linux/drivers/md/md.c
NeilBrown 39772f0a7b md: only allow remove_and_add_spares when no sync_thread running.
The locking protocols in md assume that a device will
never be removed from an array during resync/recovery/reshape.
When that isn't happening, rcu or reconfig_mutex is needed
to protect an rdev pointer while taking a refcount.  When
it is happening, that protection isn't needed.

Unfortunately there are cases were remove_and_add_spares() is
called when recovery might be happening: is state_store(),
slot_store() and hot_remove_disk().
In each case, this is just an optimization, to try to expedite
removal from the personality so the device can be removed from
the array.  If resync etc is happening, we just have to wait
for md_check_recover to find a suitable time to call
remove_and_add_spares().

This optimization and not essential so it doesn't
matter if it fails.
So change remove_and_add_spares() to abort early if
resync/recovery/reshape is happening, unless it is called
from md_check_recovery() as part of a newly started recovery.
The parameter "this" is only NULL when called from
md_check_recovery() so when it is NULL, there is no need to abort.

As this can result in a NULL dereference, the fix is suitable
for -stable.

cc: yuyufen <yuyufen@huawei.com>
Cc: Tomasz Majchrzak <tomasz.majchrzak@intel.com>
Fixes: 8430e7e0af ("md: disconnect device from personality before trying to remove it.")
Cc: stable@ver.kernel.org (v4.8+)
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <sh.li@alibaba-inc.com>
2018-02-19 09:40:01 -08:00

9382 lines
244 KiB
C

/*
md.c : Multiple Devices driver for Linux
Copyright (C) 1998, 1999, 2000 Ingo Molnar
completely rewritten, based on the MD driver code from Marc Zyngier
Changes:
- RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
- RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
- boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
- kerneld support by Boris Tobotras <boris@xtalk.msk.su>
- kmod support by: Cyrus Durgin
- RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
- Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
- lots of fixes and improvements to the RAID1/RAID5 and generic
RAID code (such as request based resynchronization):
Neil Brown <neilb@cse.unsw.edu.au>.
- persistent bitmap code
Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Errors, Warnings, etc.
Please use:
pr_crit() for error conditions that risk data loss
pr_err() for error conditions that are unexpected, like an IO error
or internal inconsistency
pr_warn() for error conditions that could have been predicated, like
adding a device to an array when it has incompatible metadata
pr_info() for every interesting, very rare events, like an array starting
or stopping, or resync starting or stopping
pr_debug() for everything else.
*/
#include <linux/sched/signal.h>
#include <linux/kthread.h>
#include <linux/blkdev.h>
#include <linux/badblocks.h>
#include <linux/sysctl.h>
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/hdreg.h>
#include <linux/proc_fs.h>
#include <linux/random.h>
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/file.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/raid/md_p.h>
#include <linux/raid/md_u.h>
#include <linux/slab.h>
#include <linux/percpu-refcount.h>
#include <trace/events/block.h>
#include "md.h"
#include "md-bitmap.h"
#include "md-cluster.h"
#ifndef MODULE
static void autostart_arrays(int part);
#endif
/* pers_list is a list of registered personalities protected
* by pers_lock.
* pers_lock does extra service to protect accesses to
* mddev->thread when the mutex cannot be held.
*/
static LIST_HEAD(pers_list);
static DEFINE_SPINLOCK(pers_lock);
struct md_cluster_operations *md_cluster_ops;
EXPORT_SYMBOL(md_cluster_ops);
struct module *md_cluster_mod;
EXPORT_SYMBOL(md_cluster_mod);
static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
static struct workqueue_struct *md_wq;
static struct workqueue_struct *md_misc_wq;
static int remove_and_add_spares(struct mddev *mddev,
struct md_rdev *this);
static void mddev_detach(struct mddev *mddev);
/*
* Default number of read corrections we'll attempt on an rdev
* before ejecting it from the array. We divide the read error
* count by 2 for every hour elapsed between read errors.
*/
#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
/*
* Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
* is 1000 KB/sec, so the extra system load does not show up that much.
* Increase it if you want to have more _guaranteed_ speed. Note that
* the RAID driver will use the maximum available bandwidth if the IO
* subsystem is idle. There is also an 'absolute maximum' reconstruction
* speed limit - in case reconstruction slows down your system despite
* idle IO detection.
*
* you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
* or /sys/block/mdX/md/sync_speed_{min,max}
*/
static int sysctl_speed_limit_min = 1000;
static int sysctl_speed_limit_max = 200000;
static inline int speed_min(struct mddev *mddev)
{
return mddev->sync_speed_min ?
mddev->sync_speed_min : sysctl_speed_limit_min;
}
static inline int speed_max(struct mddev *mddev)
{
return mddev->sync_speed_max ?
mddev->sync_speed_max : sysctl_speed_limit_max;
}
static struct ctl_table_header *raid_table_header;
static struct ctl_table raid_table[] = {
{
.procname = "speed_limit_min",
.data = &sysctl_speed_limit_min,
.maxlen = sizeof(int),
.mode = S_IRUGO|S_IWUSR,
.proc_handler = proc_dointvec,
},
{
.procname = "speed_limit_max",
.data = &sysctl_speed_limit_max,
.maxlen = sizeof(int),
.mode = S_IRUGO|S_IWUSR,
.proc_handler = proc_dointvec,
},
{ }
};
static struct ctl_table raid_dir_table[] = {
{
.procname = "raid",
.maxlen = 0,
.mode = S_IRUGO|S_IXUGO,
.child = raid_table,
},
{ }
};
static struct ctl_table raid_root_table[] = {
{
.procname = "dev",
.maxlen = 0,
.mode = 0555,
.child = raid_dir_table,
},
{ }
};
static const struct block_device_operations md_fops;
static int start_readonly;
/*
* The original mechanism for creating an md device is to create
* a device node in /dev and to open it. This causes races with device-close.
* The preferred method is to write to the "new_array" module parameter.
* This can avoid races.
* Setting create_on_open to false disables the original mechanism
* so all the races disappear.
*/
static bool create_on_open = true;
/* bio_clone_mddev
* like bio_clone_bioset, but with a local bio set
*/
struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
struct mddev *mddev)
{
struct bio *b;
if (!mddev || !mddev->bio_set)
return bio_alloc(gfp_mask, nr_iovecs);
b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
if (!b)
return NULL;
return b;
}
EXPORT_SYMBOL_GPL(bio_alloc_mddev);
static struct bio *md_bio_alloc_sync(struct mddev *mddev)
{
if (!mddev || !mddev->sync_set)
return bio_alloc(GFP_NOIO, 1);
return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set);
}
/*
* We have a system wide 'event count' that is incremented
* on any 'interesting' event, and readers of /proc/mdstat
* can use 'poll' or 'select' to find out when the event
* count increases.
*
* Events are:
* start array, stop array, error, add device, remove device,
* start build, activate spare
*/
static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
static atomic_t md_event_count;
void md_new_event(struct mddev *mddev)
{
atomic_inc(&md_event_count);
wake_up(&md_event_waiters);
}
EXPORT_SYMBOL_GPL(md_new_event);
/*
* Enables to iterate over all existing md arrays
* all_mddevs_lock protects this list.
*/
static LIST_HEAD(all_mddevs);
static DEFINE_SPINLOCK(all_mddevs_lock);
/*
* iterates through all used mddevs in the system.
* We take care to grab the all_mddevs_lock whenever navigating
* the list, and to always hold a refcount when unlocked.
* Any code which breaks out of this loop while own
* a reference to the current mddev and must mddev_put it.
*/
#define for_each_mddev(_mddev,_tmp) \
\
for (({ spin_lock(&all_mddevs_lock); \
_tmp = all_mddevs.next; \
_mddev = NULL;}); \
({ if (_tmp != &all_mddevs) \
mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
spin_unlock(&all_mddevs_lock); \
if (_mddev) mddev_put(_mddev); \
_mddev = list_entry(_tmp, struct mddev, all_mddevs); \
_tmp != &all_mddevs;}); \
({ spin_lock(&all_mddevs_lock); \
_tmp = _tmp->next;}) \
)
/* Rather than calling directly into the personality make_request function,
* IO requests come here first so that we can check if the device is
* being suspended pending a reconfiguration.
* We hold a refcount over the call to ->make_request. By the time that
* call has finished, the bio has been linked into some internal structure
* and so is visible to ->quiesce(), so we don't need the refcount any more.
*/
static bool is_suspended(struct mddev *mddev, struct bio *bio)
{
if (mddev->suspended)
return true;
if (bio_data_dir(bio) != WRITE)
return false;
if (mddev->suspend_lo >= mddev->suspend_hi)
return false;
if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
return false;
if (bio_end_sector(bio) < mddev->suspend_lo)
return false;
return true;
}
void md_handle_request(struct mddev *mddev, struct bio *bio)
{
check_suspended:
rcu_read_lock();
if (is_suspended(mddev, bio)) {
DEFINE_WAIT(__wait);
for (;;) {
prepare_to_wait(&mddev->sb_wait, &__wait,
TASK_UNINTERRUPTIBLE);
if (!is_suspended(mddev, bio))
break;
rcu_read_unlock();
schedule();
rcu_read_lock();
}
finish_wait(&mddev->sb_wait, &__wait);
}
atomic_inc(&mddev->active_io);
rcu_read_unlock();
if (!mddev->pers->make_request(mddev, bio)) {
atomic_dec(&mddev->active_io);
wake_up(&mddev->sb_wait);
goto check_suspended;
}
if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
wake_up(&mddev->sb_wait);
}
EXPORT_SYMBOL(md_handle_request);
static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
{
const int rw = bio_data_dir(bio);
struct mddev *mddev = q->queuedata;
unsigned int sectors;
int cpu;
blk_queue_split(q, &bio);
if (mddev == NULL || mddev->pers == NULL) {
bio_io_error(bio);
return BLK_QC_T_NONE;
}
if (mddev->ro == 1 && unlikely(rw == WRITE)) {
if (bio_sectors(bio) != 0)
bio->bi_status = BLK_STS_IOERR;
bio_endio(bio);
return BLK_QC_T_NONE;
}
/*
* save the sectors now since our bio can
* go away inside make_request
*/
sectors = bio_sectors(bio);
/* bio could be mergeable after passing to underlayer */
bio->bi_opf &= ~REQ_NOMERGE;
md_handle_request(mddev, bio);
cpu = part_stat_lock();
part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
part_stat_unlock();
return BLK_QC_T_NONE;
}
/* mddev_suspend makes sure no new requests are submitted
* to the device, and that any requests that have been submitted
* are completely handled.
* Once mddev_detach() is called and completes, the module will be
* completely unused.
*/
void mddev_suspend(struct mddev *mddev)
{
WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
lockdep_assert_held(&mddev->reconfig_mutex);
if (mddev->suspended++)
return;
synchronize_rcu();
wake_up(&mddev->sb_wait);
set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
smp_mb__after_atomic();
wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
mddev->pers->quiesce(mddev, 1);
clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
del_timer_sync(&mddev->safemode_timer);
}
EXPORT_SYMBOL_GPL(mddev_suspend);
void mddev_resume(struct mddev *mddev)
{
lockdep_assert_held(&mddev->reconfig_mutex);
if (--mddev->suspended)
return;
wake_up(&mddev->sb_wait);
mddev->pers->quiesce(mddev, 0);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
}
EXPORT_SYMBOL_GPL(mddev_resume);
int mddev_congested(struct mddev *mddev, int bits)
{
struct md_personality *pers = mddev->pers;
int ret = 0;
rcu_read_lock();
if (mddev->suspended)
ret = 1;
else if (pers && pers->congested)
ret = pers->congested(mddev, bits);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(mddev_congested);
static int md_congested(void *data, int bits)
{
struct mddev *mddev = data;
return mddev_congested(mddev, bits);
}
/*
* Generic flush handling for md
*/
static void md_end_flush(struct bio *bio)
{
struct md_rdev *rdev = bio->bi_private;
struct mddev *mddev = rdev->mddev;
rdev_dec_pending(rdev, mddev);
if (atomic_dec_and_test(&mddev->flush_pending)) {
/* The pre-request flush has finished */
queue_work(md_wq, &mddev->flush_work);
}
bio_put(bio);
}
static void md_submit_flush_data(struct work_struct *ws);
static void submit_flushes(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct md_rdev *rdev;
INIT_WORK(&mddev->flush_work, md_submit_flush_data);
atomic_set(&mddev->flush_pending, 1);
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Faulty, &rdev->flags)) {
/* Take two references, one is dropped
* when request finishes, one after
* we reclaim rcu_read_lock
*/
struct bio *bi;
atomic_inc(&rdev->nr_pending);
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
bi->bi_end_io = md_end_flush;
bi->bi_private = rdev;
bio_set_dev(bi, rdev->bdev);
bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
atomic_inc(&mddev->flush_pending);
submit_bio(bi);
rcu_read_lock();
rdev_dec_pending(rdev, mddev);
}
rcu_read_unlock();
if (atomic_dec_and_test(&mddev->flush_pending))
queue_work(md_wq, &mddev->flush_work);
}
static void md_submit_flush_data(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct bio *bio = mddev->flush_bio;
/*
* must reset flush_bio before calling into md_handle_request to avoid a
* deadlock, because other bios passed md_handle_request suspend check
* could wait for this and below md_handle_request could wait for those
* bios because of suspend check
*/
mddev->flush_bio = NULL;
wake_up(&mddev->sb_wait);
if (bio->bi_iter.bi_size == 0)
/* an empty barrier - all done */
bio_endio(bio);
else {
bio->bi_opf &= ~REQ_PREFLUSH;
md_handle_request(mddev, bio);
}
}
void md_flush_request(struct mddev *mddev, struct bio *bio)
{
spin_lock_irq(&mddev->lock);
wait_event_lock_irq(mddev->sb_wait,
!mddev->flush_bio,
mddev->lock);
mddev->flush_bio = bio;
spin_unlock_irq(&mddev->lock);
INIT_WORK(&mddev->flush_work, submit_flushes);
queue_work(md_wq, &mddev->flush_work);
}
EXPORT_SYMBOL(md_flush_request);
static inline struct mddev *mddev_get(struct mddev *mddev)
{
atomic_inc(&mddev->active);
return mddev;
}
static void mddev_delayed_delete(struct work_struct *ws);
static void mddev_put(struct mddev *mddev)
{
struct bio_set *bs = NULL, *sync_bs = NULL;
if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
return;
if (!mddev->raid_disks && list_empty(&mddev->disks) &&
mddev->ctime == 0 && !mddev->hold_active) {
/* Array is not configured at all, and not held active,
* so destroy it */
list_del_init(&mddev->all_mddevs);
bs = mddev->bio_set;
sync_bs = mddev->sync_set;
mddev->bio_set = NULL;
mddev->sync_set = NULL;
if (mddev->gendisk) {
/* We did a probe so need to clean up. Call
* queue_work inside the spinlock so that
* flush_workqueue() after mddev_find will
* succeed in waiting for the work to be done.
*/
INIT_WORK(&mddev->del_work, mddev_delayed_delete);
queue_work(md_misc_wq, &mddev->del_work);
} else
kfree(mddev);
}
spin_unlock(&all_mddevs_lock);
if (bs)
bioset_free(bs);
if (sync_bs)
bioset_free(sync_bs);
}
static void md_safemode_timeout(struct timer_list *t);
void mddev_init(struct mddev *mddev)
{
mutex_init(&mddev->open_mutex);
mutex_init(&mddev->reconfig_mutex);
mutex_init(&mddev->bitmap_info.mutex);
INIT_LIST_HEAD(&mddev->disks);
INIT_LIST_HEAD(&mddev->all_mddevs);
timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
atomic_set(&mddev->active, 1);
atomic_set(&mddev->openers, 0);
atomic_set(&mddev->active_io, 0);
spin_lock_init(&mddev->lock);
atomic_set(&mddev->flush_pending, 0);
init_waitqueue_head(&mddev->sb_wait);
init_waitqueue_head(&mddev->recovery_wait);
mddev->reshape_position = MaxSector;
mddev->reshape_backwards = 0;
mddev->last_sync_action = "none";
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
mddev->level = LEVEL_NONE;
}
EXPORT_SYMBOL_GPL(mddev_init);
static struct mddev *mddev_find(dev_t unit)
{
struct mddev *mddev, *new = NULL;
if (unit && MAJOR(unit) != MD_MAJOR)
unit &= ~((1<<MdpMinorShift)-1);
retry:
spin_lock(&all_mddevs_lock);
if (unit) {
list_for_each_entry(mddev, &all_mddevs, all_mddevs)
if (mddev->unit == unit) {
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
kfree(new);
return mddev;
}
if (new) {
list_add(&new->all_mddevs, &all_mddevs);
spin_unlock(&all_mddevs_lock);
new->hold_active = UNTIL_IOCTL;
return new;
}
} else if (new) {
/* find an unused unit number */
static int next_minor = 512;
int start = next_minor;
int is_free = 0;
int dev = 0;
while (!is_free) {
dev = MKDEV(MD_MAJOR, next_minor);
next_minor++;
if (next_minor > MINORMASK)
next_minor = 0;
if (next_minor == start) {
/* Oh dear, all in use. */
spin_unlock(&all_mddevs_lock);
kfree(new);
return NULL;
}
is_free = 1;
list_for_each_entry(mddev, &all_mddevs, all_mddevs)
if (mddev->unit == dev) {
is_free = 0;
break;
}
}
new->unit = dev;
new->md_minor = MINOR(dev);
new->hold_active = UNTIL_STOP;
list_add(&new->all_mddevs, &all_mddevs);
spin_unlock(&all_mddevs_lock);
return new;
}
spin_unlock(&all_mddevs_lock);
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
new->unit = unit;
if (MAJOR(unit) == MD_MAJOR)
new->md_minor = MINOR(unit);
else
new->md_minor = MINOR(unit) >> MdpMinorShift;
mddev_init(new);
goto retry;
}
static struct attribute_group md_redundancy_group;
void mddev_unlock(struct mddev *mddev)
{
if (mddev->to_remove) {
/* These cannot be removed under reconfig_mutex as
* an access to the files will try to take reconfig_mutex
* while holding the file unremovable, which leads to
* a deadlock.
* So hold set sysfs_active while the remove in happeing,
* and anything else which might set ->to_remove or my
* otherwise change the sysfs namespace will fail with
* -EBUSY if sysfs_active is still set.
* We set sysfs_active under reconfig_mutex and elsewhere
* test it under the same mutex to ensure its correct value
* is seen.
*/
struct attribute_group *to_remove = mddev->to_remove;
mddev->to_remove = NULL;
mddev->sysfs_active = 1;
mutex_unlock(&mddev->reconfig_mutex);
if (mddev->kobj.sd) {
if (to_remove != &md_redundancy_group)
sysfs_remove_group(&mddev->kobj, to_remove);
if (mddev->pers == NULL ||
mddev->pers->sync_request == NULL) {
sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
if (mddev->sysfs_action)
sysfs_put(mddev->sysfs_action);
mddev->sysfs_action = NULL;
}
}
mddev->sysfs_active = 0;
} else
mutex_unlock(&mddev->reconfig_mutex);
/* As we've dropped the mutex we need a spinlock to
* make sure the thread doesn't disappear
*/
spin_lock(&pers_lock);
md_wakeup_thread(mddev->thread);
wake_up(&mddev->sb_wait);
spin_unlock(&pers_lock);
}
EXPORT_SYMBOL_GPL(mddev_unlock);
struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
{
struct md_rdev *rdev;
rdev_for_each_rcu(rdev, mddev)
if (rdev->desc_nr == nr)
return rdev;
return NULL;
}
EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
if (rdev->bdev->bd_dev == dev)
return rdev;
return NULL;
}
struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
rdev_for_each_rcu(rdev, mddev)
if (rdev->bdev->bd_dev == dev)
return rdev;
return NULL;
}
EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
static struct md_personality *find_pers(int level, char *clevel)
{
struct md_personality *pers;
list_for_each_entry(pers, &pers_list, list) {
if (level != LEVEL_NONE && pers->level == level)
return pers;
if (strcmp(pers->name, clevel)==0)
return pers;
}
return NULL;
}
/* return the offset of the super block in 512byte sectors */
static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
{
sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
return MD_NEW_SIZE_SECTORS(num_sectors);
}
static int alloc_disk_sb(struct md_rdev *rdev)
{
rdev->sb_page = alloc_page(GFP_KERNEL);
if (!rdev->sb_page)
return -ENOMEM;
return 0;
}
void md_rdev_clear(struct md_rdev *rdev)
{
if (rdev->sb_page) {
put_page(rdev->sb_page);
rdev->sb_loaded = 0;
rdev->sb_page = NULL;
rdev->sb_start = 0;
rdev->sectors = 0;
}
if (rdev->bb_page) {
put_page(rdev->bb_page);
rdev->bb_page = NULL;
}
badblocks_exit(&rdev->badblocks);
}
EXPORT_SYMBOL_GPL(md_rdev_clear);
static void super_written(struct bio *bio)
{
struct md_rdev *rdev = bio->bi_private;
struct mddev *mddev = rdev->mddev;
if (bio->bi_status) {
pr_err("md: super_written gets error=%d\n", bio->bi_status);
md_error(mddev, rdev);
if (!test_bit(Faulty, &rdev->flags)
&& (bio->bi_opf & MD_FAILFAST)) {
set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
set_bit(LastDev, &rdev->flags);
}
} else
clear_bit(LastDev, &rdev->flags);
if (atomic_dec_and_test(&mddev->pending_writes))
wake_up(&mddev->sb_wait);
rdev_dec_pending(rdev, mddev);
bio_put(bio);
}
void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
sector_t sector, int size, struct page *page)
{
/* write first size bytes of page to sector of rdev
* Increment mddev->pending_writes before returning
* and decrement it on completion, waking up sb_wait
* if zero is reached.
* If an error occurred, call md_error
*/
struct bio *bio;
int ff = 0;
if (!page)
return;
if (test_bit(Faulty, &rdev->flags))
return;
bio = md_bio_alloc_sync(mddev);
atomic_inc(&rdev->nr_pending);
bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
bio->bi_iter.bi_sector = sector;
bio_add_page(bio, page, size, 0);
bio->bi_private = rdev;
bio->bi_end_io = super_written;
if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
test_bit(FailFast, &rdev->flags) &&
!test_bit(LastDev, &rdev->flags))
ff = MD_FAILFAST;
bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
atomic_inc(&mddev->pending_writes);
submit_bio(bio);
}
int md_super_wait(struct mddev *mddev)
{
/* wait for all superblock writes that were scheduled to complete */
wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
return -EAGAIN;
return 0;
}
int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
struct page *page, int op, int op_flags, bool metadata_op)
{
struct bio *bio = md_bio_alloc_sync(rdev->mddev);
int ret;
if (metadata_op && rdev->meta_bdev)
bio_set_dev(bio, rdev->meta_bdev);
else
bio_set_dev(bio, rdev->bdev);
bio_set_op_attrs(bio, op, op_flags);
if (metadata_op)
bio->bi_iter.bi_sector = sector + rdev->sb_start;
else if (rdev->mddev->reshape_position != MaxSector &&
(rdev->mddev->reshape_backwards ==
(sector >= rdev->mddev->reshape_position)))
bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
else
bio->bi_iter.bi_sector = sector + rdev->data_offset;
bio_add_page(bio, page, size, 0);
submit_bio_wait(bio);
ret = !bio->bi_status;
bio_put(bio);
return ret;
}
EXPORT_SYMBOL_GPL(sync_page_io);
static int read_disk_sb(struct md_rdev *rdev, int size)
{
char b[BDEVNAME_SIZE];
if (rdev->sb_loaded)
return 0;
if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
goto fail;
rdev->sb_loaded = 1;
return 0;
fail:
pr_err("md: disabled device %s, could not read superblock.\n",
bdevname(rdev->bdev,b));
return -EINVAL;
}
static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
{
return sb1->set_uuid0 == sb2->set_uuid0 &&
sb1->set_uuid1 == sb2->set_uuid1 &&
sb1->set_uuid2 == sb2->set_uuid2 &&
sb1->set_uuid3 == sb2->set_uuid3;
}
static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
{
int ret;
mdp_super_t *tmp1, *tmp2;
tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
if (!tmp1 || !tmp2) {
ret = 0;
goto abort;
}
*tmp1 = *sb1;
*tmp2 = *sb2;
/*
* nr_disks is not constant
*/
tmp1->nr_disks = 0;
tmp2->nr_disks = 0;
ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
abort:
kfree(tmp1);
kfree(tmp2);
return ret;
}
static u32 md_csum_fold(u32 csum)
{
csum = (csum & 0xffff) + (csum >> 16);
return (csum & 0xffff) + (csum >> 16);
}
static unsigned int calc_sb_csum(mdp_super_t *sb)
{
u64 newcsum = 0;
u32 *sb32 = (u32*)sb;
int i;
unsigned int disk_csum, csum;
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
for (i = 0; i < MD_SB_BYTES/4 ; i++)
newcsum += sb32[i];
csum = (newcsum & 0xffffffff) + (newcsum>>32);
#ifdef CONFIG_ALPHA
/* This used to use csum_partial, which was wrong for several
* reasons including that different results are returned on
* different architectures. It isn't critical that we get exactly
* the same return value as before (we always csum_fold before
* testing, and that removes any differences). However as we
* know that csum_partial always returned a 16bit value on
* alphas, do a fold to maximise conformity to previous behaviour.
*/
sb->sb_csum = md_csum_fold(disk_csum);
#else
sb->sb_csum = disk_csum;
#endif
return csum;
}
/*
* Handle superblock details.
* We want to be able to handle multiple superblock formats
* so we have a common interface to them all, and an array of
* different handlers.
* We rely on user-space to write the initial superblock, and support
* reading and updating of superblocks.
* Interface methods are:
* int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
* loads and validates a superblock on dev.
* if refdev != NULL, compare superblocks on both devices
* Return:
* 0 - dev has a superblock that is compatible with refdev
* 1 - dev has a superblock that is compatible and newer than refdev
* so dev should be used as the refdev in future
* -EINVAL superblock incompatible or invalid
* -othererror e.g. -EIO
*
* int validate_super(struct mddev *mddev, struct md_rdev *dev)
* Verify that dev is acceptable into mddev.
* The first time, mddev->raid_disks will be 0, and data from
* dev should be merged in. Subsequent calls check that dev
* is new enough. Return 0 or -EINVAL
*
* void sync_super(struct mddev *mddev, struct md_rdev *dev)
* Update the superblock for rdev with data in mddev
* This does not write to disc.
*
*/
struct super_type {
char *name;
struct module *owner;
int (*load_super)(struct md_rdev *rdev,
struct md_rdev *refdev,
int minor_version);
int (*validate_super)(struct mddev *mddev,
struct md_rdev *rdev);
void (*sync_super)(struct mddev *mddev,
struct md_rdev *rdev);
unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
sector_t num_sectors);
int (*allow_new_offset)(struct md_rdev *rdev,
unsigned long long new_offset);
};
/*
* Check that the given mddev has no bitmap.
*
* This function is called from the run method of all personalities that do not
* support bitmaps. It prints an error message and returns non-zero if mddev
* has a bitmap. Otherwise, it returns 0.
*
*/
int md_check_no_bitmap(struct mddev *mddev)
{
if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
return 0;
pr_warn("%s: bitmaps are not supported for %s\n",
mdname(mddev), mddev->pers->name);
return 1;
}
EXPORT_SYMBOL(md_check_no_bitmap);
/*
* load_super for 0.90.0
*/
static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
{
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
mdp_super_t *sb;
int ret;
/*
* Calculate the position of the superblock (512byte sectors),
* it's at the end of the disk.
*
* It also happens to be a multiple of 4Kb.
