theoretically, it also lets the GuC
|
|
* know about our HW contexts (context ID, etc...), but we actually
|
|
* employ a kind of submission where the GuC uses the LRCA sent via the work
|
|
* item instead (the single guc_stage_desc associated to execbuf client
|
|
* contains information about the default kernel context only, but this is
|
|
* essentially unused). This is called a "proxy" submission.
|
|
*
|
|
* The Scratch registers:
|
|
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
|
|
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
|
|
* triggers an interrupt on the GuC via another register write (0xC4C8).
|
|
* Firmware writes a success/fail code back to the action register after
|
|
* processes the request. The kernel driver polls waiting for this update and
|
|
* then proceeds.
|
|
* See intel_guc_send()
|
|
*
|
|
* Doorbells:
|
|
* Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
|
|
* mapped into process space.
|
|
*
|
|
* Work Items:
|
|
* There are several types of work items that the host may place into a
|
|
* workqueue, each with its own requirements and limitations. Currently only
|
|
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
|
|
* represents in-order queue. The kernel driver packs ring tail pointer and an
|
|
* ELSP context descriptor dword into Work Item.
|
|
* See guc_add_request()
|
|
*
|
|
*/
|
|
|
|
static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
|
|
{
|
|
return (i915_ggtt_offset(engine->status_page.vma) +
|
|
I915_GEM_HWS_PREEMPT_ADDR);
|
|
}
|
|
|
|
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
|
|
{
|
|
return rb_entry(rb, struct i915_priolist, node);
|
|
}
|
|
|
|
static inline bool is_high_priority(struct intel_guc_client *client)
|
|
{
|
|
return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
|
|
client->priority == GUC_CLIENT_PRIORITY_HIGH);
|
|
}
|
|
|
|
static int reserve_doorbell(struct intel_guc_client *client)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long end;
|
|
u16 id;
|
|
|
|
GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
|
|
|
|
/*
|
|
* The bitmap tracks which doorbell registers are currently in use.
|
|
* It is split into two halves; the first half is used for normal
|
|
* priority contexts, the second half for high-priority ones.
|
|
*/
|
|
offset = 0;
|
|
end = GUC_NUM_DOORBELLS / 2;
|
|
if (is_high_priority(client)) {
|
|
offset = end;
|
|
end += offset;
|
|
}
|
|
|
|
id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
|
|
if (id == end)
|
|
return -ENOSPC;
|
|
|
|
__set_bit(id, client->guc->doorbell_bitmap);
|
|
client->doorbell_id = id;
|
|
DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
|
|
client->stage_id, yesno(is_high_priority(client)),
|
|
id);
|
|
return 0;
|
|
}
|
|
|
|
static bool has_doorbell(struct intel_guc_client *client)
|
|
{
|
|
if (client->doorbell_id == GUC_DOORBELL_INVALID)
|
|
return false;
|
|
|
|
return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
|
|
}
|
|
|
|
static void unreserve_doorbell(struct intel_guc_client *client)
|
|
{
|
|
GEM_BUG_ON(!has_doorbell(client));
|
|
|
|
__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
|
|
client->doorbell_id = GUC_DOORBELL_INVALID;
|
|
}
|
|
|
|
/*
|
|
* Tell the GuC to allocate or deallocate a specific doorbell
|
|
*/
|
|
|
|
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
|
|
stage_id
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
|
|
stage_id
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
|
|
{
|
|
struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
|
|
|
|
return &base[client->stage_id];
|
|
}
|
|
|
|
/*
|
|
* Initialise, update, or clear doorbell data shared with the GuC
|
|
*
|
|
* These functions modify shared data and so need access to the mapped
|
|
* client object which contains the page being used for the doorbell
|
|
*/
|
|
|
|
static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
|
|
{
|
|
struct guc_stage_desc *desc;
|
|
|
|
/* Update the GuC's idea of the doorbell ID */
|
|
desc = __get_stage_desc(client);
|
|
desc->db_id = new_id;
|
|
}
|
|
|
|
static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
|
|
{
|
|
return client->vaddr + client->doorbell_offset;
|
|
}
|
|
|
|
static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
|
|
return I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
|
|
}
|
|
|
|
static void __init_doorbell(struct intel_guc_client *client)
|
|
{
|
|
struct guc_doorbell_info *doorbell;
|
|
|
|
doorbell = __get_doorbell(client);
|
|
doorbell->db_status = GUC_DOORBELL_ENABLED;
|
|
doorbell->cookie = 0;
|
|
}
|
|
|
|
static void __fini_doorbell(struct intel_guc_client *client)
|
|
{
|
|
struct guc_doorbell_info *doorbell;
|
|
u16 db_id = client->doorbell_id;
|
|
|
|
doorbell = __get_doorbell(client);
|
|
doorbell->db_status = GUC_DOORBELL_DISABLED;
|
|
|
|
/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
|
|
* to go to zero after updating db_status before we call the GuC to
|
|
* release the doorbell
|
|
*/
|
|
if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
|
|
WARN_ONCE(true, "Doorbell never became invalid after disable\n");
|
|
}
|
|
|
|
static int create_doorbell(struct intel_guc_client *client)
|
|
{
|
|
int ret;
|
|
|
|
if (WARN_ON(!has_doorbell(client)))
|
|
return -ENODEV; /* internal setup error, should never happen */
|
|
|
|
__update_doorbell_desc(client, client->doorbell_id);
|
|
__init_doorbell(client);
|
|
|
|
ret = __guc_allocate_doorbell(client->guc, client->stage_id);
|
|
if (ret) {
|
|
__fini_doorbell(client);
|
|
__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
|
|
DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
|
|
client->stage_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int destroy_doorbell(struct intel_guc_client *client)
|
|
{
|
|
int ret;
|
|
|
|
GEM_BUG_ON(!has_doorbell(client));
|
|
|
|
__fini_doorbell(client);
|
|
ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
|
|
if (ret)
|
|
DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
|
|
client->stage_id, ret);
|
|
|
|
__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long __select_cacheline(struct intel_guc *guc)
|
|
{
|
|
unsigned long offset;
|
|
|
|
/* Doorbell uses a single cache line within a page */
|
|
offset = offset_in_page(guc->db_cacheline);
|
|
|
|
/* Moving to next cache line to reduce contention */
|
|
guc->db_cacheline += cache_line_size();
|
|
|
|
DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
|
|
offset, guc->db_cacheline, cache_line_size());
|
|
return offset;
|
|
}
|
|
|
|
static inline struct guc_process_desc *
|
|
__get_process_desc(struct intel_guc_client *client)
|
|
{
|
|
return client->vaddr + client->proc_desc_offset;
|
|
}
|
|
|
|
/*
|
|
* Initialise the process descriptor shared with the GuC firmware.
