forked from Minki/linux
2e38eb04c9
Kprobes has a counter 'nmissed', that is used to count the number of times a probe handler was not called. This generally happens when we hit a kprobe while handling another kprobe. However, if one of the probe handlers causes a fault, we are currently incrementing 'nmissed'. The comment in fault handler indicates that this can be used to account faults taken by the probe handlers. But, this has never been the intention as is evident from the comment above 'nmissed' in 'struct kprobe': /*count the number of times this probe was temporarily disarmed */ unsigned long nmissed; Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lkml.kernel.org/r/20210601120150.672652-1-naveen.n.rao@linux.vnet.ibm.com
453 lines
11 KiB
C
453 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Kernel probes (kprobes) for SuperH
|
|
*
|
|
* Copyright (C) 2007 Chris Smith <chris.smith@st.com>
|
|
* Copyright (C) 2006 Lineo Solutions, Inc.
|
|
*/
|
|
#include <linux/kprobes.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
|
|
static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
|
|
static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
|
|
|
|
#define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
|
|
#define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
|
|
#define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
|
|
#define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
|
|
#define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
|
|
#define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
|
|
|
|
#define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
|
|
#define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
|
|
|
|
#define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
|
|
#define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
|
|
|
|
#define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
|
|
#define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
|
|
|
|
if (OPCODE_RTE(opcode))
|
|
return -EFAULT; /* Bad breakpoint */
|
|
|
|
p->opcode = opcode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __kprobes arch_copy_kprobe(struct kprobe *p)
|
|
{
|
|
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
|
p->opcode = *p->addr;
|
|
}
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = BREAKPOINT_INSTRUCTION;
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = p->opcode;
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
if (*p->addr == BREAKPOINT_INSTRUCTION)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* If an illegal slot instruction exception occurs for an address
|
|
* containing a kprobe, remove the probe.
|
|
*
|
|
* Returns 0 if the exception was handled successfully, 1 otherwise.
|
|
*/
|
|
int __kprobes kprobe_handle_illslot(unsigned long pc)
|
|
{
|
|
struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
|
|
|
|
if (p != NULL) {
|
|
printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
|
|
(unsigned int)pc + 2);
|
|
unregister_kprobe(p);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
|
|
|
|
if (saved->addr) {
|
|
arch_disarm_kprobe(p);
|
|
arch_disarm_kprobe(saved);
|
|
|
|
saved->addr = NULL;
|
|
saved->opcode = 0;
|
|
|
|
saved = this_cpu_ptr(&saved_next_opcode2);
|
|
if (saved->addr) {
|
|
arch_disarm_kprobe(saved);
|
|
|
|
saved->addr = NULL;
|
|
saved->opcode = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
|
|
/*
|
|
* Singlestep is implemented by disabling the current kprobe and setting one
|
|
* on the next instruction, following branches. Two probes are set if the
|
|
* branch is conditional.
|
|
*/
|
|
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
__this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
|
|
|
|
if (p != NULL) {
|
|
struct kprobe *op1, *op2;
|
|
|
|
arch_disarm_kprobe(p);
|
|
|
|
op1 = this_cpu_ptr(&saved_next_opcode);
|
|
op2 = this_cpu_ptr(&saved_next_opcode2);
|
|
|
|
if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
|
|
unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
|
|
op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
|
|
} else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
|
|
unsigned long disp = (p->opcode & 0x0FFF);
|
|
op1->addr =
|
|
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
|
|
|
|
} else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
|
|
unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
|
|
op1->addr =
|
|
(kprobe_opcode_t *) (regs->pc + 4 +
|
|
regs->regs[reg_nr]);
|
|
|
|
} else if (OPCODE_RTS(p->opcode)) {
|
|
op1->addr = (kprobe_opcode_t *) regs->pr;
|
|
|
|
} else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
|
|
unsigned long disp = (p->opcode & 0x00FF);
|
|
/* case 1 */
|
|
op1->addr = p->addr + 1;
|
|
/* case 2 */
|
|
op2->addr =
|
|
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
|
|
op2->opcode = *(op2->addr);
|
|
arch_arm_kprobe(op2);
|
|
|
|
} else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
|
|
unsigned long disp = (p->opcode & 0x00FF);
|
|
/* case 1 */
|
|
op1->addr = p->addr + 2;
|
|
/* case 2 */
|
|
op2->addr =
|
|
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
|
|
op2->opcode = *(op2->addr);
|
|
arch_arm_kprobe(op2);
|
|
|
|
} else {
|
|
op1->addr = p->addr + 1;
|
|
}
|
|
|
|
op1->opcode = *(op1->addr);
|
|
arch_arm_kprobe(op1);
|
|
}
|
|
}
|
|
|
|
/* Called with kretprobe_lock held */
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *) regs->pr;
|
|
ri->fp = NULL;
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->pr = (unsigned long)kretprobe_trampoline;
|
|
}
|
|
|
|
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p;
|
|
int ret = 0;
|
|
kprobe_opcode_t *addr = NULL;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
/*
|
|
* We don't want to be preempted for the entire
|
|
* duration of kprobe processing
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
|
|
addr = (kprobe_opcode_t *) (regs->pc);
|
|
|
|
/* Check we're not actually recursing */
|
|
if (kprobe_running()) {
|
|
p = get_kprobe(addr);
|
|
if (p) {
|
|
if (kcb->kprobe_status == KPROBE_HIT_SS &&
|
|
*p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
|
|
goto no_kprobe;
|
|
}
|
|
/* We have reentered the kprobe_handler(), since
|
|
* another probe was hit while within the handler.