*/
rdev->sb_start = calc_dev_sboffset(rdev);
ret = read_disk_sb(rdev, MD_SB_BYTES);
if (ret)
return ret;
ret = -EINVAL;
bdevname(rdev->bdev, b);
sb = page_address(rdev->sb_page);
if (sb->md_magic != MD_SB_MAGIC) {
pr_warn("md: invalid raid superblock magic on %s\n", b);
goto abort;
}
if (sb->major_version != 0 ||
sb->minor_version < 90 ||
sb->minor_version > 91) {
pr_warn("Bad version number %d.%d on %s\n",
sb->major_version, sb->minor_version, b);
goto abort;
}
if (sb->raid_disks <= 0)
goto abort;
if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
pr_warn("md: invalid superblock checksum on %s\n", b);
goto abort;
}
rdev->preferred_minor = sb->md_minor;
rdev->data_offset = 0;
rdev->new_data_offset = 0;
rdev->sb_size = MD_SB_BYTES;
rdev->badblocks.shift = -1;
if (sb->level == LEVEL_MULTIPATH)
rdev->desc_nr = -1;
else
rdev->desc_nr = sb->this_disk.number;
if (!refdev) {
ret = 1;
} else {
__u64 ev1, ev2;
mdp_super_t *refsb = page_address(refdev->sb_page);
if (!md_uuid_equal(refsb, sb)) {
pr_warn("md: %s has different UUID to %s\n",
b, bdevname(refdev->bdev,b2));
goto abort;
}
if (!md_sb_equal(refsb, sb)) {
pr_warn("md: %s has same UUID but different superblock to %s\n",
b, bdevname(refdev->bdev, b2));
goto abort;
}
ev1 = md_event(sb);
ev2 = md_event(refsb);
if (ev1 > ev2)
ret = 1;
else
ret = 0;
}
rdev->sectors = rdev->sb_start;
/* Limit to 4TB as metadata cannot record more than that.
* (not needed for Linear and RAID0 as metadata doesn't
* record this size)
*/
if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
sb->level >= 1)
rdev->sectors = (sector_t)(2ULL << 32) - 2;
if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
/* "this cannot possibly happen" ... */
ret = -EINVAL;
abort:
return ret;
}
/*
* validate_super for 0.90.0
*/
static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
{
mdp_disk_t *desc;
mdp_super_t *sb = page_address(rdev->sb_page);
__u64 ev1 = md_event(sb);
rdev->raid_disk = -1;
clear_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
if (mddev->raid_disks == 0) {
mddev->major_version = 0;
mddev->minor_version = sb->minor_version;
mddev->patch_version = sb->patch_version;
mddev->external = 0;
mddev->chunk_sectors = sb->chunk_size >> 9;
mddev->ctime = sb->ctime;
mddev->utime = sb->utime;
mddev->level = sb->level;
mddev->clevel[0] = 0;
mddev->layout = sb->layout;
mddev->raid_disks = sb->raid_disks;
mddev->dev_sectors = ((sector_t)sb->size) * 2;
mddev->events = ev1;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.space = 0;
/* bitmap can use 60 K after the 4K superblocks */
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
mddev->reshape_backwards = 0;
if (mddev->minor_version >= 91) {
mddev->reshape_position = sb->reshape_position;
mddev->delta_disks = sb->delta_disks;
mddev->new_level = sb->new_level;
mddev->new_layout = sb->new_layout;
mddev->new_chunk_sectors = sb->new_chunk >> 9;
if (mddev->delta_disks < 0)
mddev->reshape_backwards = 1;
} else {
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
if (sb->state & (1<<MD_SB_CLEAN))
mddev->recovery_cp = MaxSector;
else {
if (sb->events_hi == sb->cp_events_hi &&
sb->events_lo == sb->cp_events_lo) {
mddev->recovery_cp = sb->recovery_cp;
} else
mddev->recovery_cp = 0;
}
memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
mddev->max_disks = MD_SB_DISKS;
if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
mddev->bitmap_info.file == NULL) {
mddev->bitmap_info.offset =
mddev->bitmap_info.default_offset;
mddev->bitmap_info.space =
mddev->bitmap_info.default_space;
}
} else if (mddev->pers == NULL) {
/* Insist on good event counter while assembling, except
* for spares (which don't need an event count) */
++ev1;
if (sb->disks[rdev->desc_nr].state & (
(1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
if (ev1 < mddev->events)
return -EINVAL;
} else if (mddev->bitmap) {
/* if adding to array with a bitmap, then we can accept an
* older device ... but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
} else {
if (ev1 < mddev->events)
/* just a hot-add of a new device, leave raid_disk at -1 */
return 0;
}
if (mddev->level != LEVEL_MULTIPATH) {
desc = sb->disks + rdev->desc_nr;
if (desc->state & (1<<MD_DISK_FAULTY))
set_bit(Faulty, &rdev->flags);
else if (desc->state & (1<<MD_DISK_SYNC) /* &&
desc->raid_disk < mddev->raid_disks */) {
set_bit(In_sync, &rdev->flags);
rdev->raid_disk = desc->raid_disk;
rdev->saved_raid_disk = desc->raid_disk;
} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
/* active but not in sync implies recovery up to
* reshape position. We don't know exactly where
* that is, so set to zero for now */
if (mddev->minor_version >= 91) {
rdev->recovery_offset = 0;
rdev->raid_disk = desc->raid_disk;
}
}
if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
if (desc->state & (1<<MD_DISK_FAILFAST))
set_bit(FailFast, &rdev->flags);
} else /* MULTIPATH are always insync */
set_bit(In_sync, &rdev->flags);
return 0;
}
/*
* sync_super for 0.90.0
*/
static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
{
mdp_super_t *sb;
struct md_rdev *rdev2;
int next_spare = mddev->raid_disks;
/* make rdev->sb match mddev data..
*
* 1/ zero out disks
* 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
* 3/ any empty disks < next_spare become removed
*
* disks[0] gets initialised to REMOVED because
* we cannot be sure from other fields if it has
* been initialised or not.
*/
int i;
int active=0, working=0,failed=0,spare=0,nr_disks=0;
rdev->sb_size = MD_SB_BYTES;
sb = page_address(rdev->sb_page);
memset(sb, 0, sizeof(*sb));
sb->md_magic = MD_SB_MAGIC;
sb->major_version = mddev->major_version;
sb->patch_version = mddev->patch_version;
sb->gvalid_words = 0; /* ignored */
memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
memcpy(&sb->set_uuid3, mddev->uuid+12,4);
sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
sb->level = mddev->level;
sb->size = mddev->dev_sectors / 2;
sb->raid_disks = mddev->raid_disks;
sb->md_minor = mddev->md_minor;
sb->not_persistent = 0;
sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
sb->state = 0;
sb->events_hi = (mddev->events>>32);
sb->events_lo = (u32)mddev->events;
if (mddev->reshape_position == MaxSector)
sb->minor_version = 90;
else {
sb->minor_version = 91;
sb->reshape_position = mddev->reshape_position;
sb->new_level = mddev->new_level;
sb->delta_disks = mddev->delta_disks;
sb->new_layout = mddev->new_layout;
sb->new_chunk = mddev->new_chunk_sectors << 9;
}
mddev->minor_version = sb->minor_version;
if (mddev->in_sync)
{
sb->recovery_cp = mddev->recovery_cp;
sb->cp_events_hi = (mddev->events>>32);
sb->cp_events_lo = (u32)mddev->events;
if (mddev->recovery_cp == MaxSector)
sb->state = (1<< MD_SB_CLEAN);
} else
sb->recovery_cp = 0;
sb->layout = mddev->layout;
sb->chunk_size = mddev->chunk_sectors << 9;
if (mddev->bitmap && mddev->bitmap_info.file == NULL)
sb->state |= (1<<MD_SB_BITMAP_PRESENT);
sb->disks[0].state = (1<<MD_DISK_REMOVED);
rdev_for_each(rdev2, mddev) {
mdp_disk_t *d;
int desc_nr;
int is_active = test_bit(In_sync, &rdev2->flags);
if (rdev2->raid_disk >= 0 &&
sb->minor_version >= 91)
/* we have nowhere to store the recovery_offset,
* but if it is not below the reshape_position,
* we can piggy-back on that.
*/
is_active = 1;
if (rdev2->raid_disk < 0 ||
test_bit(Faulty, &rdev2->flags))
is_active = 0;
if (is_active)
desc_nr = rdev2->raid_disk;
else
desc_nr = next_spare++;
rdev2->desc_nr = desc_nr;
d = &sb->disks[rdev2->desc_nr];
nr_disks++;
d->number = rdev2->desc_nr;
d->major = MAJOR(rdev2->bdev->bd_dev);
d->minor = MINOR(rdev2->bdev->bd_dev);
if (is_active)
d->raid_disk = rdev2->raid_disk;
else
d->raid_disk = rdev2->desc_nr; /* compatibility */
if (test_bit(Faulty, &rdev2->flags))
d->state = (1<<MD_DISK_FAULTY);
else if (is_active) {
d->state = (1<<MD_DISK_ACTIVE);
if (test_bit(In_sync, &rdev2->flags))
d->state |= (1<<MD_DISK_SYNC);
active++;
working++;
} else {
d->state = 0;
spare++;
working++;
}
if (test_bit(WriteMostly, &rdev2->flags))
d->state |= (1<<MD_DISK_WRITEMOSTLY);
if (test_bit(FailFast, &rdev2->flags))
d->state |= (1<<MD_DISK_FAILFAST);
}
/* now set the "removed" and "faulty" bits on any missing devices */
for (i=0 ; i < mddev->raid_disks ; i++) {
mdp_disk_t *d = &sb->disks[i];
if (d->state == 0 && d->number == 0) {
d->number = i;
d->raid_disk = i;
d->state = (1<<MD_DISK_REMOVED);
d->state |= (1<<MD_DISK_FAULTY);
failed++;
}
}
sb->nr_disks = nr_disks;
sb->active_disks = active;
sb->working_disks = working;
sb->failed_disks = failed;
sb->spare_disks = spare;
sb->this_disk = sb->disks[rdev->desc_nr];
sb->sb_csum = calc_sb_csum(sb);
}
/*
* rdev_size_change for 0.90.0
*/
static unsigned long long
super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
{
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
return 0; /* component must fit device */
if (rdev->mddev->bitmap_info.offset)
return 0; /* can't move bitmap */
rdev->sb_start = calc_dev_sboffset(rdev);
if (!num_sectors || num_sectors > rdev->sb_start)
num_sectors = rdev->sb_start;
/* Limit to 4TB as metadata cannot record more than that.
* 4TB == 2^32 KB, or 2*2^32 sectors.
*/
if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
rdev->mddev->level >= 1)
num_sectors = (sector_t)(2ULL << 32) - 2;
do {
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
rdev->sb_page);
} while (md_super_wait(rdev->mddev) < 0);
return num_sectors;
}
static int
super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
{
/* non-zero offset changes not possible with v0.90 */
return new_offset == 0;
}
/*
* version 1 superblock
*/
static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
{
__le32 disk_csum;
u32 csum;
unsigned long long newcsum;
int size = 256 + le32_to_cpu(sb->max_dev)*2;
__le32 *isuper = (__le32*)sb;
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
newcsum = 0;
for (; size >= 4; size -= 4)
newcsum += le32_to_cpu(*isuper++);
if (size == 2)
newcsum += le16_to_cpu(*(__le16*) isuper);
csum = (newcsum & 0xffffffff) + (newcsum >> 32);
sb->sb_csum = disk_csum;
return cpu_to_le32(csum);
}
static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
{
struct mdp_superblock_1 *sb;
int ret;
sector_t sb_start;
sector_t sectors;
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
int bmask;
/*
* Calculate the position of the superblock in 512byte sectors.
* It is always aligned to a 4K boundary and
* depeding on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(minor_version) {
case 0:
sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
sb_start -= 8*2;
sb_start &= ~(sector_t)(4*2-1);
break;
case 1:
sb_start = 0;
break;
case 2:
sb_start = 8;
break;
default:
return -EINVAL;
}
rdev->sb_start = sb_start;
/* superblock is rarely larger than 1K, but it can be larger,
* and it is safe to read 4k, so we do that
*/
ret = read_disk_sb(rdev, 4096);
if (ret) return ret;
sb = page_address(rdev->sb_page);
if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
sb->major_version != cpu_to_le32(1) ||
le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
le64_to_cpu(sb->super_offset) != rdev->sb_start ||
(le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
return -EINVAL;
if (calc_sb_1_csum(sb) != sb->sb_csum) {
pr_warn("md: invalid superblock checksum on %s\n",
bdevname(rdev->bdev,b));
return -EINVAL;
}
if (le64_to_cpu(sb->data_size) < 10) {
pr_warn("md: data_size too small on %s\n",
bdevname(rdev->bdev,b));
return -EINVAL;
}
if (sb->pad0 ||
sb->pad3[0] ||
memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
/* Some padding is non-zero, might be a new feature */
return -EINVAL;
rdev->preferred_minor = 0xffff;
rdev->data_offset = le64_to_cpu(sb->data_offset);
rdev->new_data_offset = rdev->data_offset;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
(le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
if (rdev->sb_size & bmask)
rdev->sb_size = (rdev->sb_size | bmask) + 1;
if (minor_version
&& rdev->data_offset < sb_start + (rdev->sb_size/512))
return -EINVAL;
if (minor_version
&& rdev->new_data_offset < sb_start + (rdev->sb_size/512))
return -EINVAL;
if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
rdev->desc_nr = -1;
else
rdev->desc_nr = le32_to_cpu(sb->dev_number);
if (!rdev->bb_page) {
rdev->bb_page = alloc_page(GFP_KERNEL);
if (!rdev->bb_page)
return -ENOMEM;
}
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
rdev->badblocks.count == 0) {
/* need to load the bad block list.
* Currently we limit it to one page.
*/
s32 offset;
sector_t bb_sector;
u64 *bbp;
int i;
int sectors = le16_to_cpu(sb->bblog_size);
if (sectors > (PAGE_SIZE / 512))
return -EINVAL;
offset = le32_to_cpu(sb->bblog_offset);
if (offset == 0)
return -EINVAL;
bb_sector = (long long)offset;
if (!sync_page_io(rdev, bb_sector, sectors << 9,
rdev->bb_page, REQ_OP_READ, 0, true))
return -EIO;
bbp = (u64 *)page_address(rdev->bb_page);
rdev->badblocks.shift = sb->bblog_shift;
for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
u64 bb = le64_to_cpu(*bbp);
int count = bb & (0x3ff);
u64 sector = bb >> 10;
sector <<= sb->bblog_shift;
count <<= sb->bblog_shift;
if (bb + 1 == 0)
break;
if (badblocks_set(&rdev->badblocks, sector, count, 1))
return -EINVAL;
}
} else if (sb->bblog_offset != 0)
rdev->badblocks.shift = 0;
if ((le32_to_cpu(sb->feature_map) &
(MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
rdev->ppl.size = le16_to_cpu(sb->ppl.size);
rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
}
if (!refdev) {
ret = 1;
} else {
__u64 ev1, ev2;
struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
sb->level != refsb->level ||
sb->layout != refsb->layout ||
sb->chunksize != refsb->chunksize) {
pr_warn("md: %s has strangely different superblock to %s\n",
bdevname(rdev->bdev,b),
bdevname(refdev->bdev,b2));
return -EINVAL;
}
ev1 = le64_to_cpu(sb->events);
ev2 = le64_to_cpu(refsb->events);
if (ev1 > ev2)
ret = 1;
else
ret = 0;
}
if (minor_version) {
sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
sectors -= rdev->data_offset;
} else
sectors = rdev->sb_start;
if (sectors < le64_to_cpu(sb->data_size))
return -EINVAL;
rdev->sectors = le64_to_cpu(sb->data_size);
return ret;
}
static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
__u64 ev1 = le64_to_cpu(sb->events);
rdev->raid_disk = -1;
clear_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
if (mddev->raid_disks == 0) {
mddev->major_version = 1;
mddev->patch_version = 0;
mddev->external = 0;
mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
mddev->ctime = le64_to_cpu(sb->ctime);
mddev->utime = le64_to_cpu(sb->utime);
mddev->level = le32_to_cpu(sb->level);
mddev->clevel[0] = 0;
mddev->layout = le32_to_cpu(sb->layout);
mddev->raid_disks = le32_to_cpu(sb->raid_disks);
mddev->dev_sectors = le64_to_cpu(sb->size);
mddev->events = ev1;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.space = 0;
/* Default location for bitmap is 1K after superblock
* using 3K - total of 4K
*/
mddev->bitmap_info.default_offset = 1024 >> 9;
mddev->bitmap_info.default_space = (4096-1024) >> 9;
mddev->reshape_backwards = 0;
mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
memcpy(mddev->uuid, sb->set_uuid, 16);
mddev->max_disks = (4096-256)/2;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
mddev->bitmap_info.file == NULL) {
mddev->bitmap_info.offset =
(__s32)le32_to_cpu(sb->bitmap_offset);
/* Metadata doesn't record how much space is available.
* For 1.0, we assume we can use up to the superblock
* if before, else to 4K beyond superblock.
* For others, assume no change is possible.
*/
if (mddev->minor_version > 0)
mddev->bitmap_info.space = 0;
else if (mddev->bitmap_info.offset > 0)
mddev->bitmap_info.space =
8 - mddev->bitmap_info.offset;
else
mddev->bitmap_info.space =
-mddev->bitmap_info.offset;
}
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
mddev->reshape_position = le64_to_cpu(sb->reshape_position);
mddev->delta_disks = le32_to_cpu(sb->delta_disks);
mddev->new_level = le32_to_cpu(sb->new_level);
mddev->new_layout = le32_to_cpu(sb->new_layout);
mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
if (mddev->delta_disks < 0 ||
(mddev->delta_disks == 0 &&
(le32_to_cpu(sb->feature_map)
& MD_FEATURE_RESHAPE_BACKWARDS)))
mddev->reshape_backwards = 1;
} else {
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
set_bit(MD_HAS_JOURNAL, &mddev->flags);
if (le32_to_cpu(sb->feature_map) &
(MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
if (le32_to_cpu(sb->feature_map) &
(MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
return -EINVAL;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
(le32_to_cpu(sb->feature_map) &
MD_FEATURE_MULTIPLE_PPLS))
return -EINVAL;
set_bit(MD_HAS_PPL, &mddev->flags);
}
} else if (mddev->pers == NULL) {
/* Insist of good event counter while assembling, except for
* spares (which don't need an event count) */
++ev1;
if (rdev->desc_nr >= 0 &&
rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
if (ev1 < mddev->events)
return -EINVAL;
} else if (mddev->bitmap) {
/* If adding to array with a bitmap, then we can accept an
* older device, but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
} else {
if (ev1 < mddev->events)
/* just a hot-add of a new device, leave raid_disk at -1 */
return 0;
}
if (mddev->level != LEVEL_MULTIPATH) {
int role;
if (rdev->desc_nr < 0 ||
rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
role = MD_DISK_ROLE_SPARE;
rdev->desc_nr = -1;
} else
role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
switch(role) {
case MD_DISK_ROLE_SPARE: /* spare */
break;
case MD_DISK_ROLE_FAULTY: /* faulty */
set_bit(Faulty, &rdev->flags);
break;
case MD_DISK_ROLE_JOURNAL: /* journal device */
if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
/* journal device without journal feature */
pr_warn("md: journal device provided without journal feature, ignoring the device\n");
return -EINVAL;
}
set_bit(Journal, &rdev->flags);
rdev->journal_tail = le64_to_cpu(sb->journal_tail);
rdev->raid_disk = 0;
break;
default:
rdev->saved_raid_disk = role;
if ((le32_to_cpu(sb->feature_map) &
MD_FEATURE_RECOVERY_OFFSET)) {
rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
if (!(le32_to_cpu(sb->feature_map) &
MD_FEATURE_RECOVERY_BITMAP))
rdev->saved_raid_disk = -1;
} else
set_bit(In_sync, &rdev->flags);
rdev->raid_disk = role;
break;
}
if (sb->devflags & WriteMostly1)
set_bit(WriteMostly, &rdev->flags);
if (sb->devflags & FailFast1)
set_bit(FailFast, &rdev->flags);
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
set_bit(Replacement, &rdev->flags);
} else /* MULTIPATH are always insync */
set_bit(In_sync, &rdev->flags);
return 0;
}
static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb;
struct md_rdev *rdev2;
int max_dev, i;
/* make rdev->sb match mddev and rdev data. */
sb = page_address(rdev->sb_page);
sb->feature_map = 0;
sb->pad0 = 0;
sb->recovery_offset = cpu_to_le64(0);
memset(sb->pad3, 0, sizeof(sb->pad3));
sb->utime = cpu_to_le64((__u64)mddev->utime);
sb->events = cpu_to_le64(mddev->events);
if (mddev->in_sync)
sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
sb->resync_offset = cpu_to_le64(MaxSector);
else
sb->resync_offset = cpu_to_le64(0);
sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
sb->raid_disks = cpu_to_le32(mddev->raid_disks);
sb->size = cpu_to_le64(mddev->dev_sectors);
sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
sb->level = cpu_to_le32(mddev->level);
sb->layout = cpu_to_le32(mddev->layout);
if (test_bit(FailFast, &rdev->flags))
sb->devflags |= FailFast1;
else
sb->devflags &= ~FailFast1;
if (test_bit(WriteMostly, &rdev->flags))
sb->devflags |= WriteMostly1;
else
sb->devflags &= ~WriteMostly1;
sb->data_offset = cpu_to_le64(rdev->data_offset);
sb->data_size = cpu_to_le64(rdev->sectors);
if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
}
if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags)) {
sb->feature_map |=
cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
sb->recovery_offset =
cpu_to_le64(rdev->recovery_offset);
if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
sb->feature_map |=
cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
}
/* Note: recovery_offset and journal_tail share space */
if (test_bit(Journal, &rdev->flags))
sb->journal_tail = cpu_to_le64(rdev->journal_tail);
if (test_bit(Replacement, &rdev->flags))
sb->feature_map |=
cpu_to_le32(MD_FEATURE_REPLACEMENT);
if (mddev->reshape_position != MaxSector) {
sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
sb->reshape_position = cpu_to_le64(mddev->reshape_position);
sb->new_layout = cpu_to_le32(mddev->new_layout);
sb->delta_disks = cpu_to_le32(mddev->delta_disks);
sb->new_level = cpu_to_le32(mddev->new_level);
sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
if (mddev->delta_disks == 0 &&
mddev->reshape_backwards)
sb->feature_map
|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
if (rdev->new_data_offset != rdev->data_offset) {
sb->feature_map
|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
- rdev->data_offset));
}
}
if (mddev_is_clustered(mddev))
sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
if (rdev->badblocks.count == 0)
/* Nothing to do for bad blocks*/ ;
else if (sb->bblog_offset == 0)
/* Cannot record bad blocks on this device */
md_error(mddev, rdev);
else {
struct badblocks *bb = &rdev->badblocks;
u64 *bbp = (u64 *)page_address(rdev->bb_page);
u64 *p = bb->page;
sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
if (bb->changed) {
unsigned seq;
retry:
seq = read_seqbegin(&bb->lock);
memset(bbp, 0xff, PAGE_SIZE);
for (i = 0 ; i < bb->count ; i++) {
u64 internal_bb = p[i];
u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
| BB_LEN(internal_bb));
bbp[i] = cpu_to_le64(store_bb);
}
bb->changed = 0;
if (read_seqretry(&bb->lock, seq))
goto retry;
bb->sector = (rdev->sb_start +
(int)le32_to_cpu(sb->bblog_offset));
bb->size = le16_to_cpu(sb->bblog_size);
}
}
max_dev = 0;
rdev_for_each(rdev2, mddev)
if (rdev2->desc_nr+1 > max_dev)
max_dev = rdev2->desc_nr+1;
if (max_dev > le32_to_cpu(sb->max_dev)) {
int bmask;
sb->max_dev = cpu_to_le32(max_dev);
rdev->sb_size = max_dev * 2 + 256;
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
if (rdev->sb_size & bmask)
rdev->sb_size = (rdev->sb_size | bmask) + 1;
} else
max_dev = le32_to_cpu(sb->max_dev);
for (i=0; i<max_dev;i++)
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
if (test_bit(MD_HAS_PPL, &mddev->flags)) {
if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
sb->feature_map |=
cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
else
sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
sb->ppl.size = cpu_to_le16(rdev->ppl.size);
}
rdev_for_each(rdev2, mddev) {
i = rdev2->desc_nr;
if (test_bit(Faulty, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
else if (test_bit(In_sync, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
else if (test_bit(Journal, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
else if (rdev2->raid_disk >= 0)
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
else
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
}
sb->sb_csum = calc_sb_1_csum(sb);
}
static unsigned long long
super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
{
struct mdp_superblock_1 *sb;
sector_t max_sectors;
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
return 0; /* component must fit device */
if (rdev->data_offset != rdev->new_data_offset)
return 0; /* too confusing */
if (rdev->sb_start < rdev->data_offset) {
/* minor versions 1 and 2; superblock before data */
max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
max_sectors -= rdev->data_offset;
if (!num_sectors || num_sectors > max_sectors)
num_sectors = max_sectors;
} else if (rdev->mddev->bitmap_info.offset) {
/* minor version 0 with bitmap we can't move */
return 0;
} else {
/* minor version 0; superblock after data */
sector_t sb_start;
sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
sb_start &= ~(sector_t)(4*2 - 1);
max_sectors = rdev->sectors + sb_start - rdev->sb_start;
if (!num_sectors || num_sectors > max_sectors)
num_sectors = max_sectors;
rdev->sb_start = sb_start;
}
sb = page_address(rdev->sb_page);
sb->data_size = cpu_to_le64(num_sectors);
sb->super_offset = cpu_to_le64(rdev->sb_start);
sb->sb_csum = calc_sb_1_csum(sb);
do {
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
rdev->sb_page);
} while (md_super_wait(rdev->mddev) < 0);
return num_sectors;
}
static int
super_1_allow_new_offset(struct md_rdev *rdev,
unsigned long long new_offset)
{
/* All necessary checks on new >= old have been done */
struct bitmap *bitmap;
if (new_offset >= rdev->data_offset)
return 1;
/* with 1.0 metadata, there is no metadata to tread on
* so we can always move back */
if (rdev->mddev->minor_version == 0)
return 1;
/* otherwise we must be sure not to step on
* any metadata, so stay:
* 36K beyond start of superblock
* beyond end of badblocks
* beyond write-intent bitmap
*/
if (rdev->sb_start + (32+4)*2 > new_offset)
return 0;
bitmap = rdev->mddev->bitmap;
if (bitmap && !rdev->mddev->bitmap_info.file &&
rdev->sb_start + rdev->mddev->bitmap_info.offset +
bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
return 0;
if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
return 0;
return 1;
}
static struct super_type super_types[] = {
[0] = {
.name = "0.90.0",
.owner = THIS_MODULE,
.load_super = super_90_load,
.validate_super = super_90_validate,
.sync_super = super_90_sync,
.rdev_size_change = super_90_rdev_size_change,
.allow_new_offset = super_90_allow_new_offset,
},
[1] = {
.name = "md-1",
.owner = THIS_MODULE,
.load_super = super_1_load,
.validate_super = super_1_validate,
.sync_super = super_1_sync,
.rdev_size_change = super_1_rdev_size_change,
.allow_new_offset = super_1_allow_new_offset,
},
};
static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
{
if (mddev->sync_super) {
mddev->sync_super(mddev, rdev);
return;
}
BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
super_types[mddev->major_version].sync_super(mddev, rdev);
}
static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
{
struct md_rdev *rdev, *rdev2;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev1) {
if (test_bit(Faulty, &rdev->flags) ||
test_bit(Journal, &rdev->flags) ||
rdev->raid_disk == -1)
continue;
rdev_for_each_rcu(rdev2, mddev2) {
if (test_bit(Faulty, &rdev2->flags) ||
test_bit(Journal, &rdev2->flags) ||
rdev2->raid_disk == -1)
continue;
if (rdev->bdev->bd_contains ==
rdev2->bdev->bd_contains) {
rcu_read_unlock();
return 1;
}
}
}
rcu_read_unlock();
return 0;
}
static LIST_HEAD(pending_raid_disks);
/*
* Try to register data integrity profile for an mddev
*
* This is called when an array is started and after a disk has been kicked
* from the array. It only succeeds if all working and active component devices
* are integrity capable with matching profiles.
*/
int md_integrity_register(struct mddev *mddev)
{
struct md_rdev *rdev, *reference = NULL;
if (list_empty(&mddev->disks))
return 0; /* nothing to do */
if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
return 0; /* shouldn't register, or already is */
rdev_for_each(rdev, mddev) {
/* skip spares and non-functional disks */
if (test_bit(Faulty, &rdev->flags))
continue;
if (rdev->raid_disk < 0)
continue;
if (!reference) {
/* Use the first rdev as the reference */
reference = rdev;
continue;
}
/* does this rdev's profile match the reference profile? */
if (blk_integrity_compare(reference->bdev->bd_disk,
rdev->bdev->bd_disk) < 0)
return -EINVAL;
}
if (!reference || !bdev_get_integrity(reference->bdev))
return 0;
/*
* All component devices are integrity capable and have matching
* profiles, register the common profile for the md device.