|
|
*/
|
|
static void guc_proc_desc_init(struct intel_guc_client *client)
|
|
{
|
|
struct guc_process_desc *desc;
|
|
|
|
desc = memset(__get_process_desc(client), 0, sizeof(*desc));
|
|
|
|
/*
|
|
* XXX: pDoorbell and WQVBaseAddress are pointers in process address
|
|
* space for ring3 clients (set them as in mmap_ioctl) or kernel
|
|
* space for kernel clients (map on demand instead? May make debug
|
|
* easier to have it mapped).
|
|
*/
|
|
desc->wq_base_addr = 0;
|
|
desc->db_base_addr = 0;
|
|
|
|
desc->stage_id = client->stage_id;
|
|
desc->wq_size_bytes = GUC_WQ_SIZE;
|
|
desc->wq_status = WQ_STATUS_ACTIVE;
|
|
desc->priority = client->priority;
|
|
}
|
|
|
|
static void guc_proc_desc_fini(struct intel_guc_client *client)
|
|
{
|
|
struct guc_process_desc *desc;
|
|
|
|
desc = __get_process_desc(client);
|
|
memset(desc, 0, sizeof(*desc));
|
|
}
|
|
|
|
static int guc_stage_desc_pool_create(struct intel_guc *guc)
|
|
{
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
|
|
vma = intel_guc_allocate_vma(guc,
|
|
PAGE_ALIGN(sizeof(struct guc_stage_desc) *
|
|
GUC_MAX_STAGE_DESCRIPTORS));
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
|
|
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
|
|
if (IS_ERR(vaddr)) {
|
|
i915_vma_unpin_and_release(&vma, 0);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
guc->stage_desc_pool = vma;
|
|
guc->stage_desc_pool_vaddr = vaddr;
|
|
ida_init(&guc->stage_ids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
|
|
{
|
|
ida_destroy(&guc->stage_ids);
|
|
i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
|
|
}
|
|
|
|
/*
|
|
* Initialise/clear the stage descriptor shared with the GuC firmware.
|
|
*
|
|
* This descriptor tells the GuC where (in GGTT space) to find the important
|
|
* data structures relating to this client (doorbell, process descriptor,
|
|
* write queue, etc).
|
|
*/
|
|
static void guc_stage_desc_init(struct intel_guc_client *client)
|
|
{
|
|
struct intel_guc *guc = client->guc;
|
|
struct i915_gem_context *ctx = client->owner;
|
|
struct i915_gem_engines_iter it;
|
|
struct guc_stage_desc *desc;
|
|
struct intel_context *ce;
|
|
u32 gfx_addr;
|
|
|
|
desc = __get_stage_desc(client);
|
|
memset(desc, 0, sizeof(*desc));
|
|
|
|
desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
|
|
GUC_STAGE_DESC_ATTR_KERNEL;
|
|
if (is_high_priority(client))
|
|
desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
|
|
desc->stage_id = client->stage_id;
|
|
desc->priority = client->priority;
|
|
desc->db_id = client->doorbell_id;
|
|
|
|
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
|
|
struct guc_execlist_context *lrc;
|
|
|
|
if (!(ce->engine->mask & client->engines))
|
|
continue;
|
|
|
|
/* TODO: We have a design issue to be solved here. Only when we
|
|
* receive the first batch, we know which engine is used by the
|
|
* user. But here GuC expects the lrc and ring to be pinned. It
|
|
* is not an issue for default context, which is the only one
|
|
* for now who owns a GuC client. But for future owner of GuC
|
|
* client, need to make sure lrc is pinned prior to enter here.
|
|
*/
|
|
if (!ce->state)
|
|
break; /* XXX: continue? */
|
|
|
|
/*
|
|
* XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
|
|
* submission or, in other words, not using a direct submission
|
|
* model) the KMD's LRCA is not used for any work submission.
|
|
* Instead, the GuC uses the LRCA of the user mode context (see
|
|
* guc_add_request below).
