forked from Minki/linux
035e00acb5
Originally-From: Dave Chinner <dchinner@redhat.com> Now we have all the surrounding call infrastructure in place, we can start filling out the rmap btree implementation. Start with the on-disk btree format; add everything needed to read, write and manipulate rmap btree blocks. This prepares the way for adding the btree operations implementation. [darrick: record owner and offset info in rmap btree] [darrick: fork, bmbt and unwritten state in rmap btree] [darrick: flags are a separate field in xfs_rmap_irec] [darrick: calculate maxlevels separately] [darrick: move the 'unwritten' bit into unused parts of rm_offset] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
185 lines
4.7 KiB
C
185 lines
4.7 KiB
C
/*
|
|
* Copyright (c) 2014 Red Hat, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_extent_busy.h"
|
|
|
|
static struct xfs_btree_cur *
|
|
xfs_rmapbt_dup_cursor(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
|
|
cur->bc_private.a.agbp, cur->bc_private.a.agno);
|
|
}
|
|
|
|
static bool
|
|
xfs_rmapbt_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
unsigned int level;
|
|
|
|
/*
|
|
* magic number and level verification
|
|
*
|
|
* During growfs operations, we can't verify the exact level or owner as
|
|
* the perag is not fully initialised and hence not attached to the
|
|
* buffer. In this case, check against the maximum tree depth.
|
|
*
|
|
* Similarly, during log recovery we will have a perag structure
|
|
* attached, but the agf information will not yet have been initialised
|
|
* from the on disk AGF. Again, we can only check against maximum limits
|
|
* in this case.
|
|
*/
|
|
if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
|
|
return false;
|
|
|
|
if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
|
|
return false;
|
|
if (!xfs_btree_sblock_v5hdr_verify(bp))
|
|
return false;
|
|
|
|
level = be16_to_cpu(block->bb_level);
|
|
if (pag && pag->pagf_init) {
|
|
if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
|
|
return false;
|
|
} else if (level >= mp->m_rmap_maxlevels)
|
|
return false;
|
|
|
|
return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
|
|
}
|
|
|
|
static void
|
|
xfs_rmapbt_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (!xfs_btree_sblock_verify_crc(bp))
|
|
xfs_buf_ioerror(bp, -EFSBADCRC);
|
|
else if (!xfs_rmapbt_verify(bp))
|
|
xfs_buf_ioerror(bp, -EFSCORRUPTED);
|
|
|
|
if (bp->b_error) {
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
xfs_verifier_error(bp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_rmapbt_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (!xfs_rmapbt_verify(bp)) {
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
xfs_buf_ioerror(bp, -EFSCORRUPTED);
|
|
xfs_verifier_error(bp);
|
|
return;
|
|
}
|
|
xfs_btree_sblock_calc_crc(bp);
|
|
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
|
|
.name = "xfs_rmapbt",
|
|
.verify_read = xfs_rmapbt_read_verify,
|
|
.verify_write = xfs_rmapbt_write_verify,
|
|
};
|
|
|
|
static const struct xfs_btree_ops xfs_rmapbt_ops = {
|
|
.rec_len = sizeof(struct xfs_rmap_rec),
|
|
.key_len = 2 * sizeof(struct xfs_rmap_key),
|
|
|
|
.dup_cursor = xfs_rmapbt_dup_cursor,
|
|
.buf_ops = &xfs_rmapbt_buf_ops,
|
|
|
|
.get_leaf_keys = xfs_btree_get_leaf_keys_overlapped,
|
|
.get_node_keys = xfs_btree_get_node_keys_overlapped,
|
|
.update_keys = xfs_btree_update_keys_overlapped,
|
|
};
|
|
|
|
/*
|
|
* Allocate a new allocation btree cursor.
|
|
*/
|
|
struct xfs_btree_cur *
|
|
xfs_rmapbt_init_cursor(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_agnumber_t agno)
|
|
{
|
|
struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
|
|
struct xfs_btree_cur *cur;
|
|
|
|
cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
|
|
cur->bc_tp = tp;
|
|
cur->bc_mp = mp;
|
|
cur->bc_btnum = XFS_BTNUM_RMAP;
|
|
cur->bc_flags = XFS_BTREE_CRC_BLOCKS;
|
|
cur->bc_blocklog = mp->m_sb.sb_blocklog;
|
|
cur->bc_ops = &xfs_rmapbt_ops;
|
|
cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
|
|
|
|
cur->bc_private.a.agbp = agbp;
|
|
cur->bc_private.a.agno = agno;
|
|
|
|
return cur;
|
|
}
|
|
|
|
/*
|
|
* Calculate number of records in an rmap btree block.
|
|
*/
|
|
int
|
|
xfs_rmapbt_maxrecs(
|
|
struct xfs_mount *mp,
|
|
int blocklen,
|
|
int leaf)
|
|
{
|
|
blocklen -= XFS_RMAP_BLOCK_LEN;
|
|
|
|
if (leaf)
|
|
return blocklen / sizeof(struct xfs_rmap_rec);
|
|
return blocklen /
|
|
(sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
|
|
}
|
|
|
|
/* Compute the maximum height of an rmap btree. */
|
|
void
|
|
xfs_rmapbt_compute_maxlevels(
|
|
struct xfs_mount *mp)
|
|
{
|
|
mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
|
|
mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
|
|
}
|