*/
blk_integrity_register(mddev->gendisk,
bdev_get_integrity(reference->bdev));
pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
pr_err("md: failed to create integrity pool for %s\n",
mdname(mddev));
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(md_integrity_register);
/*
* Attempt to add an rdev, but only if it is consistent with the current
* integrity profile
*/
int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
struct blk_integrity *bi_rdev;
struct blk_integrity *bi_mddev;
char name[BDEVNAME_SIZE];
if (!mddev->gendisk)
return 0;
bi_rdev = bdev_get_integrity(rdev->bdev);
bi_mddev = blk_get_integrity(mddev->gendisk);
if (!bi_mddev) /* nothing to do */
return 0;
if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
pr_err("%s: incompatible integrity profile for %s\n",
mdname(mddev), bdevname(rdev->bdev, name));
return -ENXIO;
}
return 0;
}
EXPORT_SYMBOL(md_integrity_add_rdev);
static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
{
char b[BDEVNAME_SIZE];
struct kobject *ko;
int err;
/* prevent duplicates */
if (find_rdev(mddev, rdev->bdev->bd_dev))
return -EEXIST;
if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
mddev->pers)
return -EROFS;
/* make sure rdev->sectors exceeds mddev->dev_sectors */
if (!test_bit(Journal, &rdev->flags) &&
rdev->sectors &&
(mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
if (mddev->pers) {
/* Cannot change size, so fail
* If mddev->level <= 0, then we don't care
* about aligning sizes (e.g. linear)
*/
if (mddev->level > 0)
return -ENOSPC;
} else
mddev->dev_sectors = rdev->sectors;
}
/* Verify rdev->desc_nr is unique.
* If it is -1, assign a free number, else
* check number is not in use
*/
rcu_read_lock();
if (rdev->desc_nr < 0) {
int choice = 0;
if (mddev->pers)
choice = mddev->raid_disks;
while (md_find_rdev_nr_rcu(mddev, choice))
choice++;
rdev->desc_nr = choice;
} else {
if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
rcu_read_unlock();
return -EBUSY;
}
}
rcu_read_unlock();
if (!test_bit(Journal, &rdev->flags) &&
mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
pr_warn("md: %s: array is limited to %d devices\n",
mdname(mddev), mddev->max_disks);
return -EBUSY;
}
bdevname(rdev->bdev,b);
strreplace(b, '/', '!');
rdev->mddev = mddev;
pr_debug("md: bind<%s>\n", b);
if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
goto fail;
ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
if (sysfs_create_link(&rdev->kobj, ko, "block"))
/* failure here is OK */;
rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
list_add_rcu(&rdev->same_set, &mddev->disks);
bd_link_disk_holder(rdev->bdev, mddev->gendisk);
/* May as well allow recovery to be retried once */
mddev->recovery_disabled++;
return 0;
fail:
pr_warn("md: failed to register dev-%s for %s\n",
b, mdname(mddev));
return err;
}
static void md_delayed_delete(struct work_struct *ws)
{
struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
kobject_del(&rdev->kobj);
kobject_put(&rdev->kobj);
}
static void unbind_rdev_from_array(struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
list_del_rcu(&rdev->same_set);
pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
rdev->mddev = NULL;
sysfs_remove_link(&rdev->kobj, "block");
sysfs_put(rdev->sysfs_state);
rdev->sysfs_state = NULL;
rdev->badblocks.count = 0;
/* We need to delay this, otherwise we can deadlock when
* writing to 'remove' to "dev/state". We also need
* to delay it due to rcu usage.
*/
synchronize_rcu();
INIT_WORK(&rdev->del_work, md_delayed_delete);
kobject_get(&rdev->kobj);
queue_work(md_misc_wq, &rdev->del_work);
}
/*
* prevent the device from being mounted, repartitioned or
* otherwise reused by a RAID array (or any other kernel
* subsystem), by bd_claiming the device.
*/
static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
{
int err = 0;
struct block_device *bdev;
char b[BDEVNAME_SIZE];
bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
shared ? (struct md_rdev *)lock_rdev : rdev);
if (IS_ERR(bdev)) {
pr_warn("md: could not open %s.\n", __bdevname(dev, b));
return PTR_ERR(bdev);
}
rdev->bdev = bdev;
return err;
}
static void unlock_rdev(struct md_rdev *rdev)
{
struct block_device *bdev = rdev->bdev;
rdev->bdev = NULL;
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
}
void md_autodetect_dev(dev_t dev);
static void export_rdev(struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
md_rdev_clear(rdev);
#ifndef MODULE
if (test_bit(AutoDetected, &rdev->flags))
md_autodetect_dev(rdev->bdev->bd_dev);
#endif
unlock_rdev(rdev);
kobject_put(&rdev->kobj);
}
void md_kick_rdev_from_array(struct md_rdev *rdev)
{
unbind_rdev_from_array(rdev);
export_rdev(rdev);
}
EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
static void export_array(struct mddev *mddev)
{
struct md_rdev *rdev;
while (!list_empty(&mddev->disks)) {
rdev = list_first_entry(&mddev->disks, struct md_rdev,
same_set);
md_kick_rdev_from_array(rdev);
}
mddev->raid_disks = 0;
mddev->major_version = 0;
}
static bool set_in_sync(struct mddev *mddev)
{
lockdep_assert_held(&mddev->lock);
if (!mddev->in_sync) {
mddev->sync_checkers++;
spin_unlock(&mddev->lock);
percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
spin_lock(&mddev->lock);
if (!mddev->in_sync &&
percpu_ref_is_zero(&mddev->writes_pending)) {
mddev->in_sync = 1;
/*
* Ensure ->in_sync is visible before we clear
* ->sync_checkers.
*/
smp_mb();
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
sysfs_notify_dirent_safe(mddev->sysfs_state);
}
if (--mddev->sync_checkers == 0)
percpu_ref_switch_to_percpu(&mddev->writes_pending);
}
if (mddev->safemode == 1)
mddev->safemode = 0;
return mddev->in_sync;
}
static void sync_sbs(struct mddev *mddev, int nospares)
{
/* Update each superblock (in-memory image), but
* if we are allowed to, skip spares which already
* have the right event counter, or have one earlier
* (which would mean they aren't being marked as dirty
* with the rest of the array)
*/
struct md_rdev *rdev;
rdev_for_each(rdev, mddev) {
if (rdev->sb_events == mddev->events ||
(nospares &&
rdev->raid_disk < 0 &&
rdev->sb_events+1 == mddev->events)) {
/* Don't update this superblock */
rdev->sb_loaded = 2;
} else {
sync_super(mddev, rdev);
rdev->sb_loaded = 1;
}
}
}
static bool does_sb_need_changing(struct mddev *mddev)
{
struct md_rdev *rdev;
struct mdp_superblock_1 *sb;
int role;
/* Find a good rdev */
rdev_for_each(rdev, mddev)
if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
break;
/* No good device found. */
if (!rdev)
return false;
sb = page_address(rdev->sb_page);
/* Check if a device has become faulty or a spare become active */
rdev_for_each(rdev, mddev) {
role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
/* Device activated? */
if (role == 0xffff && rdev->raid_disk >=0 &&
!test_bit(Faulty, &rdev->flags))
return true;
/* Device turned faulty? */
if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
return true;
}
/* Check if any mddev parameters have changed */
if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
(mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
(mddev->layout != le32_to_cpu(sb->layout)) ||
(mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
(mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
return true;
return false;
}
void md_update_sb(struct mddev *mddev, int force_change)
{
struct md_rdev *rdev;
int sync_req;
int nospares = 0;
int any_badblocks_changed = 0;
int ret = -1;
if (mddev->ro) {
if (force_change)
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
return;
}
repeat:
if (mddev_is_clustered(mddev)) {
if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
force_change = 1;
if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
nospares = 1;
ret = md_cluster_ops->metadata_update_start(mddev);
/* Has someone else has updated the sb */
if (!does_sb_need_changing(mddev)) {
if (ret == 0)
md_cluster_ops->metadata_update_cancel(mddev);
bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
BIT(MD_SB_CHANGE_DEVS) |
BIT(MD_SB_CHANGE_CLEAN));
return;
}
}
/*
* First make sure individual recovery_offsets are correct
* curr_resync_completed can only be used during recovery.
* During reshape/resync it might use array-addresses rather
* that device addresses.
*/
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk >= 0 &&
mddev->delta_disks >= 0 &&
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
mddev->curr_resync_completed > rdev->recovery_offset)
rdev->recovery_offset = mddev->curr_resync_completed;
}
if (!mddev->persistent) {
clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (!mddev->external) {
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
rdev_for_each(rdev, mddev) {
if (rdev->badblocks.changed) {
rdev->badblocks.changed = 0;
ack_all_badblocks(&rdev->badblocks);
md_error(mddev, rdev);
}
clear_bit(Blocked, &rdev->flags);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
}
}
wake_up(&mddev->sb_wait);
return;
}
spin_lock(&mddev->lock);
mddev->utime = ktime_get_real_seconds();
if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
force_change = 1;
if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
/* just a clean<-> dirty transition, possibly leave spares alone,
* though if events isn't the right even/odd, we will have to do
* spares after all
*/
nospares = 1;
if (force_change)
nospares = 0;
if (mddev->degraded)
/* If the array is degraded, then skipping spares is both
* dangerous and fairly pointless.
* Dangerous because a device that was removed from the array
* might have a event_count that still looks up-to-date,
* so it can be re-added without a resync.
* Pointless because if there are any spares to skip,
* then a recovery will happen and soon that array won't
* be degraded any more and the spare can go back to sleep then.
*/
nospares = 0;
sync_req = mddev->in_sync;
/* If this is just a dirty<->clean transition, and the array is clean
* and 'events' is odd, we can roll back to the previous clean state */
if (nospares
&& (mddev->in_sync && mddev->recovery_cp == MaxSector)
&& mddev->can_decrease_events
&& mddev->events != 1) {
mddev->events--;
mddev->can_decrease_events = 0;
} else {
/* otherwise we have to go forward and ... */
mddev->events ++;
mddev->can_decrease_events = nospares;
}
/*
* This 64-bit counter should never wrap.
* Either we are in around ~1 trillion A.C., assuming
* 1 reboot per second, or we have a bug...
*/
WARN_ON(mddev->events == 0);
rdev_for_each(rdev, mddev) {
if (rdev->badblocks.changed)
any_badblocks_changed++;
if (test_bit(Faulty, &rdev->flags))
set_bit(FaultRecorded, &rdev->flags);
}
sync_sbs(mddev, nospares);
spin_unlock(&mddev->lock);
pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
mdname(mddev), mddev->in_sync);
if (mddev->queue)
blk_add_trace_msg(mddev->queue, "md md_update_sb");
rewrite:
bitmap_update_sb(mddev->bitmap);
rdev_for_each(rdev, mddev) {
char b[BDEVNAME_SIZE];
if (rdev->sb_loaded != 1)
continue; /* no noise on spare devices */
if (!test_bit(Faulty, &rdev->flags)) {
md_super_write(mddev,rdev,
rdev->sb_start, rdev->sb_size,
rdev->sb_page);
pr_debug("md: (write) %s's sb offset: %llu\n",
bdevname(rdev->bdev, b),
(unsigned long long)rdev->sb_start);
rdev->sb_events = mddev->events;
if (rdev->badblocks.size) {
md_super_write(mddev, rdev,
rdev->badblocks.sector,
rdev->badblocks.size << 9,
rdev->bb_page);
rdev->badblocks.size = 0;
}
} else
pr_debug("md: %s (skipping faulty)\n",
bdevname(rdev->bdev, b));
if (mddev->level == LEVEL_MULTIPATH)
/* only need to write one superblock... */
break;
}
if (md_super_wait(mddev) < 0)
goto rewrite;
/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
if (mddev_is_clustered(mddev) && ret == 0)
md_cluster_ops->metadata_update_finish(mddev);
if (mddev->in_sync != sync_req ||
!bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
/* have to write it out again */
goto repeat;
wake_up(&mddev->sb_wait);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
rdev_for_each(rdev, mddev) {
if (test_and_clear_bit(FaultRecorded, &rdev->flags))
clear_bit(Blocked, &rdev->flags);
if (any_badblocks_changed)
ack_all_badblocks(&rdev->badblocks);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
}
}
EXPORT_SYMBOL(md_update_sb);
static int add_bound_rdev(struct md_rdev *rdev)
{
struct mddev *mddev = rdev->mddev;
int err = 0;
bool add_journal = test_bit(Journal, &rdev->flags);
if (!mddev->pers->hot_remove_disk || add_journal) {
/* If there is hot_add_disk but no hot_remove_disk
* then added disks for geometry changes,
* and should be added immediately.
*/
super_types[mddev->major_version].
validate_super(mddev, rdev);
if (add_journal)
mddev_suspend(mddev);
err = mddev->pers->hot_add_disk(mddev, rdev);
if (add_journal)
mddev_resume(mddev);
if (err) {
md_kick_rdev_from_array(rdev);
return err;
}
}
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (mddev->degraded)
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_new_event(mddev);
md_wakeup_thread(mddev->thread);
return 0;
}
/* words written to sysfs files may, or may not, be \n terminated.
* We want to accept with case. For this we use cmd_match.
*/
static int cmd_match(const char *cmd, const char *str)
{
/* See if cmd, written into a sysfs file, matches
* str. They must either be the same, or cmd can
* have a trailing newline
*/
while (*cmd && *str && *cmd == *str) {
cmd++;
str++;
}
if (*cmd == '\n')
cmd++;
if (*str || *cmd)
return 0;
return 1;
}
struct rdev_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct md_rdev *, char *);
ssize_t (*store)(struct md_rdev *, const char *, size_t);
};
static ssize_t
state_show(struct md_rdev *rdev, char *page)
{
char *sep = ",";
size_t len = 0;
unsigned long flags = READ_ONCE(rdev->flags);
if (test_bit(Faulty, &flags) ||
(!test_bit(ExternalBbl, &flags) &&
rdev->badblocks.unacked_exist))
len += sprintf(page+len, "faulty%s", sep);
if (test_bit(In_sync, &flags))
len += sprintf(page+len, "in_sync%s", sep);
if (test_bit(Journal, &flags))
len += sprintf(page+len, "journal%s", sep);
if (test_bit(WriteMostly, &flags))
len += sprintf(page+len, "write_mostly%s", sep);
if (test_bit(Blocked, &flags) ||
(rdev->badblocks.unacked_exist
&& !test_bit(Faulty, &flags)))
len += sprintf(page+len, "blocked%s", sep);
if (!test_bit(Faulty, &flags) &&
!test_bit(Journal, &flags) &&
!test_bit(In_sync, &flags))
len += sprintf(page+len, "spare%s", sep);
if (test_bit(WriteErrorSeen, &flags))
len += sprintf(page+len, "write_error%s", sep);
if (test_bit(WantReplacement, &flags))
len += sprintf(page+len, "want_replacement%s", sep);
if (test_bit(Replacement, &flags))
len += sprintf(page+len, "replacement%s", sep);
if (test_bit(ExternalBbl, &flags))
len += sprintf(page+len, "external_bbl%s", sep);
if (test_bit(FailFast, &flags))
len += sprintf(page+len, "failfast%s", sep);
if (len)
len -= strlen(sep);
return len+sprintf(page+len, "\n");
}
static ssize_t
state_store(struct md_rdev *rdev, const char *buf, size_t len)
{
/* can write
* faulty - simulates an error
* remove - disconnects the device
* writemostly - sets write_mostly
* -writemostly - clears write_mostly
* blocked - sets the Blocked flags
* -blocked - clears the Blocked and possibly simulates an error
* insync - sets Insync providing device isn't active
* -insync - clear Insync for a device with a slot assigned,
* so that it gets rebuilt based on bitmap
* write_error - sets WriteErrorSeen
* -write_error - clears WriteErrorSeen
* {,-}failfast - set/clear FailFast
*/
int err = -EINVAL;
if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
md_error(rdev->mddev, rdev);
if (test_bit(Faulty, &rdev->flags))
err = 0;
else
err = -EBUSY;
} else if (cmd_match(buf, "remove")) {
if (rdev->mddev->pers) {
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(rdev->mddev, rdev);
}
if (rdev->raid_disk >= 0)
err = -EBUSY;
else {
struct mddev *mddev = rdev->mddev;
err = 0;
if (mddev_is_clustered(mddev))
err = md_cluster_ops->remove_disk(mddev, rdev);
if (err == 0) {
md_kick_rdev_from_array(rdev);
if (mddev->pers) {
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
}
md_new_event(mddev);
}
}
} else if (cmd_match(buf, "writemostly")) {
set_bit(WriteMostly, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-writemostly")) {
clear_bit(WriteMostly, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "blocked")) {
set_bit(Blocked, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-blocked")) {
if (!test_bit(Faulty, &rdev->flags) &&
!test_bit(ExternalBbl, &rdev->flags) &&
rdev->badblocks.unacked_exist) {
/* metadata handler doesn't understand badblocks,
* so we need to fail the device
*/
md_error(rdev->mddev, rdev);
}
clear_bit(Blocked, &rdev->flags);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
err = 0;
} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
set_bit(In_sync, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "failfast")) {
set_bit(FailFast, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-failfast")) {
clear_bit(FailFast, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags)) {
if (rdev->mddev->pers == NULL) {
clear_bit(In_sync, &rdev->flags);
rdev->saved_raid_disk = rdev->raid_disk;
rdev->raid_disk = -1;
err = 0;
}
} else if (cmd_match(buf, "write_error")) {
set_bit(WriteErrorSeen, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-write_error")) {
clear_bit(WriteErrorSeen, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "want_replacement")) {
/* Any non-spare device that is not a replacement can
* become want_replacement at any time, but we then need to
* check if recovery is needed.
*/
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Replacement, &rdev->flags))
set_bit(WantReplacement, &rdev->flags);
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
err = 0;
} else if (cmd_match(buf, "-want_replacement")) {
/* Clearing 'want_replacement' is always allowed.
* Once replacements starts it is too late though.
*/
err = 0;
clear_bit(WantReplacement, &rdev->flags);
} else if (cmd_match(buf, "replacement")) {
/* Can only set a device as a replacement when array has not
* yet been started. Once running, replacement is automatic
* from spares, or by assigning 'slot'.
*/
if (rdev->mddev->pers)
err = -EBUSY;
else {
set_bit(Replacement, &rdev->flags);
err = 0;
}
} else if (cmd_match(buf, "-replacement")) {
/* Similarly, can only clear Replacement before start */
if (rdev->mddev->pers)
err = -EBUSY;
else {
clear_bit(Replacement, &rdev->flags);
err = 0;
}
} else if (cmd_match(buf, "re-add")) {
if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
/* clear_bit is performed _after_ all the devices
* have their local Faulty bit cleared. If any writes
* happen in the meantime in the local node, they
* will land in the local bitmap, which will be synced
* by this node eventually
*/
if (!mddev_is_clustered(rdev->mddev) ||
(err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
clear_bit(Faulty, &rdev->flags);
err = add_bound_rdev(rdev);
}
} else
err = -EBUSY;
} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
set_bit(ExternalBbl, &rdev->flags);
rdev->badblocks.shift = 0;
err = 0;
} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
clear_bit(ExternalBbl, &rdev->flags);
err = 0;
}
if (!err)
sysfs_notify_dirent_safe(rdev->sysfs_state);
return err ? err : len;
}
static struct rdev_sysfs_entry rdev_state =
__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
static ssize_t
errors_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
}
static ssize_t
errors_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned int n;
int rv;
rv = kstrtouint(buf, 10, &n);
if (rv < 0)
return rv;
atomic_set(&rdev->corrected_errors, n);
return len;
}
static struct rdev_sysfs_entry rdev_errors =
__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
static ssize_t
slot_show(struct md_rdev *rdev, char *page)
{
if (test_bit(Journal, &rdev->flags))
return sprintf(page, "journal\n");
else if (rdev->raid_disk < 0)
return sprintf(page, "none\n");
else
return sprintf(page, "%d\n", rdev->raid_disk);
}
static ssize_t
slot_store(struct md_rdev *rdev, const char *buf, size_t len)
{
int slot;
int err;
if (test_bit(Journal, &rdev->flags))
return -EBUSY;
if (strncmp(buf, "none", 4)==0)
slot = -1;
else {
err = kstrtouint(buf, 10, (unsigned int *)&slot);
if (err < 0)
return err;
}
if (rdev->mddev->pers && slot == -1) {
/* Setting 'slot' on an active array requires also
* updating the 'rd%d' link, and communicating
* with the personality with ->hot_*_disk.
* For now we only support removing
* failed/spare devices. This normally happens automatically,
* but not when the metadata is externally managed.
*/
if (rdev->raid_disk == -1)
return -EEXIST;
/* personality does all needed checks */
if (rdev->mddev->pers->hot_remove_disk == NULL)
return -EINVAL;
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(rdev->mddev, rdev);
if (rdev->raid_disk >= 0)
return -EBUSY;
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
} else if (rdev->mddev->pers) {
/* Activating a spare .. or possibly reactivating
* if we ever get bitmaps working here.
*/
int err;
if (rdev->raid_disk != -1)
return -EBUSY;
if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
return -EBUSY;
if (rdev->mddev->pers->hot_add_disk == NULL)
return -EINVAL;
if (slot >= rdev->mddev->raid_disks &&
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
return -ENOSPC;
rdev->raid_disk = slot;
if (test_bit(In_sync, &rdev->flags))
rdev->saved_raid_disk = slot;
else
rdev->saved_raid_disk = -1;
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
err = rdev->mddev->pers->
hot_add_disk(rdev->mddev, rdev);
if (err) {
rdev->raid_disk = -1;
return err;
} else
sysfs_notify_dirent_safe(rdev->sysfs_state);
if (sysfs_link_rdev(rdev->mddev, rdev))
/* failure here is OK */;
/* don't wakeup anyone, leave that to userspace. */
} else {
if (slot >= rdev->mddev->raid_disks &&
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
return -ENOSPC;
rdev->raid_disk = slot;
/* assume it is working */
clear_bit(Faulty, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
set_bit(In_sync, &rdev->flags);
sysfs_notify_dirent_safe(rdev->sysfs_state);
}
return len;
}
static struct rdev_sysfs_entry rdev_slot =
__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
static ssize_t
offset_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
}
static ssize_t
offset_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long offset;
if (kstrtoull(buf, 10, &offset) < 0)
return -EINVAL;
if (rdev->mddev->pers && rdev->raid_disk >= 0)
return -EBUSY;
if (rdev->sectors && rdev->mddev->external)
/* Must set offset before size, so overlap checks
* can be sane */
return -EBUSY;
rdev->data_offset = offset;
rdev->new_data_offset = offset;
return len;
}
static struct rdev_sysfs_entry rdev_offset =
__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)rdev->new_data_offset);
}
static ssize_t new_offset_store(struct md_rdev *rdev,
const char *buf, size_t len)
{
unsigned long long new_offset;
struct mddev *mddev = rdev->mddev;
if (kstrtoull(buf, 10, &new_offset) < 0)
return -EINVAL;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
return -EBUSY;
if (new_offset == rdev->data_offset)
/* reset is always permitted */
;
else if (new_offset > rdev->data_offset) {
/* must not push array size beyond rdev_sectors */
if (new_offset - rdev->data_offset
+ mddev->dev_sectors > rdev->sectors)
return -E2BIG;
}
/* Metadata worries about other space details. */
/* decreasing the offset is inconsistent with a backwards
* reshape.
*/
if (new_offset < rdev->data_offset &&
mddev->reshape_backwards)
return -EINVAL;
/* Increasing offset is inconsistent with forwards
* reshape. reshape_direction should be set to
* 'backwards' first.
*/
if (new_offset > rdev->data_offset &&
!mddev->reshape_backwards)
return -EINVAL;
if (mddev->pers && mddev->persistent &&
!super_types[mddev->major_version]
.allow_new_offset(rdev, new_offset))
return -E2BIG;
rdev->new_data_offset = new_offset;
if (new_offset > rdev->data_offset)
mddev->reshape_backwards = 1;
else if (new_offset < rdev->data_offset)
mddev->reshape_backwards = 0;
return len;
}
static struct rdev_sysfs_entry rdev_new_offset =
__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
static ssize_t
rdev_size_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
}
static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
{
/* check if two start/length pairs overlap */
if (s1+l1 <= s2)
return 0;
if (s2+l2 <= s1)
return 0;
return 1;
}
static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
{
unsigned long long blocks;
sector_t new;
if (kstrtoull(buf, 10, &blocks) < 0)
return -EINVAL;
if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
return -EINVAL; /* sector conversion overflow */
new = blocks * 2;
if (new != blocks * 2)
return -EINVAL; /* unsigned long long to sector_t overflow */
*sectors = new;
return 0;
}
static ssize_t
rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
{
struct mddev *my_mddev = rdev->mddev;
sector_t oldsectors = rdev->sectors;
sector_t sectors;
if (test_bit(Journal, &rdev->flags))
return -EBUSY;
if (strict_blocks_to_sectors(buf, &sectors) < 0)
return -EINVAL;
if (rdev->data_offset != rdev->new_data_offset)
return -EINVAL; /* too confusing */
if (my_mddev->pers && rdev->raid_disk >= 0) {
if (my_mddev->persistent) {
sectors = super_types[my_mddev->major_version].
rdev_size_change(rdev, sectors);
if (!sectors)
return -EBUSY;
} else if (!sectors)
sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
rdev->data_offset;
if (!my_mddev->pers->resize)
/* Cannot change size for RAID0 or Linear etc */
return -EINVAL;
}
if (sectors < my_mddev->dev_sectors)
return -EINVAL; /* component must fit device */
rdev->sectors = sectors;
if (sectors > oldsectors && my_mddev->external) {
/* Need to check that all other rdevs with the same
* ->bdev do not overlap. 'rcu' is sufficient to walk
* the rdev lists safely.
* This check does not provide a hard guarantee, it
* just helps avoid dangerous mistakes.
*/
struct mddev *mddev;
int overlap = 0;
struct list_head *tmp;
rcu_read_lock();
for_each_mddev(mddev, tmp) {
struct md_rdev *rdev2;
rdev_for_each(rdev2, mddev)
if (rdev->bdev == rdev2->bdev &&
rdev != rdev2 &&
overlaps(rdev->data_offset, rdev->sectors,
rdev2->data_offset,
rdev2->sectors)) {
overlap = 1;
break;
}
if (overlap) {
mddev_put(mddev);
break;
}
}
rcu_read_unlock();
if (overlap) {
/* Someone else could have slipped in a size
* change here, but doing so is just silly.
* We put oldsectors back because we *know* it is
* safe, and trust userspace not to race with
* itself
*/
rdev->sectors = oldsectors;
return -EBUSY;
}
}
return len;
}
static struct rdev_sysfs_entry rdev_size =
__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
{
unsigned long long recovery_start = rdev->recovery_offset;
if (test_bit(In_sync, &rdev->flags) ||
recovery_start == MaxSector)
return sprintf(page, "none\n");
return sprintf(page, "%llu\n", recovery_start);
}
static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long recovery_start;
if (cmd_match(buf, "none"))
recovery_start = MaxSector;
else if (kstrtoull(buf, 10, &recovery_start))
return -EINVAL;
if (rdev->mddev->pers &&
rdev->raid_disk >= 0)
return -EBUSY;
rdev->recovery_offset = recovery_start;
if (recovery_start == MaxSector)
set_bit(In_sync, &rdev->flags);
else
clear_bit(In_sync, &rdev->flags);
return len;
}
static struct rdev_sysfs_entry rdev_recovery_start =
__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
/* sysfs access to bad-blocks list.
* We present two files.
* 'bad-blocks' lists sector numbers and lengths of ranges that
* are recorded as bad. The list is truncated to fit within
* the one-page limit of sysfs.
* Writing "sector length" to this file adds an acknowledged
* bad block list.
* 'unacknowledged-bad-blocks' lists bad blocks that have not yet
* been acknowledged. Writing to this file adds bad blocks
* without acknowledging them. This is largely for testing.