|
|
*/
|
|
lrc = &desc->lrc[ce->engine->guc_id];
|
|
lrc->context_desc = lower_32_bits(ce->lrc_desc);
|
|
|
|
/* The state page is after PPHWSP */
|
|
lrc->ring_lrca = intel_guc_ggtt_offset(guc, ce->state) +
|
|
LRC_STATE_PN * PAGE_SIZE;
|
|
|
|
/* XXX: In direct submission, the GuC wants the HW context id
|
|
* here. In proxy submission, it wants the stage id
|
|
*/
|
|
lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
|
|
(ce->engine->guc_id << GUC_ELC_ENGINE_OFFSET);
|
|
|
|
lrc->ring_begin = intel_guc_ggtt_offset(guc, ce->ring->vma);
|
|
lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
|
|
lrc->ring_next_free_location = lrc->ring_begin;
|
|
lrc->ring_current_tail_pointer_value = 0;
|
|
|
|
desc->engines_used |= BIT(ce->engine->guc_id);
|
|
}
|
|
i915_gem_context_unlock_engines(ctx);
|
|
|
|
DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
|
|
client->engines, desc->engines_used);
|
|
WARN_ON(desc->engines_used == 0);
|
|
|
|
/*
|
|
* The doorbell, process descriptor, and workqueue are all parts
|
|
* of the client object, which the GuC will reference via the GGTT
|
|
*/
|
|
gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
|
|
desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
|
|
client->doorbell_offset;
|
|
desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
|
|
desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
|
|
desc->process_desc = gfx_addr + client->proc_desc_offset;
|
|
desc->wq_addr = gfx_addr + GUC_DB_SIZE;
|
|
desc->wq_size = GUC_WQ_SIZE;
|
|
|
|
desc->desc_private = ptr_to_u64(client);
|
|
}
|
|
|
|
static void guc_stage_desc_fini(struct intel_guc_client *client)
|
|
{
|
|
struct guc_stage_desc *desc;
|
|
|
|
desc = __get_stage_desc(client);
|
|
memset(desc, 0, sizeof(*desc));
|
|
}
|
|
|
|
/* Construct a Work Item and append it to the GuC's Work Queue */
|
|
static void guc_wq_item_append(struct intel_guc_client *client,
|
|
u32 target_engine, u32 context_desc,
|
|
u32 ring_tail, u32 fence_id)
|
|
{
|
|
/* wqi_len is in DWords, and does not include the one-word header */
|
|
const size_t wqi_size = sizeof(struct guc_wq_item);
|
|
const u32 wqi_len = wqi_size / sizeof(u32) - 1;
|
|
struct guc_process_desc *desc = __get_process_desc(client);
|
|
struct guc_wq_item *wqi;
|
|
u32 wq_off;
|
|
|
|
lockdep_assert_held(&client->wq_lock);
|
|
|
|
/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
|
|
* should not have the case where structure wqi is across page, neither
|
|
* wrapped to the beginning. This simplifies the implementation below.
|
|
*
|
|
* XXX: if not the case, we need save data to a temp wqi and copy it to
|
|
* workqueue buffer dw by dw.
|
|
*/
|
|
BUILD_BUG_ON(wqi_size != 16);
|
|
|
|
/* We expect the WQ to be active if we're appending items to it */
|
|
GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
|
|
|
|
/* Free space is guaranteed. */
|
|
wq_off = READ_ONCE(desc->tail);
|
|
GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
|
|
GUC_WQ_SIZE) < wqi_size);
|
|
GEM_BUG_ON(wq_off & (wqi_size - 1));
|
|
|
|
/* WQ starts from the page after doorbell / process_desc */
|
|
wqi = client->vaddr + wq_off + GUC_DB_SIZE;
|
|
|
|
if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
|
|
wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
|
|
} else {
|
|
/* Now fill in the 4-word work queue item */
|
|
wqi->header = WQ_TYPE_INORDER |
|
|
(wqi_len << WQ_LEN_SHIFT) |
|
|
(target_engine << WQ_TARGET_SHIFT) |
|
|
WQ_NO_WCFLUSH_WAIT;
|
|
wqi->context_desc = context_desc;
|
|
wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
|
|
GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
|
|
wqi->fence_id = fence_id;
|
|
}
|
|
|
|
/* Make the update visible to GuC */
|
|
WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
|
|
}
|
|
|
|
static void guc_ring_doorbell(struct intel_guc_client *client)
|
|
{
|
|
struct guc_doorbell_info *db;
|
|
u32 cookie;
|
|
|
|
lockdep_assert_held(&client->wq_lock);
|
|
|
|
/* pointer of current doorbell cacheline */
|
|
db = __get_doorbell(client);
|
|
|
|
/*
|
|
* We're not expecting the doorbell cookie to change behind our back,
|
|
* we also need to treat 0 as a reserved value.
|
|
*/
|
|
cookie = READ_ONCE(db->cookie);
|
|
WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
|
|
|
|
/* XXX: doorbell was lost and need to acquire it again */
|
|
GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
|
|
}
|
|
|
|
static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
|
|
{
|
|
struct intel_guc_client *client = guc->execbuf_client;
|
|
struct intel_engine_cs *engine = rq->engine;
|
|
u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
|
|
u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
|
|
|
|
spin_lock(&client->wq_lock);
|
|
|
|
guc_wq_item_append(client, engine->guc_id, ctx_desc,
|
|
ring_tail, rq->fence.seqno);
|
|
guc_ring_doorbell(client);
|
|
|
|
client->submissions[engine->id] += 1;
|
|
|
|
spin_unlock(&client->wq_lock);
|
|
}
|
|
|
|
/*
|
|
* When we're doing submissions using regular execlists backend, writing to
|
|
* ELSP from CPU side is enough to make sure that writes to ringbuffer pages
|
|
* pinned in mappable aperture portion of GGTT are visible to command streamer.
|
|
* Writes done by GuC on our behalf are not guaranteeing such ordering,
|
|
* therefore, to ensure the flush, we're issuing a POSTING READ.