|
|
* We here save the original kprobes variables and
|
|
* just single step on the instruction of the new probe
|
|
* without calling any user handlers.
|
|
*/
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p, regs, kcb);
|
|
kprobes_inc_nmissed_count(p);
|
|
prepare_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
return 1;
|
|
}
|
|
goto no_kprobe;
|
|
}
|
|
|
|
p = get_kprobe(addr);
|
|
if (!p) {
|
|
/* Not one of ours: let kernel handle it */
|
|
if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
*/
|
|
ret = 1;
|
|
}
|
|
|
|
goto no_kprobe;
|
|
}
|
|
|
|
set_current_kprobe(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
|
/* handler has already set things up, so skip ss setup */
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
prepare_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
return 1;
|
|
|
|
no_kprobe:
|
|
preempt_enable_no_resched();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* For function-return probes, init_kprobes() establishes a probepoint
|
|
* here. When a retprobed function returns, this probe is hit and
|
|
* trampoline_probe_handler() runs, calling the kretprobe's handler.
|
|
*/
|
|
static void __used kretprobe_trampoline_holder(void)
|
|
{
|
|
asm volatile (".globl kretprobe_trampoline\n"
|
|
"kretprobe_trampoline:\n\t"
|
|
"nop\n");
|
|
}
|
|
|
|
/*
|
|
* Called when we hit the probe point at kretprobe_trampoline
|
|
*/
|
|
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
regs->pc = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
kprobe_opcode_t *addr = NULL;
|
|
struct kprobe *p = NULL;
|
|
|
|
if (!cur)
|
|
return 0;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
p = this_cpu_ptr(&saved_next_opcode);
|
|
if (p->addr) {
|
|
arch_disarm_kprobe(p);
|
|
p->addr = NULL;
|
|
p->opcode = 0;
|
|
|
|
addr = __this_cpu_read(saved_current_opcode.addr);
|
|
__this_cpu_write(saved_current_opcode.addr, NULL);
|
|
|
|
p = get_kprobe(addr);
|
|
arch_arm_kprobe(p);
|
|
|
|
p = this_cpu_ptr(&saved_next_opcode2);
|
|
if (p->addr) {
|
|
arch_disarm_kprobe(p);
|
|
p->addr = NULL;
|
|
p->opcode = 0;
|
|
}
|
|
}
|
|
|
|
/* Restore back the original saved kprobes variables and continue. */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
|
|
reset_current_kprobe();
|
|
|
|
out:
|
|
preempt_enable_no_resched();
|
|
|
|
return 1;
|
|
}
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
const struct exception_table_entry *entry;
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe, point the pc back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->pc = (unsigned long)cur->addr;
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if ((entry = search_exception_tables(regs->pc)) != NULL) {
|
|
regs->pc = entry->fixup;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* fixup_exception() could not handle it,
|
|
* Let do_page_fault() fix it.
|
|
*/
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wrapper routine to for handling exceptions.
|
|
*/
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct kprobe *p = NULL;
|
|
struct die_args *args = (struct die_args *)data;
|
|
int ret = NOTIFY_DONE;
|
|
kprobe_opcode_t *addr = NULL;
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
addr = (kprobe_opcode_t *) (args->regs->pc);
|
|
if (val == DIE_TRAP &&
|
|
args->trapnr == (BREAKPOINT_INSTRUCTION & 0xff)) {
|
|
if (!kprobe_running()) {
|
|
if (kprobe_handler(args->regs)) {
|
|
ret = NOTIFY_STOP;
|
|
} else {
|
|
/* Not a kprobe trap */
|
|
ret = NOTIFY_DONE;
|
|
}
|
|
} else {
|
|
p = get_kprobe(addr);
|
|
if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
|
|
(kcb->kprobe_status == KPROBE_REENTER)) {
|
|
if (post_kprobe_handler(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
} else {
|
|
if (kprobe_handler(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct kprobe trampoline_p = {
|
|
.addr = (kprobe_opcode_t *)&kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return register_kprobe(&trampoline_p);
|
|
}
|