*/
static ssize_t bb_show(struct md_rdev *rdev, char *page)
{
return badblocks_show(&rdev->badblocks, page, 0);
}
static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
{
int rv = badblocks_store(&rdev->badblocks, page, len, 0);
/* Maybe that ack was all we needed */
if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
wake_up(&rdev->blocked_wait);
return rv;
}
static struct rdev_sysfs_entry rdev_bad_blocks =
__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
static ssize_t ubb_show(struct md_rdev *rdev, char *page)
{
return badblocks_show(&rdev->badblocks, page, 1);
}
static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
{
return badblocks_store(&rdev->badblocks, page, len, 1);
}
static struct rdev_sysfs_entry rdev_unack_bad_blocks =
__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
static ssize_t
ppl_sector_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
}
static ssize_t
ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long sector;
if (kstrtoull(buf, 10, &sector) < 0)
return -EINVAL;
if (sector != (sector_t)sector)
return -EINVAL;
if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
rdev->raid_disk >= 0)
return -EBUSY;
if (rdev->mddev->persistent) {
if (rdev->mddev->major_version == 0)
return -EINVAL;
if ((sector > rdev->sb_start &&
sector - rdev->sb_start > S16_MAX) ||
(sector < rdev->sb_start &&
rdev->sb_start - sector > -S16_MIN))
return -EINVAL;
rdev->ppl.offset = sector - rdev->sb_start;
} else if (!rdev->mddev->external) {
return -EBUSY;
}
rdev->ppl.sector = sector;
return len;
}
static struct rdev_sysfs_entry rdev_ppl_sector =
__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
static ssize_t
ppl_size_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%u\n", rdev->ppl.size);
}
static ssize_t
ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned int size;
if (kstrtouint(buf, 10, &size) < 0)
return -EINVAL;
if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
rdev->raid_disk >= 0)
return -EBUSY;
if (rdev->mddev->persistent) {
if (rdev->mddev->major_version == 0)
return -EINVAL;
if (size > U16_MAX)
return -EINVAL;
} else if (!rdev->mddev->external) {
return -EBUSY;
}
rdev->ppl.size = size;
return len;
}
static struct rdev_sysfs_entry rdev_ppl_size =
__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
static struct attribute *rdev_default_attrs[] = {
&rdev_state.attr,
&rdev_errors.attr,
&rdev_slot.attr,
&rdev_offset.attr,
&rdev_new_offset.attr,
&rdev_size.attr,
&rdev_recovery_start.attr,
&rdev_bad_blocks.attr,
&rdev_unack_bad_blocks.attr,
&rdev_ppl_sector.attr,
&rdev_ppl_size.attr,
NULL,
};
static ssize_t
rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
if (!entry->show)
return -EIO;
if (!rdev->mddev)
return -EBUSY;
return entry->show(rdev, page);
}
static ssize_t
rdev_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
ssize_t rv;
struct mddev *mddev = rdev->mddev;
if (!entry->store)
return -EIO;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
rv = mddev ? mddev_lock(mddev): -EBUSY;
if (!rv) {
if (rdev->mddev == NULL)
rv = -EBUSY;
else
rv = entry->store(rdev, page, length);
mddev_unlock(mddev);
}
return rv;
}
static void rdev_free(struct kobject *ko)
{
struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
kfree(rdev);
}
static const struct sysfs_ops rdev_sysfs_ops = {
.show = rdev_attr_show,
.store = rdev_attr_store,
};
static struct kobj_type rdev_ktype = {
.release = rdev_free,
.sysfs_ops = &rdev_sysfs_ops,
.default_attrs = rdev_default_attrs,
};
int md_rdev_init(struct md_rdev *rdev)
{
rdev->desc_nr = -1;
rdev->saved_raid_disk = -1;
rdev->raid_disk = -1;
rdev->flags = 0;
rdev->data_offset = 0;
rdev->new_data_offset = 0;
rdev->sb_events = 0;
rdev->last_read_error = 0;
rdev->sb_loaded = 0;
rdev->bb_page = NULL;
atomic_set(&rdev->nr_pending, 0);
atomic_set(&rdev->read_errors, 0);
atomic_set(&rdev->corrected_errors, 0);
INIT_LIST_HEAD(&rdev->same_set);
init_waitqueue_head(&rdev->blocked_wait);
/* Add space to store bad block list.
* This reserves the space even on arrays where it cannot
* be used - I wonder if that matters
*/
return badblocks_init(&rdev->badblocks, 0);
}
EXPORT_SYMBOL_GPL(md_rdev_init);
/*
* Import a device. If 'super_format' >= 0, then sanity check the superblock
*
* mark the device faulty if:
*
* - the device is nonexistent (zero size)
* - the device has no valid superblock
*
* a faulty rdev _never_ has rdev->sb set.
*/
static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
{
char b[BDEVNAME_SIZE];
int err;
struct md_rdev *rdev;
sector_t size;
rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
if (!rdev)
return ERR_PTR(-ENOMEM);
err = md_rdev_init(rdev);
if (err)
goto abort_free;
err = alloc_disk_sb(rdev);
if (err)
goto abort_free;
err = lock_rdev(rdev, newdev, super_format == -2);
if (err)
goto abort_free;
kobject_init(&rdev->kobj, &rdev_ktype);
size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
if (!size) {
pr_warn("md: %s has zero or unknown size, marking faulty!\n",
bdevname(rdev->bdev,b));
err = -EINVAL;
goto abort_free;
}
if (super_format >= 0) {
err = super_types[super_format].
load_super(rdev, NULL, super_minor);
if (err == -EINVAL) {
pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
bdevname(rdev->bdev,b),
super_format, super_minor);
goto abort_free;
}
if (err < 0) {
pr_warn("md: could not read %s's sb, not importing!\n",
bdevname(rdev->bdev,b));
goto abort_free;
}
}
return rdev;
abort_free:
if (rdev->bdev)
unlock_rdev(rdev);
md_rdev_clear(rdev);
kfree(rdev);
return ERR_PTR(err);
}
/*
* Check a full RAID array for plausibility
*/
static void analyze_sbs(struct mddev *mddev)
{
int i;
struct md_rdev *rdev, *freshest, *tmp;
char b[BDEVNAME_SIZE];
freshest = NULL;
rdev_for_each_safe(rdev, tmp, mddev)
switch (super_types[mddev->major_version].
load_super(rdev, freshest, mddev->minor_version)) {
case 1:
freshest = rdev;
break;
case 0:
break;
default:
pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
bdevname(rdev->bdev,b));
md_kick_rdev_from_array(rdev);
}
super_types[mddev->major_version].
validate_super(mddev, freshest);
i = 0;
rdev_for_each_safe(rdev, tmp, mddev) {
if (mddev->max_disks &&
(rdev->desc_nr >= mddev->max_disks ||
i > mddev->max_disks)) {
pr_warn("md: %s: %s: only %d devices permitted\n",
mdname(mddev), bdevname(rdev->bdev, b),
mddev->max_disks);
md_kick_rdev_from_array(rdev);
continue;
}
if (rdev != freshest) {
if (super_types[mddev->major_version].
validate_super(mddev, rdev)) {
pr_warn("md: kicking non-fresh %s from array!\n",
bdevname(rdev->bdev,b));
md_kick_rdev_from_array(rdev);
continue;
}
}
if (mddev->level == LEVEL_MULTIPATH) {
rdev->desc_nr = i++;
rdev->raid_disk = rdev->desc_nr;
set_bit(In_sync, &rdev->flags);
} else if (rdev->raid_disk >=
(mddev->raid_disks - min(0, mddev->delta_disks)) &&
!test_bit(Journal, &rdev->flags)) {
rdev->raid_disk = -1;
clear_bit(In_sync, &rdev->flags);
}
}
}
/* Read a fixed-point number.
* Numbers in sysfs attributes should be in "standard" units where
* possible, so time should be in seconds.
* However we internally use a a much smaller unit such as
* milliseconds or jiffies.
* This function takes a decimal number with a possible fractional
* component, and produces an integer which is the result of
* multiplying that number by 10^'scale'.
* all without any floating-point arithmetic.
*/
int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
{
unsigned long result = 0;
long decimals = -1;
while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
if (*cp == '.')
decimals = 0;
else if (decimals < scale) {
unsigned int value;
value = *cp - '0';
result = result * 10 + value;
if (decimals >= 0)
decimals++;
}
cp++;
}
if (*cp == '\n')
cp++;
if (*cp)
return -EINVAL;
if (decimals < 0)
decimals = 0;
while (decimals < scale) {
result *= 10;
decimals ++;
}
*res = result;
return 0;
}
static ssize_t
safe_delay_show(struct mddev *mddev, char *page)
{
int msec = (mddev->safemode_delay*1000)/HZ;
return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
}
static ssize_t
safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
{
unsigned long msec;
if (mddev_is_clustered(mddev)) {
pr_warn("md: Safemode is disabled for clustered mode\n");
return -EINVAL;
}
if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
return -EINVAL;
if (msec == 0)
mddev->safemode_delay = 0;
else {
unsigned long old_delay = mddev->safemode_delay;
unsigned long new_delay = (msec*HZ)/1000;
if (new_delay == 0)
new_delay = 1;
mddev->safemode_delay = new_delay;
if (new_delay < old_delay || old_delay == 0)
mod_timer(&mddev->safemode_timer, jiffies+1);
}
return len;
}
static struct md_sysfs_entry md_safe_delay =
__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
static ssize_t
level_show(struct mddev *mddev, char *page)
{
struct md_personality *p;
int ret;
spin_lock(&mddev->lock);
p = mddev->pers;
if (p)
ret = sprintf(page, "%s\n", p->name);
else if (mddev->clevel[0])
ret = sprintf(page, "%s\n", mddev->clevel);
else if (mddev->level != LEVEL_NONE)
ret = sprintf(page, "%d\n", mddev->level);
else
ret = 0;
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
level_store(struct mddev *mddev, const char *buf, size_t len)
{
char clevel[16];
ssize_t rv;
size_t slen = len;
struct md_personality *pers, *oldpers;
long level;
void *priv, *oldpriv;
struct md_rdev *rdev;
if (slen == 0 || slen >= sizeof(clevel))
return -EINVAL;
rv = mddev_lock(mddev);
if (rv)
return rv;
if (mddev->pers == NULL) {
strncpy(mddev->clevel, buf, slen);
if (mddev->clevel[slen-1] == '\n')
slen--;
mddev->clevel[slen] = 0;
mddev->level = LEVEL_NONE;
rv = len;
goto out_unlock;
}
rv = -EROFS;
if (mddev->ro)
goto out_unlock;
/* request to change the personality. Need to ensure:
* - array is not engaged in resync/recovery/reshape
* - old personality can be suspended
* - new personality will access other array.
*/
rv = -EBUSY;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->reshape_position != MaxSector ||
mddev->sysfs_active)
goto out_unlock;
rv = -EINVAL;
if (!mddev->pers->quiesce) {
pr_warn("md: %s: %s does not support online personality change\n",
mdname(mddev), mddev->pers->name);
goto out_unlock;
}
/* Now find the new personality */
strncpy(clevel, buf, slen);
if (clevel[slen-1] == '\n')
slen--;
clevel[slen] = 0;
if (kstrtol(clevel, 10, &level))
level = LEVEL_NONE;
if (request_module("md-%s", clevel) != 0)
request_module("md-level-%s", clevel);
spin_lock(&pers_lock);
pers = find_pers(level, clevel);
if (!pers || !try_module_get(pers->owner)) {
spin_unlock(&pers_lock);
pr_warn("md: personality %s not loaded\n", clevel);
rv = -EINVAL;
goto out_unlock;
}
spin_unlock(&pers_lock);
if (pers == mddev->pers) {
/* Nothing to do! */
module_put(pers->owner);
rv = len;
goto out_unlock;
}
if (!pers->takeover) {
module_put(pers->owner);
pr_warn("md: %s: %s does not support personality takeover\n",
mdname(mddev), clevel);
rv = -EINVAL;
goto out_unlock;
}
rdev_for_each(rdev, mddev)
rdev->new_raid_disk = rdev->raid_disk;
/* ->takeover must set new_* and/or delta_disks
* if it succeeds, and may set them when it fails.
*/
priv = pers->takeover(mddev);
if (IS_ERR(priv)) {
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->raid_disks -= mddev->delta_disks;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
module_put(pers->owner);
pr_warn("md: %s: %s would not accept array\n",
mdname(mddev), clevel);
rv = PTR_ERR(priv);
goto out_unlock;
}
/* Looks like we have a winner */
mddev_suspend(mddev);
mddev_detach(mddev);
spin_lock(&mddev->lock);
oldpers = mddev->pers;
oldpriv = mddev->private;
mddev->pers = pers;
mddev->private = priv;
strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
mddev->level = mddev->new_level;
mddev->layout = mddev->new_layout;
mddev->chunk_sectors = mddev->new_chunk_sectors;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->degraded = 0;
spin_unlock(&mddev->lock);
if (oldpers->sync_request == NULL &&
mddev->external) {
/* We are converting from a no-redundancy array
* to a redundancy array and metadata is managed
* externally so we need to be sure that writes
* won't block due to a need to transition
* clean->dirty
* until external management is started.
*/
mddev->in_sync = 0;
mddev->safemode_delay = 0;
mddev->safemode = 0;
}
oldpers->free(mddev, oldpriv);
if (oldpers->sync_request == NULL &&
pers->sync_request != NULL) {
/* need to add the md_redundancy_group */
if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
pr_warn("md: cannot register extra attributes for %s\n",
mdname(mddev));
mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
}
if (oldpers->sync_request != NULL &&
pers->sync_request == NULL) {
/* need to remove the md_redundancy_group */
if (mddev->to_remove == NULL)
mddev->to_remove = &md_redundancy_group;
}
module_put(oldpers->owner);
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk < 0)
continue;
if (rdev->new_raid_disk >= mddev->raid_disks)
rdev->new_raid_disk = -1;
if (rdev->new_raid_disk == rdev->raid_disk)
continue;
sysfs_unlink_rdev(mddev, rdev);
}
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk < 0)
continue;
if (rdev->new_raid_disk == rdev->raid_disk)
continue;
rdev->raid_disk = rdev->new_raid_disk;
if (rdev->raid_disk < 0)
clear_bit(In_sync, &rdev->flags);
else {
if (sysfs_link_rdev(mddev, rdev))
pr_warn("md: cannot register rd%d for %s after level change\n",
rdev->raid_disk, mdname(mddev));
}
}
if (pers->sync_request == NULL) {
/* this is now an array without redundancy, so
* it must always be in_sync
*/
mddev->in_sync = 1;
del_timer_sync(&mddev->safemode_timer);
}
blk_set_stacking_limits(&mddev->queue->limits);
pers->run(mddev);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
mddev_resume(mddev);
if (!mddev->thread)
md_update_sb(mddev, 1);
sysfs_notify(&mddev->kobj, NULL, "level");
md_new_event(mddev);
rv = len;
out_unlock:
mddev_unlock(mddev);
return rv;
}
static struct md_sysfs_entry md_level =
__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
static ssize_t
layout_show(struct mddev *mddev, char *page)
{
/* just a number, not meaningful for all levels */
if (mddev->reshape_position != MaxSector &&
mddev->layout != mddev->new_layout)
return sprintf(page, "%d (%d)\n",
mddev->new_layout, mddev->layout);
return sprintf(page, "%d\n", mddev->layout);
}
static ssize_t
layout_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int err;
err = kstrtouint(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
if (mddev->pers->check_reshape == NULL)
err = -EBUSY;
else if (mddev->ro)
err = -EROFS;
else {
mddev->new_layout = n;
err = mddev->pers->check_reshape(mddev);
if (err)
mddev->new_layout = mddev->layout;
}
} else {
mddev->new_layout = n;
if (mddev->reshape_position == MaxSector)
mddev->layout = n;
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_layout =
__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
static ssize_t
raid_disks_show(struct mddev *mddev, char *page)
{
if (mddev->raid_disks == 0)
return 0;
if (mddev->reshape_position != MaxSector &&
mddev->delta_disks != 0)
return sprintf(page, "%d (%d)\n", mddev->raid_disks,
mddev->raid_disks - mddev->delta_disks);
return sprintf(page, "%d\n", mddev->raid_disks);
}
static int update_raid_disks(struct mddev *mddev, int raid_disks);
static ssize_t
raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int err;
err = kstrtouint(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers)
err = update_raid_disks(mddev, n);
else if (mddev->reshape_position != MaxSector) {
struct md_rdev *rdev;
int olddisks = mddev->raid_disks - mddev->delta_disks;
err = -EINVAL;
rdev_for_each(rdev, mddev) {
if (olddisks < n &&
rdev->data_offset < rdev->new_data_offset)
goto out_unlock;
if (olddisks > n &&
rdev->data_offset > rdev->new_data_offset)
goto out_unlock;
}
err = 0;
mddev->delta_disks = n - olddisks;
mddev->raid_disks = n;
mddev->reshape_backwards = (mddev->delta_disks < 0);
} else
mddev->raid_disks = n;
out_unlock:
mddev_unlock(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_raid_disks =
__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
static ssize_t
chunk_size_show(struct mddev *mddev, char *page)
{
if (mddev->reshape_position != MaxSector &&
mddev->chunk_sectors != mddev->new_chunk_sectors)
return sprintf(page, "%d (%d)\n",
mddev->new_chunk_sectors << 9,
mddev->chunk_sectors << 9);
return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
}
static ssize_t
chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long n;
int err;
err = kstrtoul(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
if (mddev->pers->check_reshape == NULL)
err = -EBUSY;
else if (mddev->ro)
err = -EROFS;
else {
mddev->new_chunk_sectors = n >> 9;
err = mddev->pers->check_reshape(mddev);
if (err)
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
} else {
mddev->new_chunk_sectors = n >> 9;
if (mddev->reshape_position == MaxSector)
mddev->chunk_sectors = n >> 9;
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_chunk_size =
__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
static ssize_t
resync_start_show(struct mddev *mddev, char *page)
{
if (mddev->recovery_cp == MaxSector)
return sprintf(page, "none\n");
return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
}
static ssize_t
resync_start_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long n;
int err;
if (cmd_match(buf, "none"))
n = MaxSector;
else {
err = kstrtoull(buf, 10, &n);
if (err < 0)
return err;
if (n != (sector_t)n)
return -EINVAL;
}
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
err = -EBUSY;
if (!err) {
mddev->recovery_cp = n;
if (mddev->pers)
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_resync_start =
__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
resync_start_show, resync_start_store);
/*
* The array state can be:
*
* clear
* No devices, no size, no level
* Equivalent to STOP_ARRAY ioctl
* inactive
* May have some settings, but array is not active
* all IO results in error
* When written, doesn't tear down array, but just stops it
* suspended (not supported yet)
* All IO requests will block. The array can be reconfigured.
* Writing this, if accepted, will block until array is quiescent
* readonly
* no resync can happen. no superblocks get written.
* write requests fail
* read-auto
* like readonly, but behaves like 'clean' on a write request.
*
* clean - no pending writes, but otherwise active.
* When written to inactive array, starts without resync
* If a write request arrives then
* if metadata is known, mark 'dirty' and switch to 'active'.
* if not known, block and switch to write-pending
* If written to an active array that has pending writes, then fails.
* active
* fully active: IO and resync can be happening.
* When written to inactive array, starts with resync
*
* write-pending
* clean, but writes are blocked waiting for 'active' to be written.
*
* active-idle
* like active, but no writes have been seen for a while (100msec).
*
*/
enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
write_pending, active_idle, bad_word};
static char *array_states[] = {
"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
"write-pending", "active-idle", NULL };
static int match_word(const char *word, char **list)
{
int n;
for (n=0; list[n]; n++)
if (cmd_match(word, list[n]))
break;
return n;
}
static ssize_t
array_state_show(struct mddev *mddev, char *page)
{
enum array_state st = inactive;
if (mddev->pers)
switch(mddev->ro) {
case 1:
st = readonly;
break;
case 2:
st = read_auto;
break;
case 0:
spin_lock(&mddev->lock);
if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
st = write_pending;
else if (mddev->in_sync)
st = clean;
else if (mddev->safemode)
st = active_idle;
else
st = active;
spin_unlock(&mddev->lock);
}
else {
if (list_empty(&mddev->disks) &&
mddev->raid_disks == 0 &&
mddev->dev_sectors == 0)
st = clear;
else
st = inactive;
}
return sprintf(page, "%s\n", array_states[st]);
}
static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
static int do_md_run(struct mddev *mddev);
static int restart_array(struct mddev *mddev);
static ssize_t
array_state_store(struct mddev *mddev, const char *buf, size_t len)
{
int err = 0;
enum array_state st = match_word(buf, array_states);
if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
/* don't take reconfig_mutex when toggling between
* clean and active
*/
spin_lock(&mddev->lock);
if (st == active) {
restart_array(mddev);
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
wake_up(&mddev->sb_wait);
} else /* st == clean */ {
restart_array(mddev);
if (!set_in_sync(mddev))
err = -EBUSY;
}
if (!err)
sysfs_notify_dirent_safe(mddev->sysfs_state);
spin_unlock(&mddev->lock);
return err ?: len;
}
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
switch(st) {
case bad_word:
break;
case clear:
/* stopping an active array */
err = do_md_stop(mddev, 0, NULL);
break;
case inactive:
/* stopping an active array */
if (mddev->pers)
err = do_md_stop(mddev, 2, NULL);
else
err = 0; /* already inactive */
break;
case suspended:
break; /* not supported yet */
case readonly:
if (mddev->pers)
err = md_set_readonly(mddev, NULL);
else {
mddev->ro = 1;
set_disk_ro(mddev->gendisk, 1);
err = do_md_run(mddev);
}
break;
case read_auto:
if (mddev->pers) {
if (mddev->ro == 0)
err = md_set_readonly(mddev, NULL);
else if (mddev->ro == 1)
err = restart_array(mddev);
if (err == 0) {
mddev->ro = 2;
set_disk_ro(mddev->gendisk, 0);
}
} else {
mddev->ro = 2;
err = do_md_run(mddev);
}
break;
case clean:
if (mddev->pers) {
err = restart_array(mddev);
if (err)
break;
spin_lock(&mddev->lock);
if (!set_in_sync(mddev))
err = -EBUSY;
spin_unlock(&mddev->lock);
} else
err = -EINVAL;
break;
case active:
if (mddev->pers) {
err = restart_array(mddev);
if (err)
break;
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
wake_up(&mddev->sb_wait);
err = 0;
} else {
mddev->ro = 0;
set_disk_ro(mddev->gendisk, 0);
err = do_md_run(mddev);
}
break;
case write_pending:
case active_idle:
/* these cannot be set */
break;
}
if (!err) {
if (mddev->hold_active == UNTIL_IOCTL)
mddev->hold_active = 0;
sysfs_notify_dirent_safe(mddev->sysfs_state);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_array_state =
__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
static ssize_t
max_corrected_read_errors_show(struct mddev *mddev, char *page) {
return sprintf(page, "%d\n",
atomic_read(&mddev->max_corr_read_errors));
}
static ssize_t
max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int rv;
rv = kstrtouint(buf, 10, &n);
if (rv < 0)
return rv;
atomic_set(&mddev->max_corr_read_errors, n);
return len;
}
static struct md_sysfs_entry max_corr_read_errors =
__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
max_corrected_read_errors_store);
static ssize_t
null_show(struct mddev *mddev, char *page)
{
return -EINVAL;
}
static ssize_t
new_dev_store(struct mddev *mddev, const char *buf, size_t len)
{
/* buf must be %d:%d\n? giving major and minor numbers */
/* The new device is added to the array.
* If the array has a persistent superblock, we read the
* superblock to initialise info and check validity.
* Otherwise, only checking done is that in bind_rdev_to_array,
* which mainly checks size.
*/
char *e;
int major = simple_strtoul(buf, &e, 10);
int minor;
dev_t dev;
struct md_rdev *rdev;
int err;
if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
return -EINVAL;
minor = simple_strtoul(e+1, &e, 10);
if (*e && *e != '\n')
return -EINVAL;
dev = MKDEV(major, minor);
if (major != MAJOR(dev) ||
minor != MINOR(dev))
return -EOVERFLOW;
flush_workqueue(md_misc_wq);
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->persistent) {
rdev = md_import_device(dev, mddev->major_version,
mddev->minor_version);
if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
struct md_rdev *rdev0
= list_entry(mddev->disks.next,
struct md_rdev, same_set);
err = super_types[mddev->major_version]
.load_super(rdev, rdev0, mddev->minor_version);
if (err < 0)
goto out;
}
} else if (mddev->external)
rdev = md_import_device(dev, -2, -1);
else
rdev = md_import_device(dev, -1, -1);
if (IS_ERR(rdev)) {
mddev_unlock(mddev);
return PTR_ERR(rdev);
}
err = bind_rdev_to_array(rdev, mddev);
out:
if (err)
export_rdev(rdev);
mddev_unlock(mddev);
if (!err)
md_new_event(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_new_device =
__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
static ssize_t
bitmap_store(struct mddev *mddev, const char *buf, size_t len)
{
char *end;
unsigned long chunk, end_chunk;
int err;
err = mddev_lock(mddev);
if (err)
return err;
if (!mddev->bitmap)
goto out;
/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
while (*buf) {
chunk = end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
if (*end == '-') { /* range */
buf = end + 1;
end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
}
if (*end && !isspace(*end)) break;
bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
buf = skip_spaces(end);
}
bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
out:
mddev_unlock(mddev);
return len;
}
static struct md_sysfs_entry md_bitmap =
__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
static ssize_t
size_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)mddev->dev_sectors / 2);
}
static int update_size(struct mddev *mddev, sector_t num_sectors);
static ssize_t
size_store(struct mddev *mddev, const char *buf, size_t len)
{
/* If array is inactive, we can reduce the component size, but
* not increase it (except from 0).
* If array is active, we can try an on-line resize
*/
sector_t sectors;
int err = strict_blocks_to_sectors(buf, &sectors);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
err = update_size(mddev, sectors);
if (err == 0)
md_update_sb(mddev, 1);
} else {
if (mddev->dev_sectors == 0 ||
mddev->dev_sectors > sectors)
mddev->dev_sectors = sectors;
else
err = -ENOSPC;
}
mddev_unlock(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_size =
__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
/* Metadata version.
* This is one of
* 'none' for arrays with no metadata (good luck...)
* 'external' for arrays with externally managed metadata,
* or N.M for internally known formats
*/
static ssize_t
metadata_show(struct mddev *mddev, char *page)
{
if (mddev->persistent)
return sprintf(page, "%d.%d\n",
mddev->major_version, mddev->minor_version);
else if (mddev->external)
return sprintf(page, "external:%s\n", mddev->metadata_type);
else
return sprintf(page, "none\n");
}
static ssize_t
metadata_store(struct mddev *mddev, const char *buf, size_t len)
{
int major, minor;
char *e;
int err;
/* Changing the details of 'external' metadata is
* always permitted. Otherwise there must be
* no devices attached to the array.