|
|
*/
|
|
static void flush_ggtt_writes(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_private *dev_priv = vma->vm->i915;
|
|
|
|
if (i915_vma_is_map_and_fenceable(vma))
|
|
POSTING_READ_FW(GUC_STATUS);
|
|
}
|
|
|
|
static void inject_preempt_context(struct work_struct *work)
|
|
{
|
|
struct guc_preempt_work *preempt_work =
|
|
container_of(work, typeof(*preempt_work), work);
|
|
struct intel_engine_cs *engine = preempt_work->engine;
|
|
struct intel_guc *guc = container_of(preempt_work, typeof(*guc),
|
|
preempt_work[engine->id]);
|
|
struct intel_guc_client *client = guc->preempt_client;
|
|
struct guc_stage_desc *stage_desc = __get_stage_desc(client);
|
|
struct intel_context *ce = engine->preempt_context;
|
|
u32 data[7];
|
|
|
|
if (!ce->ring->emit) { /* recreate upon load/resume */
|
|
u32 addr = intel_hws_preempt_done_address(engine);
|
|
u32 *cs;
|
|
|
|
cs = ce->ring->vaddr;
|
|
if (engine->class == RENDER_CLASS) {
|
|
cs = gen8_emit_ggtt_write_rcs(cs,
|
|
GUC_PREEMPT_FINISHED,
|
|
addr,
|
|
PIPE_CONTROL_CS_STALL);
|
|
} else {
|
|
cs = gen8_emit_ggtt_write(cs,
|
|
GUC_PREEMPT_FINISHED,
|
|
addr,
|
|
0);
|
|
*cs++ = MI_NOOP;
|
|
*cs++ = MI_NOOP;
|
|
}
|
|
*cs++ = MI_USER_INTERRUPT;
|
|
*cs++ = MI_NOOP;
|
|
|
|
ce->ring->emit = GUC_PREEMPT_BREADCRUMB_BYTES;
|
|
GEM_BUG_ON((void *)cs - ce->ring->vaddr != ce->ring->emit);
|
|
|
|
flush_ggtt_writes(ce->ring->vma);
|
|
}
|
|
|
|
spin_lock_irq(&client->wq_lock);
|
|
guc_wq_item_append(client, engine->guc_id, lower_32_bits(ce->lrc_desc),
|
|
GUC_PREEMPT_BREADCRUMB_BYTES / sizeof(u64), 0);
|
|
spin_unlock_irq(&client->wq_lock);
|
|
|
|
/*
|
|
* If GuC firmware performs an engine reset while that engine had
|
|
* a preemption pending, it will set the terminated attribute bit
|
|
* on our preemption stage descriptor. GuC firmware retains all
|
|
* pending work items for a high-priority GuC client, unlike the
|
|
* normal-priority GuC client where work items are dropped. It
|
|
* wants to make sure the preempt-to-idle work doesn't run when
|
|
* scheduling resumes, and uses this bit to inform its scheduler
|
|
* and presumably us as well. Our job is to clear it for the next
|
|
* preemption after reset, otherwise that and future preemptions
|
|
* will never complete. We'll just clear it every time.
|
|
*/
|
|
stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED;
|
|
|
|
data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION;
|
|
data[1] = client->stage_id;
|
|
data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q |
|
|
INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q;
|
|
data[3] = engine->guc_id;
|
|
data[4] = guc->execbuf_client->priority;
|
|
data[5] = guc->execbuf_client->stage_id;
|
|
data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
|
|
|
|
if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) {
|
|
execlists_clear_active(&engine->execlists,
|
|
EXECLISTS_ACTIVE_PREEMPT);
|
|
tasklet_schedule(&engine->execlists.tasklet);
|
|
}
|
|
|
|
(void)I915_SELFTEST_ONLY(engine->execlists.preempt_hang.count++);
|
|
}
|
|
|
|
/*
|
|
* We're using user interrupt and HWSP value to mark that preemption has
|
|
* finished and GPU is idle. Normally, we could unwind and continue similar to
|
|
* execlists submission path. Unfortunately, with GuC we also need to wait for
|
|
* it to finish its own postprocessing, before attempting to submit. Otherwise
|
|
* GuC may silently ignore our submissions, and thus we risk losing request at
|
|
* best, executing out-of-order and causing kernel panic at worst.
|
|
*/
|
|
#define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10
|
|
static void wait_for_guc_preempt_report(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_guc *guc = &engine->i915->guc;
|
|
struct guc_shared_ctx_data *data = guc->shared_data_vaddr;
|
|
struct guc_ctx_report *report =
|
|
&data->preempt_ctx_report[engine->guc_id];
|
|
|
|
if (wait_for_atomic(report->report_return_status ==
|
|
INTEL_GUC_REPORT_STATUS_COMPLETE,
|
|
GUC_PREEMPT_POSTPROCESS_DELAY_MS))
|
|
DRM_ERROR("Timed out waiting for GuC preemption report\n");
|
|
/*
|
|
* GuC is expecting that we're also going to clear the affected context
|
|
* counter, let's also reset the return status to not depend on GuC
|
|
* resetting it after recieving another preempt action
|
|
*/
|
|
report->affected_count = 0;
|
|
report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN;
|
|
}
|
|
|
|
static void complete_preempt_context(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_engine_execlists *execlists = &engine->execlists;
|
|
|
|
GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
|
|
|
|
if (inject_preempt_hang(execlists))
|
|
return;
|
|
|
|
execlists_cancel_port_requests(execlists);
|
|
execlists_unwind_incomplete_requests(execlists);
|
|
|
|
wait_for_guc_preempt_report(engine);
|
|
intel_write_status_page(engine, I915_GEM_HWS_PREEMPT, 0);
|
|
}
|
|
|
|
/**
|
|
* guc_submit() - Submit commands through GuC
|
|
* @engine: engine associated with the commands
|
|
*
|
|
* The only error here arises if the doorbell hardware isn't functioning
|
|
* as expected, which really shouln't happen.
