On x86_64 we must disable preemption before we enable interrupts for stack faults, int3 and debugging, because the current task is using a per CPU debug stack defined by the IST. If we schedule out, another task can come in and use the same stack and cause the stack to be corrupted and crash the kernel on return. When CONFIG_PREEMPT_RT is enabled, spinlock_t locks become sleeping, and one of these is the spin lock used in signal handling. Some of the debug code (int3) causes do_trap() to send a signal. This function calls a spinlock_t lock that has been converted to a sleeping lock. If this happens, the above issues with the corrupted stack is possible. Instead of calling the signal right away, for PREEMPT_RT and x86, the signal information is stored on the stacks task_struct and TIF_NOTIFY_RESUME is set. Then on exit of the trap, the signal resume code will send the signal when preemption is enabled. [ rostedt: Switched from #ifdef CONFIG_PREEMPT_RT to ARCH_RT_DELAYS_SIGNAL_SEND and added comments to the code. ] [bigeasy: Add on 32bit as per Yang Shi, minor rewording. ] [ tglx: Use a config option ] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/Ygq5aBB/qMQw6aP5@linutronix.de
146 lines
5.1 KiB
Plaintext
146 lines
5.1 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
config PREEMPT_NONE_BUILD
|
|
bool
|
|
|
|
config PREEMPT_VOLUNTARY_BUILD
|
|
bool
|
|
|
|
config PREEMPT_BUILD
|
|
bool
|
|
select PREEMPTION
|
|
select UNINLINE_SPIN_UNLOCK if !ARCH_INLINE_SPIN_UNLOCK
|
|
|
|
choice
|
|
prompt "Preemption Model"
|
|
default PREEMPT_NONE
|
|
|
|
config PREEMPT_NONE
|
|
bool "No Forced Preemption (Server)"
|
|
select PREEMPT_NONE_BUILD if !PREEMPT_DYNAMIC
|
|
help
|
|
This is the traditional Linux preemption model, geared towards
|
|
throughput. It will still provide good latencies most of the
|
|
time, but there are no guarantees and occasional longer delays
|
|
are possible.
|
|
|
|
Select this option if you are building a kernel for a server or
|
|
scientific/computation system, or if you want to maximize the
|
|
raw processing power of the kernel, irrespective of scheduling
|
|
latencies.
|
|
|
|
config PREEMPT_VOLUNTARY
|
|
bool "Voluntary Kernel Preemption (Desktop)"
|
|
depends on !ARCH_NO_PREEMPT
|
|
select PREEMPT_VOLUNTARY_BUILD if !PREEMPT_DYNAMIC
|
|
help
|
|
This option reduces the latency of the kernel by adding more
|
|
"explicit preemption points" to the kernel code. These new
|
|
preemption points have been selected to reduce the maximum
|
|
latency of rescheduling, providing faster application reactions,
|
|
at the cost of slightly lower throughput.
|
|
|
|
This allows reaction to interactive events by allowing a
|
|
low priority process to voluntarily preempt itself even if it
|
|
is in kernel mode executing a system call. This allows
|
|
applications to run more 'smoothly' even when the system is
|
|
under load.
|
|
|
|
Select this if you are building a kernel for a desktop system.
|
|
|
|
config PREEMPT
|
|
bool "Preemptible Kernel (Low-Latency Desktop)"
|
|
depends on !ARCH_NO_PREEMPT
|
|
select PREEMPT_BUILD
|
|
help
|
|
This option reduces the latency of the kernel by making
|
|
all kernel code (that is not executing in a critical section)
|
|
preemptible. This allows reaction to interactive events by
|
|
permitting a low priority process to be preempted involuntarily
|
|
even if it is in kernel mode executing a system call and would
|
|
otherwise not be about to reach a natural preemption point.
|
|
This allows applications to run more 'smoothly' even when the
|
|
system is under load, at the cost of slightly lower throughput
|
|
and a slight runtime overhead to kernel code.
|
|
|
|
Select this if you are building a kernel for a desktop or
|
|
embedded system with latency requirements in the milliseconds
|
|
range.
|
|
|
|
config PREEMPT_RT
|
|
bool "Fully Preemptible Kernel (Real-Time)"
|
|
depends on EXPERT && ARCH_SUPPORTS_RT
|
|
select PREEMPTION
|
|
help
|
|
This option turns the kernel into a real-time kernel by replacing
|
|
various locking primitives (spinlocks, rwlocks, etc.) with
|
|
preemptible priority-inheritance aware variants, enforcing
|
|
interrupt threading and introducing mechanisms to break up long
|
|
non-preemptible sections. This makes the kernel, except for very
|
|
low level and critical code paths (entry code, scheduler, low
|
|
level interrupt handling) fully preemptible and brings most
|
|
execution contexts under scheduler control.
|
|
|
|
Select this if you are building a kernel for systems which
|
|
require real-time guarantees.
|
|
|
|
endchoice
|
|
|
|
config PREEMPT_COUNT
|
|
bool
|
|
|
|
config PREEMPTION
|
|
bool
|
|
select PREEMPT_COUNT
|
|
|
|
config PREEMPT_DYNAMIC
|
|
bool "Preemption behaviour defined on boot"
|
|
depends on HAVE_PREEMPT_DYNAMIC && !PREEMPT_RT
|
|
select PREEMPT_BUILD
|
|
default y
|
|
help
|
|
This option allows to define the preemption model on the kernel
|
|
command line parameter and thus override the default preemption
|
|
model defined during compile time.
|
|
|
|
The feature is primarily interesting for Linux distributions which
|
|
provide a pre-built kernel binary to reduce the number of kernel
|
|
flavors they offer while still offering different usecases.
|
|
|
|
The runtime overhead is negligible with HAVE_STATIC_CALL_INLINE enabled
|
|
but if runtime patching is not available for the specific architecture
|
|
then the potential overhead should be considered.
|
|
|
|
Interesting if you want the same pre-built kernel should be used for
|
|
both Server and Desktop workloads.
|
|
|
|
config SCHED_CORE
|
|
bool "Core Scheduling for SMT"
|
|
depends on SCHED_SMT
|
|
help
|
|
This option permits Core Scheduling, a means of coordinated task
|
|
selection across SMT siblings. When enabled -- see
|
|
prctl(PR_SCHED_CORE) -- task selection ensures that all SMT siblings
|
|
will execute a task from the same 'core group', forcing idle when no
|
|
matching task is found.
|
|
|
|
Use of this feature includes:
|
|
- mitigation of some (not all) SMT side channels;
|
|
- limiting SMT interference to improve determinism and/or performance.
|
|
|
|
SCHED_CORE is default disabled. When it is enabled and unused,
|
|
which is the likely usage by Linux distributions, there should
|
|
be no measurable impact on performance.
|
|
|
|
config ARCH_WANTS_RT_DELAYED_SIGNALS
|
|
bool
|
|
help
|
|
This option is selected by architectures where raising signals
|
|
can happen in atomic contexts on PREEMPT_RT enabled kernels. This
|
|
option delays raising the signal until the return to user space
|
|
loop where it is also delivered. X86 requires this to deliver
|
|
signals from trap handlers which run on IST stacks.
|
|
|
|
config RT_DELAYED_SIGNALS
|
|
def_bool PREEMPT_RT && ARCH_WANTS_RT_DELAYED_SIGNALS
|