*/
err = mddev_lock(mddev);
if (err)
return err;
err = -EBUSY;
if (mddev->external && strncmp(buf, "external:", 9) == 0)
;
else if (!list_empty(&mddev->disks))
goto out_unlock;
err = 0;
if (cmd_match(buf, "none")) {
mddev->persistent = 0;
mddev->external = 0;
mddev->major_version = 0;
mddev->minor_version = 90;
goto out_unlock;
}
if (strncmp(buf, "external:", 9) == 0) {
size_t namelen = len-9;
if (namelen >= sizeof(mddev->metadata_type))
namelen = sizeof(mddev->metadata_type)-1;
strncpy(mddev->metadata_type, buf+9, namelen);
mddev->metadata_type[namelen] = 0;
if (namelen && mddev->metadata_type[namelen-1] == '\n')
mddev->metadata_type[--namelen] = 0;
mddev->persistent = 0;
mddev->external = 1;
mddev->major_version = 0;
mddev->minor_version = 90;
goto out_unlock;
}
major = simple_strtoul(buf, &e, 10);
err = -EINVAL;
if (e==buf || *e != '.')
goto out_unlock;
buf = e+1;
minor = simple_strtoul(buf, &e, 10);
if (e==buf || (*e && *e != '\n') )
goto out_unlock;
err = -ENOENT;
if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
goto out_unlock;
mddev->major_version = major;
mddev->minor_version = minor;
mddev->persistent = 1;
mddev->external = 0;
err = 0;
out_unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_metadata =
__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
static ssize_t
action_show(struct mddev *mddev, char *page)
{
char *type = "idle";
unsigned long recovery = mddev->recovery;
if (test_bit(MD_RECOVERY_FROZEN, &recovery))
type = "frozen";
else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
(!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
type = "reshape";
else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
type = "resync";
else if (test_bit(MD_RECOVERY_CHECK, &recovery))
type = "check";
else
type = "repair";
} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
type = "recover";
else if (mddev->reshape_position != MaxSector)
type = "reshape";
}
return sprintf(page, "%s\n", type);
}
static ssize_t
action_store(struct mddev *mddev, const char *page, size_t len)
{
if (!mddev->pers || !mddev->pers->sync_request)
return -EINVAL;
if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
if (cmd_match(page, "frozen"))
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
else
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
mddev_lock(mddev) == 0) {
flush_workqueue(md_misc_wq);
if (mddev->sync_thread) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_reap_sync_thread(mddev);
}
mddev_unlock(mddev);
}
} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
else if (cmd_match(page, "resync"))
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
else if (cmd_match(page, "recover")) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (cmd_match(page, "reshape")) {
int err;
if (mddev->pers->start_reshape == NULL)
return -EINVAL;
err = mddev_lock(mddev);
if (!err) {
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
err = -EBUSY;
else {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
err = mddev->pers->start_reshape(mddev);
}
mddev_unlock(mddev);
}
if (err)
return err;
sysfs_notify(&mddev->kobj, NULL, "degraded");
} else {
if (cmd_match(page, "check"))
set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
else if (!cmd_match(page, "repair"))
return -EINVAL;
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
}
if (mddev->ro == 2) {
/* A write to sync_action is enough to justify
* canceling read-auto mode
*/
mddev->ro = 0;
md_wakeup_thread(mddev->sync_thread);
}
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
sysfs_notify_dirent_safe(mddev->sysfs_action);
return len;
}
static struct md_sysfs_entry md_scan_mode =
__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
static ssize_t
last_sync_action_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%s\n", mddev->last_sync_action);
}
static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
static ssize_t
mismatch_cnt_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)
atomic64_read(&mddev->resync_mismatches));
}
static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
static ssize_t
sync_min_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d (%s)\n", speed_min(mddev),
mddev->sync_speed_min ? "local": "system");
}
static ssize_t
sync_min_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int min;
int rv;
if (strncmp(buf, "system", 6)==0) {
min = 0;
} else {
rv = kstrtouint(buf, 10, &min);
if (rv < 0)
return rv;
if (min == 0)
return -EINVAL;
}
mddev->sync_speed_min = min;
return len;
}
static struct md_sysfs_entry md_sync_min =
__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
static ssize_t
sync_max_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d (%s)\n", speed_max(mddev),
mddev->sync_speed_max ? "local": "system");
}
static ssize_t
sync_max_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int max;
int rv;
if (strncmp(buf, "system", 6)==0) {
max = 0;
} else {
rv = kstrtouint(buf, 10, &max);
if (rv < 0)
return rv;
if (max == 0)
return -EINVAL;
}
mddev->sync_speed_max = max;
return len;
}
static struct md_sysfs_entry md_sync_max =
__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
static ssize_t
degraded_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->degraded);
}
static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
static ssize_t
sync_force_parallel_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->parallel_resync);
}
static ssize_t
sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
{
long n;
if (kstrtol(buf, 10, &n))
return -EINVAL;
if (n != 0 && n != 1)
return -EINVAL;
mddev->parallel_resync = n;
if (mddev->sync_thread)
wake_up(&resync_wait);
return len;
}
/* force parallel resync, even with shared block devices */
static struct md_sysfs_entry md_sync_force_parallel =
__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
sync_force_parallel_show, sync_force_parallel_store);
static ssize_t
sync_speed_show(struct mddev *mddev, char *page)
{
unsigned long resync, dt, db;
if (mddev->curr_resync == 0)
return sprintf(page, "none\n");
resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
dt = (jiffies - mddev->resync_mark) / HZ;
if (!dt) dt++;
db = resync - mddev->resync_mark_cnt;
return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
}
static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
static ssize_t
sync_completed_show(struct mddev *mddev, char *page)
{
unsigned long long max_sectors, resync;
if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return sprintf(page, "none\n");
if (mddev->curr_resync == 1 ||
mddev->curr_resync == 2)
return sprintf(page, "delayed\n");
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else
max_sectors = mddev->dev_sectors;
resync = mddev->curr_resync_completed;
return sprintf(page, "%llu / %llu\n", resync, max_sectors);
}
static struct md_sysfs_entry md_sync_completed =
__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
static ssize_t
min_sync_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)mddev->resync_min);
}
static ssize_t
min_sync_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long min;
int err;
if (kstrtoull(buf, 10, &min))
return -EINVAL;
spin_lock(&mddev->lock);
err = -EINVAL;
if (min > mddev->resync_max)
goto out_unlock;
err = -EBUSY;
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
goto out_unlock;
/* Round down to multiple of 4K for safety */
mddev->resync_min = round_down(min, 8);
err = 0;
out_unlock:
spin_unlock(&mddev->lock);
return err ?: len;
}
static struct md_sysfs_entry md_min_sync =
__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
static ssize_t
max_sync_show(struct mddev *mddev, char *page)
{
if (mddev->resync_max == MaxSector)
return sprintf(page, "max\n");
else
return sprintf(page, "%llu\n",
(unsigned long long)mddev->resync_max);
}
static ssize_t
max_sync_store(struct mddev *mddev, const char *buf, size_t len)
{
int err;
spin_lock(&mddev->lock);
if (strncmp(buf, "max", 3) == 0)
mddev->resync_max = MaxSector;
else {
unsigned long long max;
int chunk;
err = -EINVAL;
if (kstrtoull(buf, 10, &max))
goto out_unlock;
if (max < mddev->resync_min)
goto out_unlock;
err = -EBUSY;
if (max < mddev->resync_max &&
mddev->ro == 0 &&
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
goto out_unlock;
/* Must be a multiple of chunk_size */
chunk = mddev->chunk_sectors;
if (chunk) {
sector_t temp = max;
err = -EINVAL;
if (sector_div(temp, chunk))
goto out_unlock;
}
mddev->resync_max = max;
}
wake_up(&mddev->recovery_wait);
err = 0;
out_unlock:
spin_unlock(&mddev->lock);
return err ?: len;
}
static struct md_sysfs_entry md_max_sync =
__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
static ssize_t
suspend_lo_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
}
static ssize_t
suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
if (mddev->pers == NULL ||
mddev->pers->quiesce == NULL)
goto unlock;
mddev_suspend(mddev);
mddev->suspend_lo = new;
mddev_resume(mddev);
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_suspend_lo =
__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
static ssize_t
suspend_hi_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
}
static ssize_t
suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
if (mddev->pers == NULL)
goto unlock;
mddev_suspend(mddev);
mddev->suspend_hi = new;
mddev_resume(mddev);
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_suspend_hi =
__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
static ssize_t
reshape_position_show(struct mddev *mddev, char *page)
{
if (mddev->reshape_position != MaxSector)
return sprintf(page, "%llu\n",
(unsigned long long)mddev->reshape_position);
strcpy(page, "none\n");
return 5;
}
static ssize_t
reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
{
struct md_rdev *rdev;
unsigned long long new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EBUSY;
if (mddev->pers)
goto unlock;
mddev->reshape_position = new;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
rdev_for_each(rdev, mddev)
rdev->new_data_offset = rdev->data_offset;
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_reshape_position =
__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
reshape_position_store);
static ssize_t
reshape_direction_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%s\n",
mddev->reshape_backwards ? "backwards" : "forwards");
}
static ssize_t
reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
{
int backwards = 0;
int err;
if (cmd_match(buf, "forwards"))
backwards = 0;
else if (cmd_match(buf, "backwards"))
backwards = 1;
else
return -EINVAL;
if (mddev->reshape_backwards == backwards)
return len;
err = mddev_lock(mddev);
if (err)
return err;
/* check if we are allowed to change */
if (mddev->delta_disks)
err = -EBUSY;
else if (mddev->persistent &&
mddev->major_version == 0)
err = -EINVAL;
else
mddev->reshape_backwards = backwards;
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_reshape_direction =
__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
reshape_direction_store);
static ssize_t
array_size_show(struct mddev *mddev, char *page)
{
if (mddev->external_size)
return sprintf(page, "%llu\n",
(unsigned long long)mddev->array_sectors/2);
else
return sprintf(page, "default\n");
}
static ssize_t
array_size_store(struct mddev *mddev, const char *buf, size_t len)
{
sector_t sectors;
int err;
err = mddev_lock(mddev);
if (err)
return err;
/* cluster raid doesn't support change array_sectors */
if (mddev_is_clustered(mddev)) {
mddev_unlock(mddev);
return -EINVAL;
}
if (strncmp(buf, "default", 7) == 0) {
if (mddev->pers)
sectors = mddev->pers->size(mddev, 0, 0);
else
sectors = mddev->array_sectors;
mddev->external_size = 0;
} else {
if (strict_blocks_to_sectors(buf, &sectors) < 0)
err = -EINVAL;
else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
err = -E2BIG;
else
mddev->external_size = 1;
}
if (!err) {
mddev->array_sectors = sectors;
if (mddev->pers) {
set_capacity(mddev->gendisk, mddev->array_sectors);
revalidate_disk(mddev->gendisk);
}
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_array_size =
__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
array_size_store);
static ssize_t
consistency_policy_show(struct mddev *mddev, char *page)
{
int ret;
if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
ret = sprintf(page, "journal\n");
} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
ret = sprintf(page, "ppl\n");
} else if (mddev->bitmap) {
ret = sprintf(page, "bitmap\n");
} else if (mddev->pers) {
if (mddev->pers->sync_request)
ret = sprintf(page, "resync\n");
else
ret = sprintf(page, "none\n");
} else {
ret = sprintf(page, "unknown\n");
}
return ret;
}
static ssize_t
consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
{
int err = 0;
if (mddev->pers) {
if (mddev->pers->change_consistency_policy)
err = mddev->pers->change_consistency_policy(mddev, buf);
else
err = -EBUSY;
} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
set_bit(MD_HAS_PPL, &mddev->flags);
} else {
err = -EINVAL;
}
return err ? err : len;
}
static struct md_sysfs_entry md_consistency_policy =
__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
consistency_policy_store);
static struct attribute *md_default_attrs[] = {
&md_level.attr,
&md_layout.attr,
&md_raid_disks.attr,
&md_chunk_size.attr,
&md_size.attr,
&md_resync_start.attr,
&md_metadata.attr,
&md_new_device.attr,
&md_safe_delay.attr,
&md_array_state.attr,
&md_reshape_position.attr,
&md_reshape_direction.attr,
&md_array_size.attr,
&max_corr_read_errors.attr,
&md_consistency_policy.attr,
NULL,
};
static struct attribute *md_redundancy_attrs[] = {
&md_scan_mode.attr,
&md_last_scan_mode.attr,
&md_mismatches.attr,
&md_sync_min.attr,
&md_sync_max.attr,
&md_sync_speed.attr,
&md_sync_force_parallel.attr,
&md_sync_completed.attr,
&md_min_sync.attr,
&md_max_sync.attr,
&md_suspend_lo.attr,
&md_suspend_hi.attr,
&md_bitmap.attr,
&md_degraded.attr,
NULL,
};
static struct attribute_group md_redundancy_group = {
.name = NULL,
.attrs = md_redundancy_attrs,
};
static ssize_t
md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
struct mddev *mddev = container_of(kobj, struct mddev, kobj);
ssize_t rv;
if (!entry->show)
return -EIO;
spin_lock(&all_mddevs_lock);
if (list_empty(&mddev->all_mddevs)) {
spin_unlock(&all_mddevs_lock);
return -EBUSY;
}
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
rv = entry->show(mddev, page);
mddev_put(mddev);
return rv;
}
static ssize_t
md_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
struct mddev *mddev = container_of(kobj, struct mddev, kobj);
ssize_t rv;
if (!entry->store)
return -EIO;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
spin_lock(&all_mddevs_lock);
if (list_empty(&mddev->all_mddevs)) {
spin_unlock(&all_mddevs_lock);
return -EBUSY;
}
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
rv = entry->store(mddev, page, length);
mddev_put(mddev);
return rv;
}
static void md_free(struct kobject *ko)
{
struct mddev *mddev = container_of(ko, struct mddev, kobj);
if (mddev->sysfs_state)
sysfs_put(mddev->sysfs_state);
if (mddev->queue)
blk_cleanup_queue(mddev->queue);
if (mddev->gendisk) {
del_gendisk(mddev->gendisk);
put_disk(mddev->gendisk);
}
percpu_ref_exit(&mddev->writes_pending);
kfree(mddev);
}
static const struct sysfs_ops md_sysfs_ops = {
.show = md_attr_show,
.store = md_attr_store,
};
static struct kobj_type md_ktype = {
.release = md_free,
.sysfs_ops = &md_sysfs_ops,
.default_attrs = md_default_attrs,
};
int mdp_major = 0;
static void mddev_delayed_delete(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, del_work);
sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
kobject_del(&mddev->kobj);
kobject_put(&mddev->kobj);
}
static void no_op(struct percpu_ref *r) {}
int mddev_init_writes_pending(struct mddev *mddev)
{
if (mddev->writes_pending.percpu_count_ptr)
return 0;
if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
return -ENOMEM;
/* We want to start with the refcount at zero */
percpu_ref_put(&mddev->writes_pending);
return 0;
}
EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
static int md_alloc(dev_t dev, char *name)
{
/*
* If dev is zero, name is the name of a device to allocate with
* an arbitrary minor number. It will be "md_???"
* If dev is non-zero it must be a device number with a MAJOR of
* MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
* the device is being created by opening a node in /dev.
* If "name" is not NULL, the device is being created by
* writing to /sys/module/md_mod/parameters/new_array.
*/
static DEFINE_MUTEX(disks_mutex);
struct mddev *mddev = mddev_find(dev);
struct gendisk *disk;
int partitioned;
int shift;
int unit;
int error;
if (!mddev)
return -ENODEV;
partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
shift = partitioned ? MdpMinorShift : 0;
unit = MINOR(mddev->unit) >> shift;
/* wait for any previous instance of this device to be
* completely removed (mddev_delayed_delete).
*/
flush_workqueue(md_misc_wq);
mutex_lock(&disks_mutex);
error = -EEXIST;
if (mddev->gendisk)
goto abort;
if (name && !dev) {
/* Need to ensure that 'name' is not a duplicate.
*/
struct mddev *mddev2;
spin_lock(&all_mddevs_lock);
list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
if (mddev2->gendisk &&
strcmp(mddev2->gendisk->disk_name, name) == 0) {
spin_unlock(&all_mddevs_lock);
goto abort;
}
spin_unlock(&all_mddevs_lock);
}
if (name && dev)
/*
* Creating /dev/mdNNN via "newarray", so adjust hold_active.
*/
mddev->hold_active = UNTIL_STOP;
error = -ENOMEM;
mddev->queue = blk_alloc_queue(GFP_KERNEL);
if (!mddev->queue)
goto abort;
mddev->queue->queuedata = mddev;
blk_queue_make_request(mddev->queue, md_make_request);
blk_set_stacking_limits(&mddev->queue->limits);
disk = alloc_disk(1 << shift);
if (!disk) {
blk_cleanup_queue(mddev->queue);
mddev->queue = NULL;
goto abort;
}
disk->major = MAJOR(mddev->unit);
disk->first_minor = unit << shift;
if (name)
strcpy(disk->disk_name, name);
else if (partitioned)
sprintf(disk->disk_name, "md_d%d", unit);
else
sprintf(disk->disk_name, "md%d", unit);
disk->fops = &md_fops;
disk->private_data = mddev;
disk->queue = mddev->queue;
blk_queue_write_cache(mddev->queue, true, true);
/* Allow extended partitions. This makes the
* 'mdp' device redundant, but we can't really
* remove it now.
*/
disk->flags |= GENHD_FL_EXT_DEVT;
mddev->gendisk = disk;
/* As soon as we call add_disk(), another thread could get
* through to md_open, so make sure it doesn't get too far
*/
mutex_lock(&mddev->open_mutex);
add_disk(disk);
error = kobject_init_and_add(&mddev->kobj, &md_ktype,
&disk_to_dev(disk)->kobj, "%s", "md");
if (error) {
/* This isn't possible, but as kobject_init_and_add is marked
* __must_check, we must do something with the result
*/
pr_debug("md: cannot register %s/md - name in use\n",
disk->disk_name);
error = 0;
}
if (mddev->kobj.sd &&
sysfs_create_group(&mddev->kobj, &md_bitmap_group))
pr_debug("pointless warning\n");
mutex_unlock(&mddev->open_mutex);
abort:
mutex_unlock(&disks_mutex);
if (!error && mddev->kobj.sd) {
kobject_uevent(&mddev->kobj, KOBJ_ADD);
mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
}
mddev_put(mddev);
return error;
}
static struct kobject *md_probe(dev_t dev, int *part, void *data)
{
if (create_on_open)
md_alloc(dev, NULL);
return NULL;
}
static int add_named_array(const char *val, const struct kernel_param *kp)
{
/*
* val must be "md_*" or "mdNNN".
* For "md_*" we allocate an array with a large free minor number, and
* set the name to val. val must not already be an active name.
* For "mdNNN" we allocate an array with the minor number NNN
* which must not already be in use.
*/
int len = strlen(val);
char buf[DISK_NAME_LEN];
unsigned long devnum;
while (len && val[len-1] == '\n')
len--;
if (len >= DISK_NAME_LEN)
return -E2BIG;
strlcpy(buf, val, len+1);
if (strncmp(buf, "md_", 3) == 0)
return md_alloc(0, buf);
if (strncmp(buf, "md", 2) == 0 &&
isdigit(buf[2]) &&
kstrtoul(buf+2, 10, &devnum) == 0 &&
devnum <= MINORMASK)
return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
return -EINVAL;
}
static void md_safemode_timeout(struct timer_list *t)
{
struct mddev *mddev = from_timer(mddev, t, safemode_timer);
mddev->safemode = 1;
if (mddev->external)
sysfs_notify_dirent_safe(mddev->sysfs_state);
md_wakeup_thread(mddev->thread);
}
static int start_dirty_degraded;
int md_run(struct mddev *mddev)
{
int err;
struct md_rdev *rdev;
struct md_personality *pers;
if (list_empty(&mddev->disks))
/* cannot run an array with no devices.. */
return -EINVAL;
if (mddev->pers)
return -EBUSY;
/* Cannot run until previous stop completes properly */
if (mddev->sysfs_active)
return -EBUSY;
/*
* Analyze all RAID superblock(s)
*/
if (!mddev->raid_disks) {
if (!mddev->persistent)
return -EINVAL;
analyze_sbs(mddev);
}
if (mddev->level != LEVEL_NONE)
request_module("md-level-%d", mddev->level);
else if (mddev->clevel[0])
request_module("md-%s", mddev->clevel);
/*
* Drop all container device buffers, from now on
* the only valid external interface is through the md
* device.
*/
mddev->has_superblocks = false;
rdev_for_each(rdev, mddev) {
if (test_bit(Faulty, &rdev->flags))
continue;
sync_blockdev(rdev->bdev);
invalidate_bdev(rdev->bdev);
if (mddev->ro != 1 &&
(bdev_read_only(rdev->bdev) ||
bdev_read_only(rdev->meta_bdev))) {
mddev->ro = 1;
if (mddev->gendisk)
set_disk_ro(mddev->gendisk, 1);
}
if (rdev->sb_page)
mddev->has_superblocks = true;
/* perform some consistency tests on the device.
* We don't want the data to overlap the metadata,
* Internal Bitmap issues have been handled elsewhere.
*/
if (rdev->meta_bdev) {
/* Nothing to check */;
} else if (rdev->data_offset < rdev->sb_start) {
if (mddev->dev_sectors &&
rdev->data_offset + mddev->dev_sectors
> rdev->sb_start) {
pr_warn("md: %s: data overlaps metadata\n",
mdname(mddev));
return -EINVAL;
}
} else {
if (rdev->sb_start + rdev->sb_size/512
> rdev->data_offset) {
pr_warn("md: %s: metadata overlaps data\n",
mdname(mddev));
return -EINVAL;
}
}
sysfs_notify_dirent_safe(rdev->sysfs_state);
}
if (mddev->bio_set == NULL) {
mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
if (!mddev->bio_set)
return -ENOMEM;
}
if (mddev->sync_set == NULL) {
mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
if (!mddev->sync_set) {
err = -ENOMEM;
goto abort;
}
}
spin_lock(&pers_lock);
pers = find_pers(mddev->level, mddev->clevel);
if (!pers || !try_module_get(pers->owner)) {
spin_unlock(&pers_lock);
if (mddev->level != LEVEL_NONE)
pr_warn("md: personality for level %d is not loaded!\n",
mddev->level);
else
pr_warn("md: personality for level %s is not loaded!\n",
mddev->clevel);
err = -EINVAL;
goto abort;
}
spin_unlock(&pers_lock);
if (mddev->level != pers->level) {
mddev->level = pers->level;
mddev->new_level = pers->level;
}
strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
if (mddev->reshape_position != MaxSector &&
pers->start_reshape == NULL) {
/* This personality cannot handle reshaping... */
module_put(pers->owner);
err = -EINVAL;
goto abort;
}
if (pers->sync_request) {
/* Warn if this is a potentially silly
* configuration.
*/
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
struct md_rdev *rdev2;
int warned = 0;
rdev_for_each(rdev, mddev)
rdev_for_each(rdev2, mddev) {
if (rdev < rdev2 &&
rdev->bdev->bd_contains ==
rdev2->bdev->bd_contains) {
pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
mdname(mddev),
bdevname(rdev->bdev,b),
bdevname(rdev2->bdev,b2));
warned = 1;
}
}
if (warned)
pr_warn("True protection against single-disk failure might be compromised.\n");
}
mddev->recovery = 0;
/* may be over-ridden by personality */
mddev->resync_max_sectors = mddev->dev_sectors;
mddev->ok_start_degraded = start_dirty_degraded;
if (start_readonly && mddev->ro == 0)
mddev->ro = 2; /* read-only, but switch on first write */
err = pers->run(mddev);
if (err)
pr_warn("md: pers->run() failed ...\n");
else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
WARN_ONCE(!mddev->external_size,
"%s: default size too small, but 'external_size' not in effect?\n",
__func__);
pr_warn("md: invalid array_size %llu > default size %llu\n",
(unsigned long long)mddev->array_sectors / 2,
(unsigned long long)pers->size(mddev, 0, 0) / 2);
err = -EINVAL;
}
if (err == 0 && pers->sync_request &&
(mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
struct bitmap *bitmap;
bitmap = bitmap_create(mddev, -1);
if (IS_ERR(bitmap)) {
err = PTR_ERR(bitmap);
pr_warn("%s: failed to create bitmap (%d)\n",
mdname(mddev), err);
} else
mddev->bitmap = bitmap;
}
if (err) {
mddev_detach(mddev);
if (mddev->private)
pers->free(mddev, mddev->private);
mddev->private = NULL;
module_put(pers->owner);
bitmap_destroy(mddev);
goto abort;
}
if (mddev->queue) {
bool nonrot = true;
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk >= 0 &&
!blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
nonrot = false;
break;
}
}
if (mddev->degraded)
nonrot = false;
if (nonrot)
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
else
queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
mddev->queue->backing_dev_info->congested_data = mddev;
mddev->queue->backing_dev_info->congested_fn = md_congested;
}
if (pers->sync_request) {
if (mddev->kobj.sd &&
sysfs_create_group(&mddev->kobj, &md_redundancy_group))
pr_warn("md: cannot register extra attributes for %s\n",
mdname(mddev));
mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
} else if (mddev->ro == 2) /* auto-readonly not meaningful */
mddev->ro = 0;
atomic_set(&mddev->max_corr_read_errors,
MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
mddev->safemode = 0;
if (mddev_is_clustered(mddev))
mddev->safemode_delay = 0;
else
mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
mddev->in_sync = 1;
smp_wmb();
spin_lock(&mddev->lock);
mddev->pers = pers;
spin_unlock(&mddev->lock);
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0)
if (sysfs_link_rdev(mddev, rdev))
/* failure here is OK */;
if (mddev->degraded && !mddev->ro)
/* This ensures that recovering status is reported immediately
* via sysfs - until a lack of spares is confirmed.
*/
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
if (mddev->sb_flags)
md_update_sb(mddev, 0);
md_new_event(mddev);
sysfs_notify_dirent_safe(mddev->sysfs_state);
sysfs_notify_dirent_safe(mddev->sysfs_action);
sysfs_notify(&mddev->kobj, NULL, "degraded");
return 0;
abort:
if (mddev->bio_set) {
bioset_free(mddev->bio_set);
mddev->bio_set = NULL;
}
if (mddev->sync_set) {
bioset_free(mddev->sync_set);
mddev->sync_set = NULL;
}
return err;
}
EXPORT_SYMBOL_GPL(md_run);
static int do_md_run(struct mddev *mddev)
{
int err;
err = md_run(mddev);
if (err)
goto out;
err = bitmap_load(mddev);
if (err) {
bitmap_destroy(mddev);
goto out;
}
if (mddev_is_clustered(mddev))
md_allow_write(mddev);
/* run start up tasks that require md_thread */
md_start(mddev);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
set_capacity(mddev->gendisk, mddev->array_sectors);
revalidate_disk(mddev->gendisk);
mddev->changed = 1;
kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
out:
return err;
}
int md_start(struct mddev *mddev)
{
int ret = 0;
if (mddev->pers->start) {
set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
md_wakeup_thread(mddev->thread);
ret = mddev->pers->start(mddev);
clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
md_wakeup_thread(mddev->sync_thread);
}
return ret;
}
EXPORT_SYMBOL_GPL(md_start);
static int restart_array(struct mddev *mddev)
{
struct gendisk *disk = mddev->gendisk;
struct md_rdev *rdev;
bool has_journal = false;
bool has_readonly = false;
/* Complain if it has no devices */
if (list_empty(&mddev->disks))
return -ENXIO;
if (!mddev->pers)
return -EINVAL;
if (!mddev->ro)
return -EBUSY;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
if (test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
has_journal = true;
if (bdev_read_only(rdev->bdev))
has_readonly = true;
}
rcu_read_unlock();
if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
/* Don't restart rw with journal missing/faulty */
return -EINVAL;
if (has_readonly)
return -EROFS;
mddev->safemode = 0;
mddev->ro = 0;
set_disk_ro(disk, 0);
pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
/* Kick recovery or resync if necessary */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread);
sysfs_notify_dirent_safe(mddev->sysfs_state);
return 0;
}
static void md_clean(struct mddev *mddev)
{
mddev->array_sectors = 0;
mddev->external_size = 0;
mddev->dev_sectors = 0;
mddev->raid_disks = 0;
mddev->recovery_cp = 0;
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
mddev->reshape_position = MaxSector;
mddev->external = 0;
mddev->persistent = 0;
mddev->level = LEVEL_NONE;
mddev->clevel[0] = 0;
mddev->flags = 0;
mddev->sb_flags = 0;
mddev->ro = 0;
mddev->metadata_type[0] = 0;
mddev->chunk_sectors = 0;
mddev->ctime = mddev->utime = 0;
mddev->layout = 0;
mddev->max_disks = 0;
mddev->events = 0;
mddev->can_decrease_events = 0;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->new_level = LEVEL_NONE;
mddev->new_layout = 0;
mddev->new_chunk_sectors = 0;
mddev->curr_resync = 0;
atomic64_set(&mddev->resync_mismatches, 0);
mddev->suspend_lo = mddev->suspend_hi = 0;
mddev->sync_speed_min = mddev->sync_speed_max = 0;
mddev->recovery = 0;
mddev->in_sync = 0;
mddev->changed = 0;
mddev->degraded = 0;
mddev->safemode = 0;
mddev->private = NULL;
mddev->cluster_info = NULL;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.default_offset = 0;
mddev->bitmap_info.default_space = 0;
mddev->bitmap_info.chunksize = 0;
mddev->bitmap_info.daemon_sleep = 0;
mddev->bitmap_info.max_write_behind = 0;
mddev->bitmap_info.nodes = 0;
}
static void __md_stop_writes(struct mddev *mddev)
{
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
flush_workqueue(md_misc_wq);
if (mddev->sync_thread) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_reap_sync_thread(mddev);
}
del_timer_sync(&mddev->safemode_timer);
if (mddev->pers && mddev->pers->quiesce) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
bitmap_flush(mddev);
if (mddev->ro == 0 &&
((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
mddev->sb_flags)) {
/* mark array as shutdown cleanly */
if (!mddev_is_clustered(mddev))
mddev->in_sync = 1;
md_update_sb(mddev, 1);
}
}
void md_stop_writes(struct mddev *mddev)
{
mddev_lock_nointr(mddev);
__md_stop_writes(mddev);
mddev_unlock(mddev);
}
EXPORT_SYMBOL_GPL(md_stop_writes);
static void mddev_detach(struct mddev *mddev)
{
bitmap_wait_behind_writes(mddev);
if (mddev->pers && mddev->pers->quiesce) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
md_unregister_thread(&mddev->thread);
if (mddev->queue)
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
}
static void __md_stop(struct mddev *mddev)
{
struct md_personality *pers = mddev->pers;
bitmap_destroy(mddev);
mddev_detach(mddev);
/* Ensure ->event_work is done */
flush_workqueue(md_misc_wq);
spin_lock(&mddev->lock);
mddev->pers = NULL;
spin_unlock(&mddev->lock);
pers->free(mddev, mddev->private);
mddev->private = NULL;
if (pers->sync_request && mddev->to_remove == NULL)
mddev->to_remove = &md_redundancy_group;
module_put(pers->owner);
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
}
void md_stop(struct mddev *mddev)
{
/* stop the array and free an attached data structures.