|
|
*/
|
|
static void guc_submit(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_guc *guc = &engine->i915->guc;
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct execlist_port *port = execlists->port;
|
|
unsigned int n;
|
|
|
|
for (n = 0; n < execlists_num_ports(execlists); n++) {
|
|
struct i915_request *rq;
|
|
unsigned int count;
|
|
|
|
rq = port_unpack(&port[n], &count);
|
|
if (rq && count == 0) {
|
|
port_set(&port[n], port_pack(rq, ++count));
|
|
|
|
flush_ggtt_writes(rq->ring->vma);
|
|
|
|
guc_add_request(guc, rq);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void port_assign(struct execlist_port *port, struct i915_request *rq)
|
|
{
|
|
GEM_BUG_ON(port_isset(port));
|
|
|
|
port_set(port, i915_request_get(rq));
|
|
}
|
|
|
|
static inline int rq_prio(const struct i915_request *rq)
|
|
{
|
|
return rq->sched.attr.priority;
|
|
}
|
|
|
|
static inline int port_prio(const struct execlist_port *port)
|
|
{
|
|
return rq_prio(port_request(port)) | __NO_PREEMPTION;
|
|
}
|
|
|
|
static bool __guc_dequeue(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct execlist_port *port = execlists->port;
|
|
struct i915_request *last = NULL;
|
|
const struct execlist_port * const last_port =
|
|
&execlists->port[execlists->port_mask];
|
|
bool submit = false;
|
|
struct rb_node *rb;
|
|
|
|
lockdep_assert_held(&engine->timeline.lock);
|
|
|
|
if (port_isset(port)) {
|
|
if (intel_engine_has_preemption(engine)) {
|
|
struct guc_preempt_work *preempt_work =
|
|
&engine->i915->guc.preempt_work[engine->id];
|
|
int prio = execlists->queue_priority_hint;
|
|
|
|
if (i915_scheduler_need_preempt(prio,
|
|
port_prio(port))) {
|
|
execlists_set_active(execlists,
|
|
EXECLISTS_ACTIVE_PREEMPT);
|
|
queue_work(engine->i915->guc.preempt_wq,
|
|
&preempt_work->work);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
port++;
|
|
if (port_isset(port))
|
|
return false;
|
|
}
|
|
GEM_BUG_ON(port_isset(port));
|
|
|
|
while ((rb = rb_first_cached(&execlists->queue))) {
|
|
struct i915_priolist *p = to_priolist(rb);
|
|
struct i915_request *rq, *rn;
|
|
int i;
|
|
|
|
priolist_for_each_request_consume(rq, rn, p, i) {
|
|
if (last && rq->hw_context != last->hw_context) {
|
|
if (port == last_port)
|
|
goto done;
|
|
|
|
if (submit)
|
|
port_assign(port, last);
|
|
port++;
|
|
}
|
|
|
|
list_del_init(&rq->sched.link);
|
|
|
|
__i915_request_submit(rq);
|
|
trace_i915_request_in(rq, port_index(port, execlists));
|
|
|
|
last = rq;
|
|
submit = true;
|
|
}
|
|
|
|
rb_erase_cached(&p->node, &execlists->queue);
|
|
i915_priolist_free(p);
|
|
}
|
|
done:
|
|
execlists->queue_priority_hint =
|
|
rb ? to_priolist(rb)->priority : INT_MIN;
|
|
if (submit)
|
|
port_assign(port, last);
|
|
if (last)
|
|
execlists_user_begin(execlists, execlists->port);
|
|
|
|
/* We must always keep the beast fed if we have work piled up */
|
|
GEM_BUG_ON(port_isset(execlists->port) &&
|
|
!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
|
|
GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
|
|
!port_isset(execlists->port));
|
|
|
|
return submit;
|
|
}
|
|
|
|
static void guc_dequeue(struct intel_engine_cs *engine)
|
|
{
|
|
if (__guc_dequeue(engine))
|
|
guc_submit(engine);
|
|
}
|
|
|
|
static void guc_submission_tasklet(unsigned long data)
|
|
{
|
|
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct execlist_port *port = execlists->port;
|
|
struct i915_request *rq;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&engine->timeline.lock, flags);
|
|
|
|
rq = port_request(port);
|
|
while (rq && i915_request_completed(rq)) {
|
|
trace_i915_request_out(rq);
|
|
i915_request_put(rq);
|
|
|
|
port = execlists_port_complete(execlists, port);
|
|
if (port_isset(port)) {
|
|
execlists_user_begin(execlists, port);
|
|
rq = port_request(port);
|
|
} else {
|
|
execlists_user_end(execlists);
|
|
rq = NULL;
|
|
}
|
|
}
|
|
|
|
if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) &&
|
|
intel_read_status_page(engine, I915_GEM_HWS_PREEMPT) ==
|
|
GUC_PREEMPT_FINISHED)
|
|
complete_preempt_context(engine);
|
|
|
|
if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
|
|
guc_dequeue(engine);
|
|
|
|
spin_unlock_irqrestore(&engine->timeline.lock, flags);
|
|
}
|
|
|
|
static void guc_reset_prepare(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
|
|
GEM_TRACE("%s\n", engine->name);
|
|
|
|
/*
|
|
* Prevent request submission to the hardware until we have
|
|
* completed the reset in i915_gem_reset_finish(). If a request
|
|
* is completed by one engine, it may then queue a request
|
|
* to a second via its execlists->tasklet *just* as we are
|
|
* calling engine->init_hw() and also writing the ELSP.
|
|
* Turning off the execlists->tasklet until the reset is over
|
|
* prevents the race.
|
|
*/
|
|
__tasklet_disable_sync_once(&execlists->tasklet);
|
|
|
|
/*
|
|
* We're using worker to queue preemption requests from the tasklet in
|
|
* GuC submission mode.
|
|
* Even though tasklet was disabled, we may still have a worker queued.
|
|
* Let's make sure that all workers scheduled before disabling the
|
|
* tasklet are completed before continuing with the reset.