* This is called from dm-raid
*/
__md_stop(mddev);
if (mddev->bio_set) {
bioset_free(mddev->bio_set);
mddev->bio_set = NULL;
}
if (mddev->sync_set) {
bioset_free(mddev->sync_set);
mddev->sync_set = NULL;
}
}
EXPORT_SYMBOL_GPL(md_stop);
static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
{
int err = 0;
int did_freeze = 0;
if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
did_freeze = 1;
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
if (mddev->sync_thread)
/* Thread might be blocked waiting for metadata update
* which will now never happen */
wake_up_process(mddev->sync_thread->tsk);
if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
return -EBUSY;
mddev_unlock(mddev);
wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
&mddev->recovery));
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
mddev_lock_nointr(mddev);
mutex_lock(&mddev->open_mutex);
if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
pr_warn("md: %s still in use.\n",mdname(mddev));
if (did_freeze) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
err = -EBUSY;
goto out;
}
if (mddev->pers) {
__md_stop_writes(mddev);
err = -ENXIO;
if (mddev->ro==1)
goto out;
mddev->ro = 1;
set_disk_ro(mddev->gendisk, 1);
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
sysfs_notify_dirent_safe(mddev->sysfs_state);
err = 0;
}
out:
mutex_unlock(&mddev->open_mutex);
return err;
}
/* mode:
* 0 - completely stop and dis-assemble array
* 2 - stop but do not disassemble array
*/
static int do_md_stop(struct mddev *mddev, int mode,
struct block_device *bdev)
{
struct gendisk *disk = mddev->gendisk;
struct md_rdev *rdev;
int did_freeze = 0;
if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
did_freeze = 1;
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
if (mddev->sync_thread)
/* Thread might be blocked waiting for metadata update
* which will now never happen */
wake_up_process(mddev->sync_thread->tsk);
mddev_unlock(mddev);
wait_event(resync_wait, (mddev->sync_thread == NULL &&
!test_bit(MD_RECOVERY_RUNNING,
&mddev->recovery)));
mddev_lock_nointr(mddev);
mutex_lock(&mddev->open_mutex);
if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
mddev->sysfs_active ||
mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
pr_warn("md: %s still in use.\n",mdname(mddev));
mutex_unlock(&mddev->open_mutex);
if (did_freeze) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
return -EBUSY;
}
if (mddev->pers) {
if (mddev->ro)
set_disk_ro(disk, 0);
__md_stop_writes(mddev);
__md_stop(mddev);
mddev->queue->backing_dev_info->congested_fn = NULL;
/* tell userspace to handle 'inactive' */
sysfs_notify_dirent_safe(mddev->sysfs_state);
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0)
sysfs_unlink_rdev(mddev, rdev);
set_capacity(disk, 0);
mutex_unlock(&mddev->open_mutex);
mddev->changed = 1;
revalidate_disk(disk);
if (mddev->ro)
mddev->ro = 0;
} else
mutex_unlock(&mddev->open_mutex);
/*
* Free resources if final stop
*/
if (mode == 0) {
pr_info("md: %s stopped.\n", mdname(mddev));
if (mddev->bitmap_info.file) {
struct file *f = mddev->bitmap_info.file;
spin_lock(&mddev->lock);
mddev->bitmap_info.file = NULL;
spin_unlock(&mddev->lock);
fput(f);
}
mddev->bitmap_info.offset = 0;
export_array(mddev);
md_clean(mddev);
if (mddev->hold_active == UNTIL_STOP)
mddev->hold_active = 0;
}
md_new_event(mddev);
sysfs_notify_dirent_safe(mddev->sysfs_state);
return 0;
}
#ifndef MODULE
static void autorun_array(struct mddev *mddev)
{
struct md_rdev *rdev;
int err;
if (list_empty(&mddev->disks))
return;
pr_info("md: running: ");
rdev_for_each(rdev, mddev) {
char b[BDEVNAME_SIZE];
pr_cont("<%s>", bdevname(rdev->bdev,b));
}
pr_cont("\n");
err = do_md_run(mddev);
if (err) {
pr_warn("md: do_md_run() returned %d\n", err);
do_md_stop(mddev, 0, NULL);
}
}
/*
* lets try to run arrays based on all disks that have arrived
* until now. (those are in pending_raid_disks)
*
* the method: pick the first pending disk, collect all disks with
* the same UUID, remove all from the pending list and put them into
* the 'same_array' list. Then order this list based on superblock
* update time (freshest comes first), kick out 'old' disks and
* compare superblocks. If everything's fine then run it.
*
* If "unit" is allocated, then bump its reference count
*/
static void autorun_devices(int part)
{
struct md_rdev *rdev0, *rdev, *tmp;
struct mddev *mddev;
char b[BDEVNAME_SIZE];
pr_info("md: autorun ...\n");
while (!list_empty(&pending_raid_disks)) {
int unit;
dev_t dev;
LIST_HEAD(candidates);
rdev0 = list_entry(pending_raid_disks.next,
struct md_rdev, same_set);
pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
INIT_LIST_HEAD(&candidates);
rdev_for_each_list(rdev, tmp, &pending_raid_disks)
if (super_90_load(rdev, rdev0, 0) >= 0) {
pr_debug("md: adding %s ...\n",
bdevname(rdev->bdev,b));
list_move(&rdev->same_set, &candidates);
}
/*
* now we have a set of devices, with all of them having
* mostly sane superblocks. It's time to allocate the
* mddev.
*/
if (part) {
dev = MKDEV(mdp_major,
rdev0->preferred_minor << MdpMinorShift);
unit = MINOR(dev) >> MdpMinorShift;
} else {
dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
unit = MINOR(dev);
}
if (rdev0->preferred_minor != unit) {
pr_warn("md: unit number in %s is bad: %d\n",
bdevname(rdev0->bdev, b), rdev0->preferred_minor);
break;
}
md_probe(dev, NULL, NULL);
mddev = mddev_find(dev);
if (!mddev || !mddev->gendisk) {
if (mddev)
mddev_put(mddev);
break;
}
if (mddev_lock(mddev))
pr_warn("md: %s locked, cannot run\n", mdname(mddev));
else if (mddev->raid_disks || mddev->major_version
|| !list_empty(&mddev->disks)) {
pr_warn("md: %s already running, cannot run %s\n",
mdname(mddev), bdevname(rdev0->bdev,b));
mddev_unlock(mddev);
} else {
pr_debug("md: created %s\n", mdname(mddev));
mddev->persistent = 1;
rdev_for_each_list(rdev, tmp, &candidates) {
list_del_init(&rdev->same_set);
if (bind_rdev_to_array(rdev, mddev))
export_rdev(rdev);
}
autorun_array(mddev);
mddev_unlock(mddev);
}
/* on success, candidates will be empty, on error
* it won't...
*/
rdev_for_each_list(rdev, tmp, &candidates) {
list_del_init(&rdev->same_set);
export_rdev(rdev);
}
mddev_put(mddev);
}
pr_info("md: ... autorun DONE.\n");
}
#endif /* !MODULE */
static int get_version(void __user *arg)
{
mdu_version_t ver;
ver.major = MD_MAJOR_VERSION;
ver.minor = MD_MINOR_VERSION;
ver.patchlevel = MD_PATCHLEVEL_VERSION;
if (copy_to_user(arg, &ver, sizeof(ver)))
return -EFAULT;
return 0;
}
static int get_array_info(struct mddev *mddev, void __user *arg)
{
mdu_array_info_t info;
int nr,working,insync,failed,spare;
struct md_rdev *rdev;
nr = working = insync = failed = spare = 0;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
nr++;
if (test_bit(Faulty, &rdev->flags))
failed++;
else {
working++;
if (test_bit(In_sync, &rdev->flags))
insync++;
else if (test_bit(Journal, &rdev->flags))
/* TODO: add journal count to md_u.h */
;
else
spare++;
}
}
rcu_read_unlock();
info.major_version = mddev->major_version;
info.minor_version = mddev->minor_version;
info.patch_version = MD_PATCHLEVEL_VERSION;
info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
info.level = mddev->level;
info.size = mddev->dev_sectors / 2;
if (info.size != mddev->dev_sectors / 2) /* overflow */
info.size = -1;
info.nr_disks = nr;
info.raid_disks = mddev->raid_disks;
info.md_minor = mddev->md_minor;
info.not_persistent= !mddev->persistent;
info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
info.state = 0;
if (mddev->in_sync)
info.state = (1<<MD_SB_CLEAN);
if (mddev->bitmap && mddev->bitmap_info.offset)
info.state |= (1<<MD_SB_BITMAP_PRESENT);
if (mddev_is_clustered(mddev))
info.state |= (1<<MD_SB_CLUSTERED);
info.active_disks = insync;
info.working_disks = working;
info.failed_disks = failed;
info.spare_disks = spare;
info.layout = mddev->layout;
info.chunk_size = mddev->chunk_sectors << 9;
if (copy_to_user(arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
static int get_bitmap_file(struct mddev *mddev, void __user * arg)
{
mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
char *ptr;
int err;
file = kzalloc(sizeof(*file), GFP_NOIO);
if (!file)
return -ENOMEM;
err = 0;
spin_lock(&mddev->lock);
/* bitmap enabled */
if (mddev->bitmap_info.file) {
ptr = file_path(mddev->bitmap_info.file, file->pathname,
sizeof(file->pathname));
if (IS_ERR(ptr))
err = PTR_ERR(ptr);
else
memmove(file->pathname, ptr,
sizeof(file->pathname)-(ptr-file->pathname));
}
spin_unlock(&mddev->lock);
if (err == 0 &&
copy_to_user(arg, file, sizeof(*file)))
err = -EFAULT;
kfree(file);
return err;
}
static int get_disk_info(struct mddev *mddev, void __user * arg)
{
mdu_disk_info_t info;
struct md_rdev *rdev;
if (copy_from_user(&info, arg, sizeof(info)))
return -EFAULT;
rcu_read_lock();
rdev = md_find_rdev_nr_rcu(mddev, info.number);
if (rdev) {
info.major = MAJOR(rdev->bdev->bd_dev);
info.minor = MINOR(rdev->bdev->bd_dev);
info.raid_disk = rdev->raid_disk;
info.state = 0;
if (test_bit(Faulty, &rdev->flags))
info.state |= (1<<MD_DISK_FAULTY);
else if (test_bit(In_sync, &rdev->flags)) {
info.state |= (1<<MD_DISK_ACTIVE);
info.state |= (1<<MD_DISK_SYNC);
}
if (test_bit(Journal, &rdev->flags))
info.state |= (1<<MD_DISK_JOURNAL);
if (test_bit(WriteMostly, &rdev->flags))
info.state |= (1<<MD_DISK_WRITEMOSTLY);
if (test_bit(FailFast, &rdev->flags))
info.state |= (1<<MD_DISK_FAILFAST);
} else {
info.major = info.minor = 0;
info.raid_disk = -1;
info.state = (1<<MD_DISK_REMOVED);
}
rcu_read_unlock();
if (copy_to_user(arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
{
char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
struct md_rdev *rdev;
dev_t dev = MKDEV(info->major,info->minor);
if (mddev_is_clustered(mddev) &&
!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
pr_warn("%s: Cannot add to clustered mddev.\n",
mdname(mddev));
return -EINVAL;
}
if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
return -EOVERFLOW;
if (!mddev->raid_disks) {
int err;
/* expecting a device which has a superblock */
rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
if (IS_ERR(rdev)) {
pr_warn("md: md_import_device returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
if (!list_empty(&mddev->disks)) {
struct md_rdev *rdev0
= list_entry(mddev->disks.next,
struct md_rdev, same_set);
err = super_types[mddev->major_version]
.load_super(rdev, rdev0, mddev->minor_version);
if (err < 0) {
pr_warn("md: %s has different UUID to %s\n",
bdevname(rdev->bdev,b),
bdevname(rdev0->bdev,b2));
export_rdev(rdev);
return -EINVAL;
}
}
err = bind_rdev_to_array(rdev, mddev);
if (err)
export_rdev(rdev);
return err;
}
/*
* add_new_disk can be used once the array is assembled
* to add "hot spares". They must already have a superblock
* written
*/
if (mddev->pers) {
int err;
if (!mddev->pers->hot_add_disk) {
pr_warn("%s: personality does not support diskops!\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->persistent)
rdev = md_import_device(dev, mddev->major_version,
mddev->minor_version);
else
rdev = md_import_device(dev, -1, -1);
if (IS_ERR(rdev)) {
pr_warn("md: md_import_device returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
/* set saved_raid_disk if appropriate */
if (!mddev->persistent) {
if (info->state & (1<<MD_DISK_SYNC) &&
info->raid_disk < mddev->raid_disks) {
rdev->raid_disk = info->raid_disk;
set_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
} else
rdev->raid_disk = -1;
rdev->saved_raid_disk = rdev->raid_disk;
} else
super_types[mddev->major_version].
validate_super(mddev, rdev);
if ((info->state & (1<<MD_DISK_SYNC)) &&
rdev->raid_disk != info->raid_disk) {
/* This was a hot-add request, but events doesn't
* match, so reject it.
*/
export_rdev(rdev);
return -EINVAL;
}
clear_bit(In_sync, &rdev->flags); /* just to be sure */
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
else
clear_bit(WriteMostly, &rdev->flags);
if (info->state & (1<<MD_DISK_FAILFAST))
set_bit(FailFast, &rdev->flags);
else
clear_bit(FailFast, &rdev->flags);
if (info->state & (1<<MD_DISK_JOURNAL)) {
struct md_rdev *rdev2;
bool has_journal = false;
/* make sure no existing journal disk */
rdev_for_each(rdev2, mddev) {
if (test_bit(Journal, &rdev2->flags)) {
has_journal = true;
break;
}
}
if (has_journal || mddev->bitmap) {
export_rdev(rdev);
return -EBUSY;
}
set_bit(Journal, &rdev->flags);
}
/*
* check whether the device shows up in other nodes
*/
if (mddev_is_clustered(mddev)) {
if (info->state & (1 << MD_DISK_CANDIDATE))
set_bit(Candidate, &rdev->flags);
else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
/* --add initiated by this node */
err = md_cluster_ops->add_new_disk(mddev, rdev);
if (err) {
export_rdev(rdev);
return err;
}
}
}
rdev->raid_disk = -1;
err = bind_rdev_to_array(rdev, mddev);
if (err)
export_rdev(rdev);
if (mddev_is_clustered(mddev)) {
if (info->state & (1 << MD_DISK_CANDIDATE)) {
if (!err) {
err = md_cluster_ops->new_disk_ack(mddev,
err == 0);
if (err)
md_kick_rdev_from_array(rdev);
}
} else {
if (err)
md_cluster_ops->add_new_disk_cancel(mddev);
else
err = add_bound_rdev(rdev);
}
} else if (!err)
err = add_bound_rdev(rdev);
return err;
}
/* otherwise, add_new_disk is only allowed
* for major_version==0 superblocks
*/
if (mddev->major_version != 0) {
pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
return -EINVAL;
}
if (!(info->state & (1<<MD_DISK_FAULTY))) {
int err;
rdev = md_import_device(dev, -1, 0);
if (IS_ERR(rdev)) {
pr_warn("md: error, md_import_device() returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
rdev->desc_nr = info->number;
if (info->raid_disk < mddev->raid_disks)
rdev->raid_disk = info->raid_disk;
else
rdev->raid_disk = -1;
if (rdev->raid_disk < mddev->raid_disks)
if (info->state & (1<<MD_DISK_SYNC))
set_bit(In_sync, &rdev->flags);
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
if (info->state & (1<<MD_DISK_FAILFAST))
set_bit(FailFast, &rdev->flags);
if (!mddev->persistent) {
pr_debug("md: nonpersistent superblock ...\n");
rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
} else
rdev->sb_start = calc_dev_sboffset(rdev);
rdev->sectors = rdev->sb_start;
err = bind_rdev_to_array(rdev, mddev);
if (err) {
export_rdev(rdev);
return err;
}
}
return 0;
}
static int hot_remove_disk(struct mddev *mddev, dev_t dev)
{
char b[BDEVNAME_SIZE];
struct md_rdev *rdev;
rdev = find_rdev(mddev, dev);
if (!rdev)
return -ENXIO;
if (rdev->raid_disk < 0)
goto kick_rdev;
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(mddev, rdev);
if (rdev->raid_disk >= 0)
goto busy;
kick_rdev:
if (mddev_is_clustered(mddev))
md_cluster_ops->remove_disk(mddev, rdev);
md_kick_rdev_from_array(rdev);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (mddev->thread)
md_wakeup_thread(mddev->thread);
else
md_update_sb(mddev, 1);
md_new_event(mddev);
return 0;
busy:
pr_debug("md: cannot remove active disk %s from %s ...\n",
bdevname(rdev->bdev,b), mdname(mddev));
return -EBUSY;
}
static int hot_add_disk(struct mddev *mddev, dev_t dev)
{
char b[BDEVNAME_SIZE];
int err;
struct md_rdev *rdev;
if (!mddev->pers)
return -ENODEV;
if (mddev->major_version != 0) {
pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
mdname(mddev));
return -EINVAL;
}
if (!mddev->pers->hot_add_disk) {
pr_warn("%s: personality does not support diskops!\n",
mdname(mddev));
return -EINVAL;
}
rdev = md_import_device(dev, -1, 0);
if (IS_ERR(rdev)) {
pr_warn("md: error, md_import_device() returned %ld\n",
PTR_ERR(rdev));
return -EINVAL;
}
if (mddev->persistent)
rdev->sb_start = calc_dev_sboffset(rdev);
else
rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
rdev->sectors = rdev->sb_start;
if (test_bit(Faulty, &rdev->flags)) {
pr_warn("md: can not hot-add faulty %s disk to %s!\n",
bdevname(rdev->bdev,b), mdname(mddev));
err = -EINVAL;
goto abort_export;
}
clear_bit(In_sync, &rdev->flags);
rdev->desc_nr = -1;
rdev->saved_raid_disk = -1;
err = bind_rdev_to_array(rdev, mddev);
if (err)
goto abort_export;
/*
* The rest should better be atomic, we can have disk failures
* noticed in interrupt contexts ...
*/
rdev->raid_disk = -1;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (!mddev->thread)
md_update_sb(mddev, 1);
/*
* Kick recovery, maybe this spare has to be added to the
* array immediately.
*/
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_new_event(mddev);
return 0;
abort_export:
export_rdev(rdev);
return err;
}
static int set_bitmap_file(struct mddev *mddev, int fd)
{
int err = 0;
if (mddev->pers) {
if (!mddev->pers->quiesce || !mddev->thread)
return -EBUSY;
if (mddev->recovery || mddev->sync_thread)
return -EBUSY;
/* we should be able to change the bitmap.. */
}
if (fd >= 0) {
struct inode *inode;
struct file *f;
if (mddev->bitmap || mddev->bitmap_info.file)
return -EEXIST; /* cannot add when bitmap is present */
f = fget(fd);
if (f == NULL) {
pr_warn("%s: error: failed to get bitmap file\n",
mdname(mddev));
return -EBADF;
}
inode = f->f_mapping->host;
if (!S_ISREG(inode->i_mode)) {
pr_warn("%s: error: bitmap file must be a regular file\n",
mdname(mddev));
err = -EBADF;
} else if (!(f->f_mode & FMODE_WRITE)) {
pr_warn("%s: error: bitmap file must open for write\n",
mdname(mddev));
err = -EBADF;
} else if (atomic_read(&inode->i_writecount) != 1) {
pr_warn("%s: error: bitmap file is already in use\n",
mdname(mddev));
err = -EBUSY;
}
if (err) {
fput(f);
return err;
}
mddev->bitmap_info.file = f;
mddev->bitmap_info.offset = 0; /* file overrides offset */
} else if (mddev->bitmap == NULL)
return -ENOENT; /* cannot remove what isn't there */
err = 0;
if (mddev->pers) {
if (fd >= 0) {
struct bitmap *bitmap;
bitmap = bitmap_create(mddev, -1);
mddev_suspend(mddev);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
err = bitmap_load(mddev);
} else
err = PTR_ERR(bitmap);
if (err) {
bitmap_destroy(mddev);
fd = -1;
}
mddev_resume(mddev);
} else if (fd < 0) {
mddev_suspend(mddev);
bitmap_destroy(mddev);
mddev_resume(mddev);
}
}
if (fd < 0) {
struct file *f = mddev->bitmap_info.file;
if (f) {
spin_lock(&mddev->lock);
mddev->bitmap_info.file = NULL;
spin_unlock(&mddev->lock);
fput(f);
}
}
return err;
}
/*
* set_array_info is used two different ways
* The original usage is when creating a new array.
* In this usage, raid_disks is > 0 and it together with
* level, size, not_persistent,layout,chunksize determine the
* shape of the array.
* This will always create an array with a type-0.90.0 superblock.
* The newer usage is when assembling an array.
* In this case raid_disks will be 0, and the major_version field is
* use to determine which style super-blocks are to be found on the devices.
* The minor and patch _version numbers are also kept incase the
* super_block handler wishes to interpret them.
*/
static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
{
if (info->raid_disks == 0) {
/* just setting version number for superblock loading */
if (info->major_version < 0 ||
info->major_version >= ARRAY_SIZE(super_types) ||
super_types[info->major_version].name == NULL) {
/* maybe try to auto-load a module? */
pr_warn("md: superblock version %d not known\n",
info->major_version);
return -EINVAL;
}
mddev->major_version = info->major_version;
mddev->minor_version = info->minor_version;
mddev->patch_version = info->patch_version;
mddev->persistent = !info->not_persistent;
/* ensure mddev_put doesn't delete this now that there
* is some minimal configuration.
*/
mddev->ctime = ktime_get_real_seconds();
return 0;
}
mddev->major_version = MD_MAJOR_VERSION;
mddev->minor_version = MD_MINOR_VERSION;
mddev->patch_version = MD_PATCHLEVEL_VERSION;
mddev->ctime = ktime_get_real_seconds();
mddev->level = info->level;
mddev->clevel[0] = 0;
mddev->dev_sectors = 2 * (sector_t)info->size;
mddev->raid_disks = info->raid_disks;
/* don't set md_minor, it is determined by which /dev/md* was
* openned
*/
if (info->state & (1<<MD_SB_CLEAN))
mddev->recovery_cp = MaxSector;
else
mddev->recovery_cp = 0;
mddev->persistent = ! info->not_persistent;
mddev->external = 0;
mddev->layout = info->layout;
mddev->chunk_sectors = info->chunk_size >> 9;
if (mddev->persistent) {
mddev->max_disks = MD_SB_DISKS;
mddev->flags = 0;
mddev->sb_flags = 0;
}
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
mddev->bitmap_info.offset = 0;
mddev->reshape_position = MaxSector;
/*
* Generate a 128 bit UUID
*/
get_random_bytes(mddev->uuid, 16);
mddev->new_level = mddev->level;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->new_layout = mddev->layout;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
return 0;
}
void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
{
lockdep_assert_held(&mddev->reconfig_mutex);
if (mddev->external_size)
return;
mddev->array_sectors = array_sectors;
}
EXPORT_SYMBOL(md_set_array_sectors);
static int update_size(struct mddev *mddev, sector_t num_sectors)
{
struct md_rdev *rdev;
int rv;
int fit = (num_sectors == 0);
sector_t old_dev_sectors = mddev->dev_sectors;
if (mddev->pers->resize == NULL)
return -EINVAL;
/* The "num_sectors" is the number of sectors of each device that
* is used. This can only make sense for arrays with redundancy.
* linear and raid0 always use whatever space is available. We can only
* consider changing this number if no resync or reconstruction is
* happening, and if the new size is acceptable. It must fit before the
* sb_start or, if that is <data_offset, it must fit before the size
* of each device. If num_sectors is zero, we find the largest size
* that fits.
*/
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->sync_thread)
return -EBUSY;
if (mddev->ro)
return -EROFS;
rdev_for_each(rdev, mddev) {
sector_t avail = rdev->sectors;
if (fit && (num_sectors == 0 || num_sectors > avail))
num_sectors = avail;
if (avail < num_sectors)
return -ENOSPC;
}
rv = mddev->pers->resize(mddev, num_sectors);
if (!rv) {
if (mddev_is_clustered(mddev))
md_cluster_ops->update_size(mddev, old_dev_sectors);
else if (mddev->queue) {
set_capacity(mddev->gendisk, mddev->array_sectors);
revalidate_disk(mddev->gendisk);
}
}
return rv;
}
static int update_raid_disks(struct mddev *mddev, int raid_disks)
{
int rv;
struct md_rdev *rdev;
/* change the number of raid disks */
if (mddev->pers->check_reshape == NULL)
return -EINVAL;
if (mddev->ro)
return -EROFS;
if (raid_disks <= 0 ||
(mddev->max_disks && raid_disks >= mddev->max_disks))
return -EINVAL;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->reshape_position != MaxSector)
return -EBUSY;
rdev_for_each(rdev, mddev) {
if (mddev->raid_disks < raid_disks &&
rdev->data_offset < rdev->new_data_offset)
return -EINVAL;
if (mddev->raid_disks > raid_disks &&
rdev->data_offset > rdev->new_data_offset)
return -EINVAL;
}
mddev->delta_disks = raid_disks - mddev->raid_disks;
if (mddev->delta_disks < 0)
mddev->reshape_backwards = 1;
else if (mddev->delta_disks > 0)
mddev->reshape_backwards = 0;
rv = mddev->pers->check_reshape(mddev);
if (rv < 0) {
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
}
return rv;
}
/*
* update_array_info is used to change the configuration of an
* on-line array.
* The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
* fields in the info are checked against the array.
* Any differences that cannot be handled will cause an error.
* Normally, only one change can be managed at a time.
*/
static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
{
int rv = 0;
int cnt = 0;
int state = 0;
/* calculate expected state,ignoring low bits */
if (mddev->bitmap && mddev->bitmap_info.offset)
state |= (1 << MD_SB_BITMAP_PRESENT);
if (mddev->major_version != info->major_version ||
mddev->minor_version != info->minor_version ||
/* mddev->patch_version != info->patch_version || */
mddev->ctime != info->ctime ||
mddev->level != info->level ||
/* mddev->layout != info->layout || */
mddev->persistent != !info->not_persistent ||
mddev->chunk_sectors != info->chunk_size >> 9 ||
/* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
((state^info->state) & 0xfffffe00)
)
return -EINVAL;
/* Check there is only one change */
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
cnt++;
if (mddev->raid_disks != info->raid_disks)
cnt++;
if (mddev->layout != info->layout)
cnt++;
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
cnt++;
if (cnt == 0)
return 0;
if (cnt > 1)
return -EINVAL;
if (mddev->layout != info->layout) {
/* Change layout
* we don't need to do anything at the md level, the
* personality will take care of it all.
*/
if (mddev->pers->check_reshape == NULL)
return -EINVAL;
else {
mddev->new_layout = info->layout;
rv = mddev->pers->check_reshape(mddev);
if (rv)
mddev->new_layout = mddev->layout;
return rv;
}
}
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
rv = update_size(mddev, (sector_t)info->size * 2);
if (mddev->raid_disks != info->raid_disks)
rv = update_raid_disks(mddev, info->raid_disks);
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
rv = -EINVAL;
goto err;
}
if (mddev->recovery || mddev->sync_thread) {
rv = -EBUSY;
goto err;
}
if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
struct bitmap *bitmap;
/* add the bitmap */
if (mddev->bitmap) {
rv = -EEXIST;
goto err;
}
if (mddev->bitmap_info.default_offset == 0) {
rv = -EINVAL;
goto err;
}
mddev->bitmap_info.offset =
mddev->bitmap_info.default_offset;
mddev->bitmap_info.space =
mddev->bitmap_info.default_space;
bitmap = bitmap_create(mddev, -1);
mddev_suspend(mddev);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
rv = bitmap_load(mddev);
} else
rv = PTR_ERR(bitmap);
if (rv)
bitmap_destroy(mddev);
mddev_resume(mddev);
} else {
/* remove the bitmap */
if (!mddev->bitmap) {
rv = -ENOENT;
goto err;
}
if (mddev->bitmap->storage.file) {
rv = -EINVAL;
goto err;
}
if (mddev->bitmap_info.nodes) {
/* hold PW on all the bitmap lock */
if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
rv = -EPERM;
md_cluster_ops->unlock_all_bitmaps(mddev);
goto err;
}
mddev->bitmap_info.nodes = 0;
md_cluster_ops->leave(mddev);
}
mddev_suspend(mddev);
bitmap_destroy(mddev);
mddev_resume(mddev);
mddev->bitmap_info.offset = 0;
}
}
md_update_sb(mddev, 1);
return rv;
err:
return rv;
}
static int set_disk_faulty(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
int err = 0;
if (mddev->pers == NULL)
return -ENODEV;
rcu_read_lock();
rdev = md_find_rdev_rcu(mddev, dev);
if (!rdev)
err = -ENODEV;
else {
md_error(mddev, rdev);
if (!test_bit(Faulty, &rdev->flags))
err = -EBUSY;
}
rcu_read_unlock();
return err;
}
/*
* We have a problem here : there is no easy way to give a CHS
* virtual geometry. We currently pretend that we have a 2 heads
* 4 sectors (with a BIG number of cylinders...). This drives
* dosfs just mad... ;-)
*/
static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct mddev *mddev = bdev->bd_disk->private_data;
geo->heads = 2;
geo->sectors = 4;
geo->cylinders = mddev->array_sectors / 8;
return 0;
}
static inline bool md_ioctl_valid(unsigned int cmd)
{
switch (cmd) {
case ADD_NEW_DISK:
case BLKROSET:
case GET_ARRAY_INFO:
case GET_BITMAP_FILE:
case GET_DISK_INFO:
case HOT_ADD_DISK:
case HOT_REMOVE_DISK:
case RAID_AUTORUN:
case RAID_VERSION:
case RESTART_ARRAY_RW:
case RUN_ARRAY:
case SET_ARRAY_INFO:
case SET_BITMAP_FILE:
case SET_DISK_FAULTY:
case STOP_ARRAY:
case STOP_ARRAY_RO:
case CLUSTERED_DISK_NACK:
return true;
default:
return false;
}
}
static int md_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int err = 0;
void __user *argp = (void __user *)arg;
struct mddev *mddev = NULL;
int ro;
bool did_set_md_closing = false;
if (!md_ioctl_valid(cmd))
return -ENOTTY;
switch (cmd) {
case RAID_VERSION:
case GET_ARRAY_INFO:
case GET_DISK_INFO:
break;
default:
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
}
/*
* Commands dealing with the RAID driver but not any
* particular array:
*/
switch (cmd) {
case RAID_VERSION:
err = get_version(argp);
goto out;
#ifndef MODULE
case RAID_AUTORUN:
err = 0;
autostart_arrays(arg);
goto out;
#endif
default:;
}
/*
* Commands creating/starting a new array:
*/
mddev = bdev->bd_disk->private_data;
if (!mddev) {
BUG();
goto out;
}
/* Some actions do not requires the mutex */
switch (cmd) {
case GET_ARRAY_INFO:
if (!mddev->raid_disks && !mddev->external)
err = -ENODEV;
else
err = get_array_info(mddev, argp);
goto out;
case GET_DISK_INFO:
if (!mddev->raid_disks && !mddev->external)
err = -ENODEV;
else
err = get_disk_info(mddev, argp);
goto out;
case SET_DISK_FAULTY:
err = set_disk_faulty(mddev, new_decode_dev(arg));
goto out;
case GET_BITMAP_FILE:
err = get_bitmap_file(mddev, argp);
goto out;
}
if (cmd == ADD_NEW_DISK)
/* need to ensure md_delayed_delete() has completed */
flush_workqueue(md_misc_wq);
if (cmd == HOT_REMOVE_DISK)
/* need to ensure recovery thread has run */
wait_event_interruptible_timeout(mddev->sb_wait,
!test_bit(MD_RECOVERY_NEEDED,
&mddev->recovery),
msecs_to_jiffies(5000));
if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
/* Need to flush page cache, and ensure no-one else opens
* and writes
*/
mutex_lock(&mddev->open_mutex);
if (mddev->pers && atomic_read(&mddev->openers) > 1) {
mutex_unlock(&mddev->open_mutex);
err = -EBUSY;
goto out;
}
WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
set_bit(MD_CLOSING, &mddev->flags);
did_set_md_closing = true;
mutex_unlock(&mddev->open_mutex);
sync_blockdev(bdev);
}
err = mddev_lock(mddev);
if (err) {
pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
err, cmd);
goto out;
}
if (cmd == SET_ARRAY_INFO) {
mdu_array_info_t info;
if (!arg)
memset(&info, 0, sizeof(info));
else if (copy_from_user(&info, argp, sizeof(info))) {
err = -EFAULT;
goto unlock;
}
if (mddev->pers) {
err = update_array_info(mddev, &info);
if (err) {
pr_warn("md: couldn't update array info. %d\n", err);
goto unlock;
}
goto unlock;
}
if (!list_empty(&mddev->disks)) {
pr_warn("md: array %s already has disks!\n", mdname(mddev));
err = -EBUSY;
goto unlock;
}
if (mddev->raid_disks) {
pr_warn("md: array %s already initialised!\n", mdname(mddev));
err = -EBUSY;
goto unlock;
}
err = set_array_info(mddev, &info);
if (err) {
pr_warn("md: couldn't set array info. %d\n", err);
goto unlock;
}
goto unlock;
}
/*
* Commands querying/configuring an existing array:
*/
/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
* RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
if ((!mddev->raid_disks && !mddev->external)
&& cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
&& cmd != GET_BITMAP_FILE) {
err = -ENODEV;
goto unlock;
}
/*
* Commands even a read-only array can execute:
*/
switch (cmd) {
case RESTART_ARRAY_RW:
err = restart_array(mddev);
goto unlock;
case STOP_ARRAY:
err = do_md_stop(mddev, 0, bdev);
goto unlock;
case STOP_ARRAY_RO:
err = md_set_readonly(mddev, bdev);
goto unlock;
case HOT_REMOVE_DISK:
err = hot_remove_disk(mddev, new_decode_dev(arg));
goto unlock;
case ADD_NEW_DISK:
/* We can support ADD_NEW_DISK on read-only arrays
* only if we are re-adding a preexisting device.
* So require mddev->pers and MD_DISK_SYNC.
*/
if (mddev->pers) {
mdu_disk_info_t info;
if (copy_from_user(&info, argp, sizeof(info)))
err = -EFAULT;
else if (!(info.state & (1<<MD_DISK_SYNC)))
/* Need to clear read-only for this */
break;
else
err = add_new_disk(mddev, &info);
goto unlock;
}
break;
case BLKROSET:
if (get_user(ro, (int __user *)(arg))) {
err = -EFAULT;
goto unlock;
}
err = -EINVAL;
/* if the bdev is going readonly the value of mddev->ro
* does not matter, no writes are coming
*/
if (ro)
goto unlock;
/* are we are already prepared for writes? */
if (mddev->ro != 1)
goto unlock;
/* transitioning to readauto need only happen for
* arrays that call md_write_start
*/
if (mddev->pers) {
err = restart_array(mddev);
if (err == 0) {
mddev->ro = 2;
set_disk_ro(mddev->gendisk, 0);
}
}
goto unlock;
}
/*
* The remaining ioctls are changing the state of the
* superblock, so we do not allow them on read-only arrays.
*/
if (mddev->ro && mddev->pers) {
if (mddev->ro == 2) {
mddev->ro = 0;
sysfs_notify_dirent_safe(mddev->sysfs_state);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
/* mddev_unlock will wake thread */
/* If a device failed while we were read-only, we
* need to make sure the metadata is updated now.
*/
if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
mddev_unlock(mddev);
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
mddev_lock_nointr(mddev);
}
} else {
err = -EROFS;
goto unlock;
}
}
switch (cmd) {
case ADD_NEW_DISK:
{
mdu_disk_info_t info;
if (copy_from_user(&info, argp, sizeof(info)))
err = -EFAULT;
else
err = add_new_disk(mddev, &info);
goto unlock;
}
case CLUSTERED_DISK_NACK:
if (mddev_is_clustered(mddev))
md_cluster_ops->new_disk_ack(mddev, false);
else
err = -EINVAL;
goto unlock;
case HOT_ADD_DISK:
err = hot_add_disk(mddev, new_decode_dev(arg));
goto unlock;
case RUN_ARRAY:
err = do_md_run(mddev);
goto unlock;
case SET_BITMAP_FILE:
err = set_bitmap_file(mddev, (int)arg);
goto unlock;
default:
err = -EINVAL;
goto unlock;
}
unlock:
if (mddev->hold_active == UNTIL_IOCTL &&
err != -EINVAL)
mddev->hold_active = 0;
mddev_unlock(mddev);
out:
if(did_set_md_closing)
clear_bit(MD_CLOSING, &mddev->flags);
return err;
}
#ifdef CONFIG_COMPAT
static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case HOT_REMOVE_DISK:
case HOT_ADD_DISK:
case SET_DISK_FAULTY:
case SET_BITMAP_FILE:
/* These take in integer arg, do not convert */
break;
default:
arg = (unsigned long)compat_ptr(arg);
break;
}
return md_ioctl(bdev, mode, cmd, arg);
}
#endif /* CONFIG_COMPAT */
static int md_open(struct block_device *bdev, fmode_t mode)
{
/*
* Succeed if we can lock the mddev, which confirms that
* it isn't being stopped right now.
*/
struct mddev *mddev = mddev_find(bdev->bd_dev);
int err;
if (!mddev)
return -ENODEV;
if (mddev->gendisk != bdev->bd_disk) {
/* we are racing with mddev_put which is discarding this
* bd_disk.
*/
mddev_put(mddev);
/* Wait until bdev->bd_disk is definitely gone */
flush_workqueue(md_misc_wq);
/* Then retry the open from the top */
return -ERESTARTSYS;
}
BUG_ON(mddev != bdev->bd_disk->private_data);
if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
goto out;
if (test_bit(MD_CLOSING, &mddev->flags)) {
mutex_unlock(&mddev->open_mutex);
err = -ENODEV;
goto out;
}
err = 0;
atomic_inc(&mddev->openers);
mutex_unlock(&mddev->open_mutex);
check_disk_change(bdev);
out:
if (err)
mddev_put(mddev);
return err;
}
static void md_release(struct gendisk *disk, fmode_t mode)
{
struct mddev *mddev = disk->private_data;
BUG_ON(!mddev);
atomic_dec(&mddev->openers);
mddev_put(mddev);
}
static int md_media_changed(struct gendisk *disk)
{
struct mddev *mddev = disk->private_data;
return mddev->changed;
}
static int md_revalidate(struct gendisk *disk)
{
struct mddev *mddev = disk->private_data;
mddev->changed = 0;
return 0;
}
static const struct block_device_operations md_fops =
{
.owner = THIS_MODULE,
.open = md_open,
.release = md_release,
.ioctl = md_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = md_compat_ioctl,
#endif
.getgeo = md_getgeo,
.media_changed = md_media_changed,
.revalidate_disk= md_revalidate,
};
static int md_thread(void *arg)
{
struct md_thread *thread = arg;
/*
* md_thread is a 'system-thread', it's priority should be very
* high. We avoid resource deadlocks individually in each
* raid personality. (RAID5 does preallocation) We also use RR and
* the very same RT priority as kswapd, thus we will never get
* into a priority inversion deadlock.
*
* we definitely have to have equal or higher priority than
* bdflush, otherwise bdflush will deadlock if there are too
* many dirty RAID5 blocks.
*/
allow_signal(SIGKILL);
while (!kthread_should_stop()) {
/* We need to wait INTERRUPTIBLE so that
* we don't add to the load-average.
* That means we need to be sure no signals are
* pending
*/
if (signal_pending(current))
flush_signals(current);
wait_event_interruptible_timeout
(thread->wqueue,
test_bit(THREAD_WAKEUP, &thread->flags)
|| kthread_should_stop() || kthread_should_park(),
thread->timeout);
clear_bit(THREAD_WAKEUP, &thread->flags);
if (kthread_should_park())
kthread_parkme();
if (!kthread_should_stop())
thread->run(thread);
}
return 0;
}
void md_wakeup_thread(struct md_thread *thread)
{
if (thread) {
pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
set_bit(THREAD_WAKEUP, &thread->flags);
wake_up(&thread->wqueue);
}
}
EXPORT_SYMBOL(md_wakeup_thread);
struct md_thread *md_register_thread(void (*run) (struct md_thread *),
struct mddev *mddev, const char *name)
{
struct md_thread *thread;
thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
if (!thread)
return NULL;
init_waitqueue_head(&thread->wqueue);
thread->run = run;
thread->mddev = mddev;
thread->timeout = MAX_SCHEDULE_TIMEOUT;
thread->tsk = kthread_run(md_thread, thread,
"%s_%s",
mdname(thread->mddev),
name);
if (IS_ERR(thread->tsk)) {
kfree(thread);
return NULL;
}
return thread;
}
EXPORT_SYMBOL(md_register_thread);
void md_unregister_thread(struct md_thread **threadp)
{
struct md_thread *thread = *threadp;
if (!thread)
return;
pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
/* Locking ensures that mddev_unlock does not wake_up a
* non-existent thread
*/
spin_lock(&pers_lock);
*threadp = NULL;
spin_unlock(&pers_lock);
kthread_stop(thread->tsk);
kfree(thread);
}
EXPORT_SYMBOL(md_unregister_thread);
void md_error(struct mddev *mddev, struct md_rdev *rdev)
{
if (!rdev || test_bit(Faulty, &rdev->flags))
return;
if (!mddev->pers || !mddev->pers->error_handler)
return;
mddev->pers->error_handler(mddev,rdev);
if (mddev->degraded)
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
if (mddev->event_work.func)
queue_work(md_misc_wq, &mddev->event_work);
md_new_event(mddev);
}
EXPORT_SYMBOL(md_error);
/* seq_file implementation /proc/mdstat */
static void status_unused(struct seq_file *seq)
{
int i = 0;
struct md_rdev *rdev;
seq_printf(seq, "unused devices: ");
list_for_each_entry(rdev, &pending_raid_disks, same_set) {
char b[BDEVNAME_SIZE];
i++;
seq_printf(seq, "%s ",
bdevname(rdev->bdev,b));
}
if (!i)
seq_printf(seq, "<none>");
seq_printf(seq, "\n");
}
static int status_resync(struct seq_file *seq, struct mddev *mddev)
{
sector_t max_sectors, resync, res;
unsigned long dt, db;
sector_t rt;
int scale;
unsigned int per_milli;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else
max_sectors = mddev->dev_sectors;
resync = mddev->curr_resync;
if (resync <= 3) {
if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
/* Still cleaning up */
resync = max_sectors;
} else if (resync > max_sectors)
resync = max_sectors;
else
resync -= atomic_read(&mddev->recovery_active);
if (resync == 0) {
if (mddev->recovery_cp < MaxSector) {
seq_printf(seq, "\tresync=PENDING");
return 1;
}
return 0;
}
if (resync < 3) {
seq_printf(seq, "\tresync=DELAYED");
return 1;
}
WARN_ON(max_sectors == 0);
/* Pick 'scale' such that (resync>>scale)*1000 will fit
* in a sector_t, and (max_sectors>>scale) will fit in a
* u32, as those are the requirements for sector_div.
* Thus 'scale' must be at least 10
*/
scale = 10;
if (sizeof(sector_t) > sizeof(unsigned long)) {
while ( max_sectors/2 > (1ULL<<(scale+32)))
scale++;
}
res = (resync>>scale)*1000;
sector_div(res, (u32)((max_sectors>>scale)+1));
per_milli = res;
{
int i, x = per_milli/50, y = 20-x;
seq_printf(seq, "[");
for (i = 0; i < x; i++)
seq_printf(seq, "=");
seq_printf(seq, ">");
for (i = 0; i < y; i++)
seq_printf(seq, ".");
seq_printf(seq, "] ");
}
seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
(test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
"reshape" :
(test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
"check" :
(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
"resync" : "recovery"))),
per_milli/10, per_milli % 10,
(unsigned long long) resync/2,
(unsigned long long) max_sectors/2);
/*
* dt: time from mark until now
* db: blocks written from mark until now
* rt: remaining time
*
* rt is a sector_t, so could be 32bit or 64bit.
* So we divide before multiply in case it is 32bit and close
* to the limit.
* We scale the divisor (db) by 32 to avoid losing precision
* near the end of resync when the number of remaining sectors
* is close to 'db'.
* We then divide rt by 32 after multiplying by db to compensate.
* The '+1' avoids division by zero if db is very small.
*/
dt = ((jiffies - mddev->resync_mark) / HZ);
if (!dt) dt++;
db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
- mddev->resync_mark_cnt;
rt = max_sectors - resync; /* number of remaining sectors */
sector_div(rt, db/32+1);
rt *= dt;
rt >>= 5;
seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
((unsigned long)rt % 60)/6);
seq_printf(seq, " speed=%ldK/sec", db/2/dt);
return 1;
}
static void *md_seq_start(struct seq_file *seq, loff_t *pos)
{
struct list_head *tmp;
loff_t l = *pos;
struct mddev *mddev;
if (l >= 0x10000)
return NULL;
if (!l--)
/* header */
return (void*)1;
spin_lock(&all_mddevs_lock);
list_for_each(tmp,&all_mddevs)
if (!l--) {
mddev = list_entry(tmp, struct mddev, all_mddevs);
mddev_get(mddev);
spin_unlock(&all_mddevs_lock);
return mddev;
}
spin_unlock(&all_mddevs_lock);
if (!l--)
return (void*)2;/* tail */
return NULL;
}
static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct list_head *tmp;
struct mddev *next_mddev, *mddev = v;
++*pos;
if (v == (void*)2)
return NULL;
spin_lock(&all_mddevs_lock);
if (v == (void*)1)
tmp = all_mddevs.next;
else
tmp = mddev->all_mddevs.next;
if (tmp != &all_mddevs)
next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
else {
next_mddev = (void*)2;
*pos = 0x10000;
}
spin_unlock(&all_mddevs_lock);
if (v != (void*)1)
mddev_put(mddev);
return next_mddev;
}
static void md_seq_stop(struct seq_file *seq, void *v)
{
struct mddev *mddev = v;
if (mddev && v != (void*)1 && v != (void*)2)
mddev_put(mddev);
}
static int md_seq_show(struct seq_file *seq, void *v)
{
struct mddev *mddev = v;
sector_t sectors;
struct md_rdev *rdev;
if (v == (void*)1) {
struct md_personality *pers;
seq_printf(seq, "Personalities : ");
spin_lock(&pers_lock);
list_for_each_entry(pers, &pers_list, list)
seq_printf(seq, "[%s] ", pers->name);
spin_unlock(&pers_lock);
seq_printf(seq, "\n");
seq->poll_event = atomic_read(&md_event_count);
return 0;
}
if (v == (void*)2) {
status_unused(seq);
return 0;
}
spin_lock(&mddev->lock);
if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
seq_printf(seq, "%s : %sactive", mdname(mddev),
mddev->pers ? "" : "in");
if (mddev->pers) {
if (mddev->ro==1)
seq_printf(seq, " (read-only)");
if (mddev->ro==2)
seq_printf(seq, " (auto-read-only)");
seq_printf(seq, " %s", mddev->pers->name);
}
sectors = 0;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
char b[BDEVNAME_SIZE];
seq_printf(seq, " %s[%d]",
bdevname(rdev->bdev,b), rdev->desc_nr);
if (test_bit(WriteMostly, &rdev->flags))
seq_printf(seq, "(W)");
if (test_bit(Journal, &rdev->flags))
seq_printf(seq, "(J)");
if (test_bit(Faulty, &rdev->flags)) {
seq_printf(seq, "(F)");
continue;
}
if (rdev->raid_disk < 0)
seq_printf(seq, "(S)"); /* spare */
if (test_bit(Replacement, &rdev->flags))
seq_printf(seq, "(R)");
sectors += rdev->sectors;
}
rcu_read_unlock();
if (!list_empty(&mddev->disks)) {
if (mddev->pers)
seq_printf(seq, "\n %llu blocks",
(unsigned long long)
mddev->array_sectors / 2);
else
seq_printf(seq, "\n %llu blocks",
(unsigned long long)sectors / 2);
}
if (mddev->persistent) {
if (mddev->major_version != 0 ||
mddev->minor_version != 90) {
seq_printf(seq," super %d.%d",
mddev->major_version,
mddev->minor_version);
}
} else if (mddev->external)
seq_printf(seq, " super external:%s",
mddev->metadata_type);
else
seq_printf(seq, " super non-persistent");
if (mddev->pers) {
mddev->pers->status(seq, mddev);
seq_printf(seq, "\n ");
if (mddev->pers->sync_request) {
if (status_resync(seq, mddev))
seq_printf(seq, "\n ");
}
} else
seq_printf(seq, "\n ");
bitmap_status(seq, mddev->bitmap);
seq_printf(seq, "\n");
}
spin_unlock(&mddev->lock);
return 0;
}
static const struct seq_operations md_seq_ops = {
.start = md_seq_start,
.next = md_seq_next,
.stop = md_seq_stop,
.show = md_seq_show,
};
static int md_seq_open(struct inode *inode, struct file *file)
{
struct seq_file *seq;
int error;
error = seq_open(file, &md_seq_ops);
if (error)
return error;
seq = file->private_data;
seq->poll_event = atomic_read(&md_event_count);
return error;
}
static int md_unloading;
static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
{
struct seq_file *seq = filp->private_data;
__poll_t mask;
if (md_unloading)
return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
poll_wait(filp, &md_event_waiters, wait);
/* always allow read */
mask = EPOLLIN | EPOLLRDNORM;
if (seq->poll_event != atomic_read(&md_event_count))
mask |= EPOLLERR | EPOLLPRI;
return mask;
}
static const struct file_operations md_seq_fops = {
.owner = THIS_MODULE,
.open = md_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
.poll = mdstat_poll,
};
int register_md_personality(struct md_personality *p)
{
pr_debug("md: %s personality registered for level %d\n",
p->name, p->level);
spin_lock(&pers_lock);
list_add_tail(&p->list, &pers_list);
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(register_md_personality);
int unregister_md_personality(struct md_personality *p)
{
pr_debug("md: %s personality unregistered\n", p->name);
spin_lock(&pers_lock);
list_del_init(&p->list);
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(unregister_md_personality);
int register_md_cluster_operations(struct md_cluster_operations *ops,
struct module *module)
{
int ret = 0;
spin_lock(&pers_lock);
if (md_cluster_ops != NULL)
ret = -EALREADY;
else {
md_cluster_ops = ops;
md_cluster_mod = module;
}
spin_unlock(&pers_lock);
return ret;
}
EXPORT_SYMBOL(register_md_cluster_operations);
int unregister_md_cluster_operations(void)
{
spin_lock(&pers_lock);
md_cluster_ops = NULL;
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(unregister_md_cluster_operations);
int md_setup_cluster(struct mddev *mddev, int nodes)
{
if (!md_cluster_ops)
request_module("md-cluster");
spin_lock(&pers_lock);
/* ensure module won't be unloaded */
if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
pr_warn("can't find md-cluster module or get it's reference.\n");
spin_unlock(&pers_lock);
return -ENOENT;
}
spin_unlock(&pers_lock);
return md_cluster_ops->join(mddev, nodes);
}
void md_cluster_stop(struct mddev *mddev)
{
if (!md_cluster_ops)
return;
md_cluster_ops->leave(mddev);
module_put(md_cluster_mod);
}
static int is_mddev_idle(struct mddev *mddev, int init)
{
struct md_rdev *rdev;
int idle;
int curr_events;
idle = 1;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
(int)part_stat_read(&disk->part0, sectors[1]) -
atomic_read(&disk->sync_io);
/* sync IO will cause sync_io to increase before the disk_stats
* as sync_io is counted when a request starts, and
* disk_stats is counted when it completes.
* So resync activity will cause curr_events to be smaller than
* when there was no such activity.
* non-sync IO will cause disk_stat to increase without
* increasing sync_io so curr_events will (eventually)
* be larger than it was before. Once it becomes
* substantially larger, the test below will cause
* the array to appear non-idle, and resync will slow
* down.
* If there is a lot of outstanding resync activity when
* we set last_event to curr_events, then all that activity
* completing might cause the array to appear non-idle
* and resync will be slowed down even though there might
* not have been non-resync activity. This will only
* happen once though. 'last_events' will soon reflect
* the state where there is little or no outstanding
* resync requests, and further resync activity will
* always make curr_events less than last_events.
*
*/
if (init || curr_events - rdev->last_events > 64) {
rdev->last_events = curr_events;
idle = 0;
}
}
rcu_read_unlock();
return idle;
}
void md_done_sync(struct mddev *mddev, int blocks, int ok)
{
/* another "blocks" (512byte) blocks have been synced */
atomic_sub(blocks, &mddev->recovery_active);
wake_up(&mddev->recovery_wait);
if (!ok) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
md_wakeup_thread(mddev->thread);
// stop recovery, signal do_sync ....
}
}
EXPORT_SYMBOL(md_done_sync);
/* md_write_start(mddev, bi)
* If we need to update some array metadata (e.g. 'active' flag
* in superblock) before writing, schedule a superblock update
* and wait for it to complete.
* A return value of 'false' means that the write wasn't recorded
* and cannot proceed as the array is being suspend.
*/
bool md_write_start(struct mddev *mddev, struct bio *bi)
{
int did_change = 0;
if (bio_data_dir(bi) != WRITE)
return true;
BUG_ON(mddev->ro == 1);
if (mddev->ro == 2) {
/* need to switch to read/write */
mddev->ro = 0;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread);
did_change = 1;
}
rcu_read_lock();
percpu_ref_get(&mddev->writes_pending);
smp_mb(); /* Match smp_mb in set_in_sync() */
if (mddev->safemode == 1)
mddev->safemode = 0;
/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
if (mddev->in_sync || mddev->sync_checkers) {
spin_lock(&mddev->lock);
if (mddev->in_sync) {
mddev->in_sync = 0;
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
did_change = 1;
}
spin_unlock(&mddev->lock);
}
rcu_read_unlock();
if (did_change)
sysfs_notify_dirent_safe(mddev->sysfs_state);
if (!mddev->has_superblocks)
return true;
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
mddev->suspended);
if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
percpu_ref_put(&mddev->writes_pending);
return false;
}
return true;
}
EXPORT_SYMBOL(md_write_start);
/* md_write_inc can only be called when md_write_start() has
* already been called at least once of the current request.
* It increments the counter and is useful when a single request
* is split into several parts. Each part causes an increment and
* so needs a matching md_write_end().
* Unlike md_write_start(), it is safe to call md_write_inc() inside
* a spinlocked region.
*/
void md_write_inc(struct mddev *mddev, struct bio *bi)
{
if (bio_data_dir(bi) != WRITE)
return;
WARN_ON_ONCE(mddev->in_sync || mddev->ro);
percpu_ref_get(&mddev->writes_pending);
}
EXPORT_SYMBOL(md_write_inc);
void md_write_end(struct mddev *mddev)
{
percpu_ref_put(&mddev->writes_pending);
if (mddev->safemode == 2)
md_wakeup_thread(mddev->thread);
else if (mddev->safemode_delay)
/* The roundup() ensures this only performs locking once
* every ->safemode_delay jiffies
*/
mod_timer(&mddev->safemode_timer,
roundup(jiffies, mddev->safemode_delay) +
mddev->safemode_delay);
}
EXPORT_SYMBOL(md_write_end);
/* md_allow_write(mddev)
* Calling this ensures that the array is marked 'active' so that writes
* may proceed without blocking. It is important to call this before
* attempting a GFP_KERNEL allocation while holding the mddev lock.
* Must be called with mddev_lock held.