|
|
*/
|
|
if (engine->i915->guc.preempt_wq)
|
|
flush_workqueue(engine->i915->guc.preempt_wq);
|
|
}
|
|
|
|
static void guc_reset(struct intel_engine_cs *engine, bool stalled)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct i915_request *rq;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&engine->timeline.lock, flags);
|
|
|
|
execlists_cancel_port_requests(execlists);
|
|
|
|
/* Push back any incomplete requests for replay after the reset. */
|
|
rq = execlists_unwind_incomplete_requests(execlists);
|
|
if (!rq)
|
|
goto out_unlock;
|
|
|
|
if (!i915_request_started(rq))
|
|
stalled = false;
|
|
|
|
i915_reset_request(rq, stalled);
|
|
intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&engine->timeline.lock, flags);
|
|
}
|
|
|
|
static void guc_cancel_requests(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct i915_request *rq, *rn;
|
|
struct rb_node *rb;
|
|
unsigned long flags;
|
|
|
|
GEM_TRACE("%s\n", engine->name);
|
|
|
|
/*
|
|
* Before we call engine->cancel_requests(), we should have exclusive
|
|
* access to the submission state. This is arranged for us by the
|
|
* caller disabling the interrupt generation, the tasklet and other
|
|
* threads that may then access the same state, giving us a free hand
|
|
* to reset state. However, we still need to let lockdep be aware that
|
|
* we know this state may be accessed in hardirq context, so we
|
|
* disable the irq around this manipulation and we want to keep
|
|
* the spinlock focused on its duties and not accidentally conflate
|
|
* coverage to the submission's irq state. (Similarly, although we
|
|
* shouldn't need to disable irq around the manipulation of the
|
|
* submission's irq state, we also wish to remind ourselves that
|
|
* it is irq state.)
|
|
*/
|
|
spin_lock_irqsave(&engine->timeline.lock, flags);
|
|
|
|
/* Cancel the requests on the HW and clear the ELSP tracker. */
|
|
execlists_cancel_port_requests(execlists);
|
|
|
|
/* Mark all executing requests as skipped. */
|
|
list_for_each_entry(rq, &engine->timeline.requests, link) {
|
|
if (!i915_request_signaled(rq))
|
|
dma_fence_set_error(&rq->fence, -EIO);
|
|
|
|
i915_request_mark_complete(rq);
|
|
}
|
|
|
|
/* Flush the queued requests to the timeline list (for retiring). */
|
|
while ((rb = rb_first_cached(&execlists->queue))) {
|
|
struct i915_priolist *p = to_priolist(rb);
|
|
int i;
|
|
|
|
priolist_for_each_request_consume(rq, rn, p, i) {
|
|
list_del_init(&rq->sched.link);
|
|
__i915_request_submit(rq);
|
|
dma_fence_set_error(&rq->fence, -EIO);
|
|
i915_request_mark_complete(rq);
|
|
}
|
|
|
|
rb_erase_cached(&p->node, &execlists->queue);
|
|
i915_priolist_free(p);
|
|
}
|
|
|
|
/* Remaining _unready_ requests will be nop'ed when submitted */
|
|
|
|
execlists->queue_priority_hint = INT_MIN;
|
|
execlists->queue = RB_ROOT_CACHED;
|
|
GEM_BUG_ON(port_isset(execlists->port));
|
|
|
|
spin_unlock_irqrestore(&engine->timeline.lock, flags);
|
|
}
|
|
|
|
static void guc_reset_finish(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
|
|
if (__tasklet_enable(&execlists->tasklet))
|
|
/* And kick in case we missed a new request submission. */
|
|
tasklet_hi_schedule(&execlists->tasklet);
|
|
|
|
GEM_TRACE("%s: depth->%d\n", engine->name,
|
|
atomic_read(&execlists->tasklet.count));
|
|
}
|
|
|
|
/*
|
|
* Everything below here is concerned with setup & teardown, and is
|
|
* therefore not part of the somewhat time-critical batch-submission
|
|
* path of guc_submit() above.
|
|
*/
|
|
|
|
/* Check that a doorbell register is in the expected state */
|
|
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
|
|
{
|
|
bool valid;
|
|
|
|
GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
|
|
|
|
valid = __doorbell_valid(guc, db_id);
|
|
|
|
if (test_bit(db_id, guc->doorbell_bitmap) == valid)
|
|
return true;
|
|
|
|
DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
|
|
db_id, yesno(valid));
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool guc_verify_doorbells(struct intel_guc *guc)
|
|
{
|
|
bool doorbells_ok = true;
|
|
u16 db_id;
|
|
|
|
for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
|
|
if (!doorbell_ok(guc, db_id))
|
|
doorbells_ok = false;
|
|
|
|
return doorbells_ok;
|
|
}
|
|
|
|
/**
|
|
* guc_client_alloc() - Allocate an intel_guc_client
|
|
* @dev_priv: driver private data structure
|
|
* @engines: The set of engines to enable for this client
|
|
* @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
|
|
* The kernel client to replace ExecList submission is created with
|
|
* NORMAL priority. Priority of a client for scheduler can be HIGH,
|
|
* while a preemption context can use CRITICAL.
|
|
* @ctx: the context that owns the client (we use the default render
|
|
* context)
|
|
*
|
|
* Return: An intel_guc_client object if success, else NULL.
|
|
*/
|
|
static struct intel_guc_client *
|
|
guc_client_alloc(struct drm_i915_private *dev_priv,
|
|
u32 engines,
|
|
u32 priority,
|
|
struct i915_gem_context *ctx)
|
|
{
|
|
struct intel_guc_client *client;
|
|
struct intel_guc *guc = &dev_priv->guc;
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
int ret;
|
|
|
|
client = kzalloc(sizeof(*client), GFP_KERNEL);
|
|
if (!client)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
client->guc = guc;
|
|
client->owner = ctx;
|
|
client->engines = engines;
|
|
client->priority = priority;
|
|
client->doorbell_id = GUC_DOORBELL_INVALID;
|
|
spin_lock_init(&client->wq_lock);
|
|
|
|
ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
|
|
GFP_KERNEL);
|
|
if (ret < 0)
|
|
goto err_client;
|
|
|
|
client->stage_id = ret;
|
|
|
|
/* The first page is doorbell/proc_desc. Two followed pages are wq. */
|
|
vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err_id;
|
|
}
|
|
|
|
/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
|
|
client->vma = vma;
|
|
|
|
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
|
|
if (IS_ERR(vaddr)) {
|
|
ret = PTR_ERR(vaddr);
|
|
goto err_vma;
|
|
}
|
|
client->vaddr = vaddr;
|
|
|
|
ret = reserve_doorbell(client);
|
|
if (ret)
|
|
goto err_vaddr;
|
|
|
|
client->doorbell_offset = __select_cacheline(guc);
|
|
|
|
/*
|
|
* Since the doorbell only requires a single cacheline, we can save
|
|
* space by putting the application process descriptor in the same
|
|
* page. Use the half of the page that doesn't include the doorbell.
|
|
*/
|
|
if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
|
|
client->proc_desc_offset = 0;
|
|
else
|
|
client->proc_desc_offset = (GUC_DB_SIZE / 2);
|
|
|
|
DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
|
|
priority, client, client->engines, client->stage_id);
|
|
DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
|
|
client->doorbell_id, client->doorbell_offset);
|
|
|
|
return client;
|
|
|
|
err_vaddr:
|
|
i915_gem_object_unpin_map(client->vma->obj);
|
|
err_vma:
|
|
i915_vma_unpin_and_release(&client->vma, 0);
|
|
err_id:
|
|
ida_simple_remove(&guc->stage_ids, client->stage_id);
|
|
err_client:
|
|
kfree(client);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void guc_client_free(struct intel_guc_client *client)
|
|
{
|
|
unreserve_doorbell(client);
|
|
i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
|
|
ida_simple_remove(&client->guc->stage_ids, client->stage_id);
|
|
kfree(client);
|
|
}
|
|
|
|
static inline bool ctx_save_restore_disabled(struct intel_context *ce)
|
|
{
|
|
u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
|
|
|
|
#define SR_DISABLED \
|
|
_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
|
|
CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
|
|
|
|
return (sr & SR_DISABLED) == SR_DISABLED;
|
|
|
|
#undef SR_DISABLED
|
|
}
|
|
|
|
static int guc_clients_create(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
struct intel_guc_client *client;
|
|
|
|
GEM_BUG_ON(guc->execbuf_client);
|
|
GEM_BUG_ON(guc->preempt_client);
|
|
|
|
client = guc_client_alloc(dev_priv,
|
|
INTEL_INFO(dev_priv)->engine_mask,
|
|
GUC_CLIENT_PRIORITY_KMD_NORMAL,
|
|
dev_priv->kernel_context);
|
|
if (IS_ERR(client)) {
|
|
DRM_ERROR("Failed to create GuC client for submission!\n");
|
|
return PTR_ERR(client);
|
|
}
|
|
guc->execbuf_client = client;
|
|
|
|
if (dev_priv->preempt_context) {
|
|
client = guc_client_alloc(dev_priv,
|
|
INTEL_INFO(dev_priv)->engine_mask,
|
|
GUC_CLIENT_PRIORITY_KMD_HIGH,
|
|
dev_priv->preempt_context);
|
|
if (IS_ERR(client)) {
|
|
DRM_ERROR("Failed to create GuC client for preemption!\n");
|
|
guc_client_free(guc->execbuf_client);
|
|
guc->execbuf_client = NULL;
|
|
return PTR_ERR(client);
|
|
}
|
|
guc->preempt_client = client;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_clients_destroy(struct intel_guc *guc)
|
|
{
|
|
struct intel_guc_client *client;
|
|
|
|
client = fetch_and_zero(&guc->preempt_client);
|
|
if (client)
|
|
guc_client_free(client);
|
|
|
|
client = fetch_and_zero(&guc->execbuf_client);
|
|
if (client)
|
|
guc_client_free(client);
|
|
}
|
|
|
|
static int __guc_client_enable(struct intel_guc_client *client)
|
|
{
|
|
int ret;
|
|
|
|
guc_proc_desc_init(client);
|
|
guc_stage_desc_init(client);
|
|
|
|
ret = create_doorbell(client);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
guc_stage_desc_fini(client);
|
|
guc_proc_desc_fini(client);
|
|
return ret;
|
|
}
|
|
|
|
static void __guc_client_disable(struct intel_guc_client *client)
|
|
{
|
|
/*
|
|
* By the time we're here, GuC may have already been reset. if that is
|
|
* the case, instead of trying (in vain) to communicate with it, let's
|
|
* just cleanup the doorbell HW and our internal state.
|
|
*/
|
|
if (intel_guc_is_loaded(client->guc))
|
|
destroy_doorbell(client);
|
|
else
|
|
__fini_doorbell(client);
|
|
|
|
guc_stage_desc_fini(client);
|
|
guc_proc_desc_fini(client);
|
|
}
|
|
|
|
static int guc_clients_enable(struct intel_guc *guc)
|
|
{
|
|
int ret;
|
|
|
|
ret = __guc_client_enable(guc->execbuf_client);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (guc->preempt_client) {
|
|
ret = __guc_client_enable(guc->preempt_client);
|
|
if (ret) {
|
|
__guc_client_disable(guc->execbuf_client);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_clients_disable(struct intel_guc *guc)
|
|
{
|
|
if (guc->preempt_client)
|
|
__guc_client_disable(guc->preempt_client);
|
|
|
|
if (guc->execbuf_client)
|
|
__guc_client_disable(guc->execbuf_client);
|
|
}
|
|
|
|
/*
|
|
* Set up the memory resources to be shared with the GuC (via the GGTT)
|
|
* at firmware loading time.