*/
void md_allow_write(struct mddev *mddev)
{
if (!mddev->pers)
return;
if (mddev->ro)
return;
if (!mddev->pers->sync_request)
return;
spin_lock(&mddev->lock);
if (mddev->in_sync) {
mddev->in_sync = 0;
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
if (mddev->safemode_delay &&
mddev->safemode == 0)
mddev->safemode = 1;
spin_unlock(&mddev->lock);
md_update_sb(mddev, 0);
sysfs_notify_dirent_safe(mddev->sysfs_state);
/* wait for the dirty state to be recorded in the metadata */
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
} else
spin_unlock(&mddev->lock);
}
EXPORT_SYMBOL_GPL(md_allow_write);
#define SYNC_MARKS 10
#define SYNC_MARK_STEP (3*HZ)
#define UPDATE_FREQUENCY (5*60*HZ)
void md_do_sync(struct md_thread *thread)
{
struct mddev *mddev = thread->mddev;
struct mddev *mddev2;
unsigned int currspeed = 0,
window;
sector_t max_sectors,j, io_sectors, recovery_done;
unsigned long mark[SYNC_MARKS];
unsigned long update_time;
sector_t mark_cnt[SYNC_MARKS];
int last_mark,m;
struct list_head *tmp;
sector_t last_check;
int skipped = 0;
struct md_rdev *rdev;
char *desc, *action = NULL;
struct blk_plug plug;
int ret;
/* just incase thread restarts... */
if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
return;
if (mddev->ro) {/* never try to sync a read-only array */
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
return;
}
if (mddev_is_clustered(mddev)) {
ret = md_cluster_ops->resync_start(mddev);
if (ret)
goto skip;
set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
&& ((unsigned long long)mddev->curr_resync_completed
< (unsigned long long)mddev->resync_max_sectors))
goto skip;
}
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
desc = "data-check";
action = "check";
} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
desc = "requested-resync";
action = "repair";
} else
desc = "resync";
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
desc = "reshape";
else
desc = "recovery";
mddev->last_sync_action = action ?: desc;
/* we overload curr_resync somewhat here.
* 0 == not engaged in resync at all
* 2 == checking that there is no conflict with another sync
* 1 == like 2, but have yielded to allow conflicting resync to
* commense
* other == active in resync - this many blocks
*
* Before starting a resync we must have set curr_resync to
* 2, and then checked that every "conflicting" array has curr_resync
* less than ours. When we find one that is the same or higher
* we wait on resync_wait. To avoid deadlock, we reduce curr_resync
* to 1 if we choose to yield (based arbitrarily on address of mddev structure).
* This will mean we have to start checking from the beginning again.
*
*/
do {
int mddev2_minor = -1;
mddev->curr_resync = 2;
try_again:
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
goto skip;
for_each_mddev(mddev2, tmp) {
if (mddev2 == mddev)
continue;
if (!mddev->parallel_resync
&& mddev2->curr_resync
&& match_mddev_units(mddev, mddev2)) {
DEFINE_WAIT(wq);
if (mddev < mddev2 && mddev->curr_resync == 2) {
/* arbitrarily yield */
mddev->curr_resync = 1;
wake_up(&resync_wait);
}
if (mddev > mddev2 && mddev->curr_resync == 1)
/* no need to wait here, we can wait the next
* time 'round when curr_resync == 2
*/
continue;
/* We need to wait 'interruptible' so as not to
* contribute to the load average, and not to
* be caught by 'softlockup'
*/
prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
mddev2->curr_resync >= mddev->curr_resync) {
if (mddev2_minor != mddev2->md_minor) {
mddev2_minor = mddev2->md_minor;
pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
desc, mdname(mddev),
mdname(mddev2));
}
mddev_put(mddev2);
if (signal_pending(current))
flush_signals(current);
schedule();
finish_wait(&resync_wait, &wq);
goto try_again;
}
finish_wait(&resync_wait, &wq);
}
}
} while (mddev->curr_resync < 2);
j = 0;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
/* resync follows the size requested by the personality,
* which defaults to physical size, but can be virtual size
*/
max_sectors = mddev->resync_max_sectors;
atomic64_set(&mddev->resync_mismatches, 0);
/* we don't use the checkpoint if there's a bitmap */
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
j = mddev->resync_min;
else if (!mddev->bitmap)
j = mddev->recovery_cp;
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else {
/* recovery follows the physical size of devices */
max_sectors = mddev->dev_sectors;
j = MaxSector;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < j)
j = rdev->recovery_offset;
rcu_read_unlock();
/* If there is a bitmap, we need to make sure all
* writes that started before we added a spare
* complete before we start doing a recovery.
* Otherwise the write might complete and (via
* bitmap_endwrite) set a bit in the bitmap after the
* recovery has checked that bit and skipped that
* region.
*/
if (mddev->bitmap) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
}
pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
speed_max(mddev), desc);
is_mddev_idle(mddev, 1); /* this initializes IO event counters */
io_sectors = 0;
for (m = 0; m < SYNC_MARKS; m++) {
mark[m] = jiffies;
mark_cnt[m] = io_sectors;
}
last_mark = 0;
mddev->resync_mark = mark[last_mark];
mddev->resync_mark_cnt = mark_cnt[last_mark];
/*
* Tune reconstruction:
*/
window = 32*(PAGE_SIZE/512);
pr_debug("md: using %dk window, over a total of %lluk.\n",
window/2, (unsigned long long)max_sectors/2);
atomic_set(&mddev->recovery_active, 0);
last_check = 0;
if (j>2) {
pr_debug("md: resuming %s of %s from checkpoint.\n",
desc, mdname(mddev));
mddev->curr_resync = j;
} else
mddev->curr_resync = 3; /* no longer delayed */
mddev->curr_resync_completed = j;
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
md_new_event(mddev);
update_time = jiffies;
blk_start_plug(&plug);
while (j < max_sectors) {
sector_t sectors;
skipped = 0;
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
((mddev->curr_resync > mddev->curr_resync_completed &&
(mddev->curr_resync - mddev->curr_resync_completed)
> (max_sectors >> 4)) ||
time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
(j - mddev->curr_resync_completed)*2
>= mddev->resync_max - mddev->curr_resync_completed ||
mddev->curr_resync_completed > mddev->resync_max
)) {
/* time to update curr_resync_completed */
wait_event(mddev->recovery_wait,
atomic_read(&mddev->recovery_active) == 0);
mddev->curr_resync_completed = j;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
j > mddev->recovery_cp)
mddev->recovery_cp = j;
update_time = jiffies;
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
while (j >= mddev->resync_max &&
!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
/* As this condition is controlled by user-space,
* we can block indefinitely, so use '_interruptible'
* to avoid triggering warnings.
*/
flush_signals(current); /* just in case */
wait_event_interruptible(mddev->recovery_wait,
mddev->resync_max > j
|| test_bit(MD_RECOVERY_INTR,
&mddev->recovery));
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
sectors = mddev->pers->sync_request(mddev, j, &skipped);
if (sectors == 0) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
break;
}
if (!skipped) { /* actual IO requested */
io_sectors += sectors;
atomic_add(sectors, &mddev->recovery_active);
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
j += sectors;
if (j > max_sectors)
/* when skipping, extra large numbers can be returned. */
j = max_sectors;
if (j > 2)
mddev->curr_resync = j;
mddev->curr_mark_cnt = io_sectors;
if (last_check == 0)
/* this is the earliest that rebuild will be
* visible in /proc/mdstat
*/
md_new_event(mddev);
if (last_check + window > io_sectors || j == max_sectors)
continue;
last_check = io_sectors;
repeat:
if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
/* step marks */
int next = (last_mark+1) % SYNC_MARKS;
mddev->resync_mark = mark[next];
mddev->resync_mark_cnt = mark_cnt[next];
mark[next] = jiffies;
mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
last_mark = next;
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
/*
* this loop exits only if either when we are slower than
* the 'hard' speed limit, or the system was IO-idle for
* a jiffy.
* the system might be non-idle CPU-wise, but we only care
* about not overloading the IO subsystem. (things like an
* e2fsck being done on the RAID array should execute fast)
*/
cond_resched();
recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
/((jiffies-mddev->resync_mark)/HZ +1) +1;
if (currspeed > speed_min(mddev)) {
if (currspeed > speed_max(mddev)) {
msleep(500);
goto repeat;
}
if (!is_mddev_idle(mddev, 0)) {
/*
* Give other IO more of a chance.
* The faster the devices, the less we wait.
*/
wait_event(mddev->recovery_wait,
!atomic_read(&mddev->recovery_active));
}
}
}
pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
test_bit(MD_RECOVERY_INTR, &mddev->recovery)
? "interrupted" : "done");
/*
* this also signals 'finished resyncing' to md_stop
*/
blk_finish_plug(&plug);
wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
mddev->curr_resync > 3) {
mddev->curr_resync_completed = mddev->curr_resync;
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
mddev->pers->sync_request(mddev, max_sectors, &skipped);
if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
mddev->curr_resync > 3) {
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
if (mddev->curr_resync >= mddev->recovery_cp) {
pr_debug("md: checkpointing %s of %s.\n",
desc, mdname(mddev));
if (test_bit(MD_RECOVERY_ERROR,
&mddev->recovery))
mddev->recovery_cp =
mddev->curr_resync_completed;
else
mddev->recovery_cp =
mddev->curr_resync;
}
} else
mddev->recovery_cp = MaxSector;
} else {
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
mddev->curr_resync = MaxSector;
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
mddev->delta_disks >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < mddev->curr_resync)
rdev->recovery_offset = mddev->curr_resync;
rcu_read_unlock();
}
}
}
skip:
/* set CHANGE_PENDING here since maybe another update is needed,
* so other nodes are informed. It should be harmless for normal
* raid */
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
spin_lock(&mddev->lock);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
/* We completed so min/max setting can be forgotten if used. */
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
mddev->resync_min = mddev->curr_resync_completed;
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
mddev->curr_resync = 0;
spin_unlock(&mddev->lock);
wake_up(&resync_wait);
md_wakeup_thread(mddev->thread);
return;
}
EXPORT_SYMBOL_GPL(md_do_sync);
static int remove_and_add_spares(struct mddev *mddev,
struct md_rdev *this)
{
struct md_rdev *rdev;
int spares = 0;
int removed = 0;
bool remove_some = false;
if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
/* Mustn't remove devices when resync thread is running */
return 0;
rdev_for_each(rdev, mddev) {
if ((this == NULL || rdev == this) &&
rdev->raid_disk >= 0 &&
!test_bit(Blocked, &rdev->flags) &&
test_bit(Faulty, &rdev->flags) &&
atomic_read(&rdev->nr_pending)==0) {
/* Faulty non-Blocked devices with nr_pending == 0
* never get nr_pending incremented,
* never get Faulty cleared, and never get Blocked set.
* So we can synchronize_rcu now rather than once per device
*/
remove_some = true;
set_bit(RemoveSynchronized, &rdev->flags);
}
}
if (remove_some)
synchronize_rcu();
rdev_for_each(rdev, mddev) {
if ((this == NULL || rdev == this) &&
rdev->raid_disk >= 0 &&
!test_bit(Blocked, &rdev->flags) &&
((test_bit(RemoveSynchronized, &rdev->flags) ||
(!test_bit(In_sync, &rdev->flags) &&
!test_bit(Journal, &rdev->flags))) &&
atomic_read(&rdev->nr_pending)==0)) {
if (mddev->pers->hot_remove_disk(
mddev, rdev) == 0) {
sysfs_unlink_rdev(mddev, rdev);
rdev->raid_disk = -1;
removed++;
}
}
if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
clear_bit(RemoveSynchronized, &rdev->flags);
}
if (removed && mddev->kobj.sd)
sysfs_notify(&mddev->kobj, NULL, "degraded");
if (this && removed)
goto no_add;
rdev_for_each(rdev, mddev) {
if (this && this != rdev)
continue;
if (test_bit(Candidate, &rdev->flags))
continue;
if (rdev->raid_disk >= 0 &&
!test_bit(In_sync, &rdev->flags) &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
spares++;
if (rdev->raid_disk >= 0)
continue;
if (test_bit(Faulty, &rdev->flags))
continue;
if (!test_bit(Journal, &rdev->flags)) {
if (mddev->ro &&
! (rdev->saved_raid_disk >= 0 &&
!test_bit(Bitmap_sync, &rdev->flags)))
continue;
rdev->recovery_offset = 0;
}
if (mddev->pers->
hot_add_disk(mddev, rdev) == 0) {
if (sysfs_link_rdev(mddev, rdev))
/* failure here is OK */;
if (!test_bit(Journal, &rdev->flags))
spares++;
md_new_event(mddev);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
}
}
no_add:
if (removed)
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
return spares;
}
static void md_start_sync(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, del_work);
mddev->sync_thread = md_register_thread(md_do_sync,
mddev,
"resync");
if (!mddev->sync_thread) {
pr_warn("%s: could not start resync thread...\n",
mdname(mddev));
/* leave the spares where they are, it shouldn't hurt */
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
wake_up(&resync_wait);
if (test_and_clear_bit(MD_RECOVERY_RECOVER,
&mddev->recovery))
if (mddev->sysfs_action)
sysfs_notify_dirent_safe(mddev->sysfs_action);
} else
md_wakeup_thread(mddev->sync_thread);
sysfs_notify_dirent_safe(mddev->sysfs_action);
md_new_event(mddev);
}
/*
* This routine is regularly called by all per-raid-array threads to
* deal with generic issues like resync and super-block update.
* Raid personalities that don't have a thread (linear/raid0) do not
* need this as they never do any recovery or update the superblock.
*
* It does not do any resync itself, but rather "forks" off other threads
* to do that as needed.
* When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
* "->recovery" and create a thread at ->sync_thread.
* When the thread finishes it sets MD_RECOVERY_DONE
* and wakeups up this thread which will reap the thread and finish up.
* This thread also removes any faulty devices (with nr_pending == 0).
*
* The overall approach is:
* 1/ if the superblock needs updating, update it.
* 2/ If a recovery thread is running, don't do anything else.
* 3/ If recovery has finished, clean up, possibly marking spares active.
* 4/ If there are any faulty devices, remove them.
* 5/ If array is degraded, try to add spares devices
* 6/ If array has spares or is not in-sync, start a resync thread.
*/
void md_check_recovery(struct mddev *mddev)
{
if (mddev->suspended)
return;
if (mddev->bitmap)
bitmap_daemon_work(mddev);
if (signal_pending(current)) {
if (mddev->pers->sync_request && !mddev->external) {
pr_debug("md: %s in immediate safe mode\n",
mdname(mddev));
mddev->safemode = 2;
}
flush_signals(current);
}
if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
return;
if ( ! (
(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
(mddev->external == 0 && mddev->safemode == 1) ||
(mddev->safemode == 2
&& !mddev->in_sync && mddev->recovery_cp == MaxSector)
))
return;
if (mddev_trylock(mddev)) {
int spares = 0;
if (!mddev->external && mddev->safemode == 1)
mddev->safemode = 0;
if (mddev->ro) {
struct md_rdev *rdev;
if (!mddev->external && mddev->in_sync)
/* 'Blocked' flag not needed as failed devices
* will be recorded if array switched to read/write.
* Leaving it set will prevent the device
* from being removed.
*/
rdev_for_each(rdev, mddev)
clear_bit(Blocked, &rdev->flags);
/* On a read-only array we can:
* - remove failed devices
* - add already-in_sync devices if the array itself
* is in-sync.
* As we only add devices that are already in-sync,
* we can activate the spares immediately.
*/
remove_and_add_spares(mddev, NULL);
/* There is no thread, but we need to call
* ->spare_active and clear saved_raid_disk
*/
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_reap_sync_thread(mddev);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
goto unlock;
}
if (mddev_is_clustered(mddev)) {
struct md_rdev *rdev;
/* kick the device if another node issued a
* remove disk.
*/
rdev_for_each(rdev, mddev) {
if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
rdev->raid_disk < 0)
md_kick_rdev_from_array(rdev);
}
}
if (!mddev->external && !mddev->in_sync) {
spin_lock(&mddev->lock);
set_in_sync(mddev);
spin_unlock(&mddev->lock);
}
if (mddev->sb_flags)
md_update_sb(mddev, 0);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
/* resync/recovery still happening */
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
goto unlock;
}
if (mddev->sync_thread) {
md_reap_sync_thread(mddev);
goto unlock;
}
/* Set RUNNING before clearing NEEDED to avoid
* any transients in the value of "sync_action".
*/
mddev->curr_resync_completed = 0;
spin_lock(&mddev->lock);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
spin_unlock(&mddev->lock);
/* Clear some bits that don't mean anything, but
* might be left set
*/
clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
goto not_running;
/* no recovery is running.
* remove any failed drives, then
* add spares if possible.
* Spares are also removed and re-added, to allow
* the personality to fail the re-add.
*/
if (mddev->reshape_position != MaxSector) {
if (mddev->pers->check_reshape == NULL ||
mddev->pers->check_reshape(mddev) != 0)
/* Cannot proceed */
goto not_running;
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if ((spares = remove_and_add_spares(mddev, NULL))) {
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (mddev->recovery_cp < MaxSector) {
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
/* nothing to be done ... */
goto not_running;
if (mddev->pers->sync_request) {
if (spares) {
/* We are adding a device or devices to an array
* which has the bitmap stored on all devices.
* So make sure all bitmap pages get written
*/
bitmap_write_all(mddev->bitmap);
}
INIT_WORK(&mddev->del_work, md_start_sync);
queue_work(md_misc_wq, &mddev->del_work);
goto unlock;
}
not_running:
if (!mddev->sync_thread) {
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
wake_up(&resync_wait);
if (test_and_clear_bit(MD_RECOVERY_RECOVER,
&mddev->recovery))
if (mddev->sysfs_action)
sysfs_notify_dirent_safe(mddev->sysfs_action);
}
unlock:
wake_up(&mddev->sb_wait);
mddev_unlock(mddev);
} else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
/* Write superblock - thread that called mddev_suspend()
* holds reconfig_mutex for us.
*/
set_bit(MD_UPDATING_SB, &mddev->flags);
smp_mb__after_atomic();
if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
md_update_sb(mddev, 0);
clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
wake_up(&mddev->sb_wait);
}
}
EXPORT_SYMBOL(md_check_recovery);
void md_reap_sync_thread(struct mddev *mddev)
{
struct md_rdev *rdev;
/* resync has finished, collect result */
md_unregister_thread(&mddev->sync_thread);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
/* success...*/
/* activate any spares */
if (mddev->pers->spare_active(mddev)) {
sysfs_notify(&mddev->kobj, NULL,
"degraded");
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
}
}
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
mddev->pers->finish_reshape)
mddev->pers->finish_reshape(mddev);
/* If array is no-longer degraded, then any saved_raid_disk
* information must be scrapped.
*/
if (!mddev->degraded)
rdev_for_each(rdev, mddev)
rdev->saved_raid_disk = -1;
md_update_sb(mddev, 1);
/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
* call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
* clustered raid */
if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
md_cluster_ops->resync_finish(mddev);
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
wake_up(&resync_wait);
/* flag recovery needed just to double check */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
sysfs_notify_dirent_safe(mddev->sysfs_action);
md_new_event(mddev);
if (mddev->event_work.func)
queue_work(md_misc_wq, &mddev->event_work);
}
EXPORT_SYMBOL(md_reap_sync_thread);
void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
sysfs_notify_dirent_safe(rdev->sysfs_state);
wait_event_timeout(rdev->blocked_wait,
!test_bit(Blocked, &rdev->flags) &&
!test_bit(BlockedBadBlocks, &rdev->flags),
msecs_to_jiffies(5000));
rdev_dec_pending(rdev, mddev);
}
EXPORT_SYMBOL(md_wait_for_blocked_rdev);
void md_finish_reshape(struct mddev *mddev)
{
/* called be personality module when reshape completes. */
struct md_rdev *rdev;
rdev_for_each(rdev, mddev) {
if (rdev->data_offset > rdev->new_data_offset)
rdev->sectors += rdev->data_offset - rdev->new_data_offset;
else
rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
rdev->data_offset = rdev->new_data_offset;
}
}
EXPORT_SYMBOL(md_finish_reshape);
/* Bad block management */
/* Returns 1 on success, 0 on failure */
int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
int is_new)
{
struct mddev *mddev = rdev->mddev;
int rv;
if (is_new)
s += rdev->new_data_offset;
else
s += rdev->data_offset;
rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
if (rv == 0) {
/* Make sure they get written out promptly */
if (test_bit(ExternalBbl, &rdev->flags))
sysfs_notify(&rdev->kobj, NULL,
"unacknowledged_bad_blocks");
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
md_wakeup_thread(rdev->mddev->thread);
return 1;
} else
return 0;
}
EXPORT_SYMBOL_GPL(rdev_set_badblocks);
int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
int is_new)
{
int rv;
if (is_new)
s += rdev->new_data_offset;
else
s += rdev->data_offset;
rv = badblocks_clear(&rdev->badblocks, s, sectors);
if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
return rv;
}
EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
static int md_notify_reboot(struct notifier_block *this,
unsigned long code, void *x)
{
struct list_head *tmp;
struct mddev *mddev;
int need_delay = 0;
for_each_mddev(mddev, tmp) {
if (mddev_trylock(mddev)) {
if (mddev->pers)
__md_stop_writes(mddev);
if (mddev->persistent)
mddev->safemode = 2;
mddev_unlock(mddev);
}
need_delay = 1;
}
/*
* certain more exotic SCSI devices are known to be
* volatile wrt too early system reboots. While the
* right place to handle this issue is the given
* driver, we do want to have a safe RAID driver ...
*/
if (need_delay)
mdelay(1000*1);
return NOTIFY_DONE;
}
static struct notifier_block md_notifier = {
.notifier_call = md_notify_reboot,
.next = NULL,
.priority = INT_MAX, /* before any real devices */
};
static void md_geninit(void)
{
pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
}
static int __init md_init(void)
{
int ret = -ENOMEM;
md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
if (!md_wq)
goto err_wq;
md_misc_wq = alloc_workqueue("md_misc", 0, 0);
if (!md_misc_wq)
goto err_misc_wq;
if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
goto err_md;
if ((ret = register_blkdev(0, "mdp")) < 0)
goto err_mdp;
mdp_major = ret;
blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
md_probe, NULL, NULL);
blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
md_probe, NULL, NULL);
register_reboot_notifier(&md_notifier);
raid_table_header = register_sysctl_table(raid_root_table);
md_geninit();
return 0;
err_mdp:
unregister_blkdev(MD_MAJOR, "md");
err_md:
destroy_workqueue(md_misc_wq);
err_misc_wq:
destroy_workqueue(md_wq);
err_wq:
return ret;
}
static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
struct md_rdev *rdev2;
int role, ret;
char b[BDEVNAME_SIZE];
/*
* If size is changed in another node then we need to
* do resize as well.
*/
if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
if (ret)
pr_info("md-cluster: resize failed\n");
else
bitmap_update_sb(mddev->bitmap);
}
/* Check for change of roles in the active devices */
rdev_for_each(rdev2, mddev) {
if (test_bit(Faulty, &rdev2->flags))
continue;
/* Check if the roles changed */
role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
if (test_bit(Candidate, &rdev2->flags)) {
if (role == 0xfffe) {
pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
md_kick_rdev_from_array(rdev2);
continue;
}
else
clear_bit(Candidate, &rdev2->flags);
}
if (role != rdev2->raid_disk) {
/* got activated */
if (rdev2->raid_disk == -1 && role != 0xffff) {
rdev2->saved_raid_disk = role;
ret = remove_and_add_spares(mddev, rdev2);
pr_info("Activated spare: %s\n",
bdevname(rdev2->bdev,b));
/* wakeup mddev->thread here, so array could
* perform resync with the new activated disk */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
/* device faulty
* We just want to do the minimum to mark the disk
* as faulty. The recovery is performed by the
* one who initiated the error.
*/
if ((role == 0xfffe) || (role == 0xfffd)) {
md_error(mddev, rdev2);
clear_bit(Blocked, &rdev2->flags);
}
}
}
if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
/* Finally set the event to be up to date */
mddev->events = le64_to_cpu(sb->events);
}
static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
{
int err;
struct page *swapout = rdev->sb_page;
struct mdp_superblock_1 *sb;
/* Store the sb page of the rdev in the swapout temporary
* variable in case we err in the future
*/
rdev->sb_page = NULL;
err = alloc_disk_sb(rdev);
if (err == 0) {
ClearPageUptodate(rdev->sb_page);
rdev->sb_loaded = 0;
err = super_types[mddev->major_version].
load_super(rdev, NULL, mddev->minor_version);
}
if (err < 0) {
pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
__func__, __LINE__, rdev->desc_nr, err);
if (rdev->sb_page)
put_page(rdev->sb_page);
rdev->sb_page = swapout;
rdev->sb_loaded = 1;
return err;
}
sb = page_address(rdev->sb_page);
/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
* is not set
*/
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
/* The other node finished recovery, call spare_active to set
* device In_sync and mddev->degraded
*/
if (rdev->recovery_offset == MaxSector &&
!test_bit(In_sync, &rdev->flags) &&
mddev->pers->spare_active(mddev))
sysfs_notify(&mddev->kobj, NULL, "degraded");
put_page(swapout);
return 0;
}
void md_reload_sb(struct mddev *mddev, int nr)
{
struct md_rdev *rdev;
int err;
/* Find the rdev */
rdev_for_each_rcu(rdev, mddev) {
if (rdev->desc_nr == nr)
break;
}
if (!rdev || rdev->desc_nr != nr) {
pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
return;
}
err = read_rdev(mddev, rdev);
if (err < 0)
return;
check_sb_changes(mddev, rdev);
/* Read all rdev's to update recovery_offset */
rdev_for_each_rcu(rdev, mddev)
read_rdev(mddev, rdev);
}
EXPORT_SYMBOL(md_reload_sb);
#ifndef MODULE
/*
* Searches all registered partitions for autorun RAID arrays
* at boot time.
*/
static DEFINE_MUTEX(detected_devices_mutex);
static LIST_HEAD(all_detected_devices);
struct detected_devices_node {
struct list_head list;
dev_t dev;
};
void md_autodetect_dev(dev_t dev)
{
struct detected_devices_node *node_detected_dev;
node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
if (node_detected_dev) {
node_detected_dev->dev = dev;
mutex_lock(&detected_devices_mutex);
list_add_tail(&node_detected_dev->list, &all_detected_devices);
mutex_unlock(&detected_devices_mutex);
}
}
static void autostart_arrays(int part)
{
struct md_rdev *rdev;
struct detected_devices_node *node_detected_dev;
dev_t dev;
int i_scanned, i_passed;
i_scanned = 0;
i_passed = 0;
pr_info("md: Autodetecting RAID arrays.\n");
mutex_lock(&detected_devices_mutex);
while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
i_scanned++;
node_detected_dev = list_entry(all_detected_devices.next,
struct detected_devices_node, list);
list_del(&node_detected_dev->list);
dev = node_detected_dev->dev;
kfree(node_detected_dev);
mutex_unlock(&detected_devices_mutex);
rdev = md_import_device(dev,0, 90);
mutex_lock(&detected_devices_mutex);
if (IS_ERR(rdev))
continue;
if (test_bit(Faulty, &rdev->flags))
continue;
set_bit(AutoDetected, &rdev->flags);
list_add(&rdev->same_set, &pending_raid_disks);
i_passed++;
}
mutex_unlock(&detected_devices_mutex);
pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
autorun_devices(part);
}
#endif /* !MODULE */
static __exit void md_exit(void)
{
struct mddev *mddev;
struct list_head *tmp;
int delay = 1;
blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
unregister_blkdev(MD_MAJOR,"md");
unregister_blkdev(mdp_major, "mdp");
unregister_reboot_notifier(&md_notifier);
unregister_sysctl_table(raid_table_header);
/* We cannot unload the modules while some process is
* waiting for us in select() or poll() - wake them up
*/
md_unloading = 1;
while (waitqueue_active(&md_event_waiters)) {
/* not safe to leave yet */
wake_up(&md_event_waiters);
msleep(delay);
delay += delay;
}
remove_proc_entry("mdstat", NULL);
for_each_mddev(mddev, tmp) {
export_array(mddev);
mddev->ctime = 0;
mddev->hold_active = 0;
/*
* for_each_mddev() will call mddev_put() at the end of each
* iteration. As the mddev is now fully clear, this will
* schedule the mddev for destruction by a workqueue, and the
* destroy_workqueue() below will wait for that to complete.
*/
}
destroy_workqueue(md_misc_wq);
destroy_workqueue(md_wq);
}
subsys_initcall(md_init);
module_exit(md_exit)
static int get_ro(char *buffer, const struct kernel_param *kp)
{
return sprintf(buffer, "%d", start_readonly);
}
static int set_ro(const char *val, const struct kernel_param *kp)
{
return kstrtouint(val, 10, (unsigned int *)&start_readonly);
}
module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MD RAID framework");
MODULE_ALIAS("md");
MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);