|
|
*/
|
|
int intel_guc_submission_init(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int ret;
|
|
|
|
if (guc->stage_desc_pool)
|
|
return 0;
|
|
|
|
ret = guc_stage_desc_pool_create(guc);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* Keep static analysers happy, let them know that we allocated the
|
|
* vma after testing that it didn't exist earlier.
|
|
*/
|
|
GEM_BUG_ON(!guc->stage_desc_pool);
|
|
|
|
WARN_ON(!guc_verify_doorbells(guc));
|
|
ret = guc_clients_create(guc);
|
|
if (ret)
|
|
goto err_pool;
|
|
|
|
for_each_engine(engine, dev_priv, id) {
|
|
guc->preempt_work[id].engine = engine;
|
|
INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_pool:
|
|
guc_stage_desc_pool_destroy(guc);
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_submission_fini(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
cancel_work_sync(&guc->preempt_work[id].work);
|
|
|
|
guc_clients_destroy(guc);
|
|
WARN_ON(!guc_verify_doorbells(guc));
|
|
|
|
if (guc->stage_desc_pool)
|
|
guc_stage_desc_pool_destroy(guc);
|
|
}
|
|
|
|
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int irqs;
|
|
|
|
/* tell all command streamers to forward interrupts (but not vblank)
|
|
* to GuC
|
|
*/
|
|
irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MODE_GEN7(engine), irqs);
|
|
|
|
/* route USER_INTERRUPT to Host, all others are sent to GuC. */
|
|
irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
|
|
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
|
|
/* These three registers have the same bit definitions */
|
|
I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
|
|
I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
|
|
I915_WRITE(GUC_WD_VECS_IER, ~irqs);
|
|
|
|
/*
|
|
* The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
|
|
* (unmasked) PM interrupts to the GuC. All other bits of this
|
|
* register *disable* generation of a specific interrupt.
|
|
*
|
|
* 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
|
|
* writing to the PM interrupt mask register, i.e. interrupts
|
|
* that must not be disabled.
|
|
*
|
|
* If the GuC is handling these interrupts, then we must not let
|
|
* the PM code disable ANY interrupt that the GuC is expecting.
|
|
* So for each ENABLED (0) bit in this register, we must SET the
|
|
* bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
|
|
* GuC needs ARAT expired interrupt unmasked hence it is set in
|
|
* pm_intrmsk_mbz.
|
|
*
|
|
* Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
|
|
* result in the register bit being left SET!
|
|
*/
|
|
rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
|
|
rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
|
|
}
|
|
|
|
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int irqs;
|
|
|
|
/*
|
|
* tell all command streamers NOT to forward interrupts or vblank
|
|
* to GuC.
|
|
*/
|
|
irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
|
|
irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MODE_GEN7(engine), irqs);
|
|
|
|
/* route all GT interrupts to the host */
|
|
I915_WRITE(GUC_BCS_RCS_IER, 0);
|
|
I915_WRITE(GUC_VCS2_VCS1_IER, 0);
|
|
I915_WRITE(GUC_WD_VECS_IER, 0);
|
|
|
|
rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
|
|
rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
|
|
}
|
|
|
|
static void guc_submission_park(struct intel_engine_cs *engine)
|
|
{
|
|
intel_engine_park(engine);
|
|
intel_engine_unpin_breadcrumbs_irq(engine);
|
|
engine->flags &= ~I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
|
|
}
|
|
|
|
static void guc_submission_unpark(struct intel_engine_cs *engine)
|
|
{
|
|
engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
|
|
intel_engine_pin_breadcrumbs_irq(engine);
|
|
}
|
|
|
|
static void guc_set_default_submission(struct intel_engine_cs *engine)
|
|
{
|
|
/*
|
|
* We inherit a bunch of functions from execlists that we'd like
|
|
* to keep using:
|
|
*
|
|
* engine->submit_request = execlists_submit_request;
|
|
* engine->cancel_requests = execlists_cancel_requests;
|
|
* engine->schedule = execlists_schedule;
|
|
*
|
|
* But we need to override the actual submission backend in order
|
|
* to talk to the GuC.
|
|
*/
|
|
intel_execlists_set_default_submission(engine);
|
|
|
|
engine->execlists.tasklet.func = guc_submission_tasklet;
|
|
|
|
engine->park = guc_submission_park;
|
|
engine->unpark = guc_submission_unpark;
|
|
|
|
engine->reset.prepare = guc_reset_prepare;
|
|
engine->reset.reset = guc_reset;
|
|
engine->reset.finish = guc_reset_finish;
|
|
|
|
engine->cancel_requests = guc_cancel_requests;
|
|
|
|
engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
|
|
}
|
|
|
|
int intel_guc_submission_enable(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err;
|
|
|
|
/*
|
|
* We're using GuC work items for submitting work through GuC. Since
|
|
* we're coalescing multiple requests from a single context into a
|
|
* single work item prior to assigning it to execlist_port, we can
|
|
* never have more work items than the total number of ports (for all
|
|
* engines). The GuC firmware is controlling the HEAD of work queue,
|
|
* and it is guaranteed that it will remove the work item from the
|
|
* queue before our request is completed.
|
|
*/
|
|
BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
|
|
sizeof(struct guc_wq_item) *
|
|
I915_NUM_ENGINES > GUC_WQ_SIZE);
|
|
|
|
GEM_BUG_ON(!guc->execbuf_client);
|
|
|
|
err = intel_guc_sample_forcewake(guc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = guc_clients_enable(guc);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Take over from manual control of ELSP (execlists) */
|
|
guc_interrupts_capture(dev_priv);
|
|
|
|
for_each_engine(engine, dev_priv, id) {
|
|
engine->set_default_submission = guc_set_default_submission;
|
|
engine->set_default_submission(engine);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_guc_submission_disable(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */
|
|
|
|
guc_interrupts_release(dev_priv);
|
|
guc_clients_disable(guc);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftests/intel_guc.c"
|
|
#endif
|