linux/net/bluetooth/hci_sync.c
Luiz Augusto von Dentz 6abf0dae8c Bluetooth: hci_sync: Fix not indicating power state
When setting power state using legacy/non-mgmt API
(e.g hcitool hci0 up) the likes of mgmt_set_powered_complete won't be
called causing clients of the MGMT API to not be notified of the change
of the state.

Fixes: cf75ad8b41 ("Bluetooth: hci_sync: Convert MGMT_SET_POWERED")
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Tested-by: Tedd Ho-Jeong An <tedd.an@intel.com>
2022-09-30 17:32:12 -07:00

6181 lines
160 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0
/*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2021 Intel Corporation
*/
#include <linux/property.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/mgmt.h>
#include "hci_request.h"
#include "hci_debugfs.h"
#include "smp.h"
#include "eir.h"
#include "msft.h"
#include "aosp.h"
#include "leds.h"
static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
struct sk_buff *skb)
{
bt_dev_dbg(hdev, "result 0x%2.2x", result);
if (hdev->req_status != HCI_REQ_PEND)
return;
hdev->req_result = result;
hdev->req_status = HCI_REQ_DONE;
if (skb) {
struct sock *sk = hci_skb_sk(skb);
/* Drop sk reference if set */
if (sk)
sock_put(sk);
hdev->req_skb = skb_get(skb);
}
wake_up_interruptible(&hdev->req_wait_q);
}
static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
u32 plen, const void *param,
struct sock *sk)
{
int len = HCI_COMMAND_HDR_SIZE + plen;
struct hci_command_hdr *hdr;
struct sk_buff *skb;
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb)
return NULL;
hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
hdr->opcode = cpu_to_le16(opcode);
hdr->plen = plen;
if (plen)
skb_put_data(skb, param, plen);
bt_dev_dbg(hdev, "skb len %d", skb->len);
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
hci_skb_opcode(skb) = opcode;
/* Grab a reference if command needs to be associated with a sock (e.g.
* likely mgmt socket that initiated the command).
*/
if (sk) {
hci_skb_sk(skb) = sk;
sock_hold(sk);
}
return skb;
}
static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
const void *param, u8 event, struct sock *sk)
{
struct hci_dev *hdev = req->hdev;
struct sk_buff *skb;
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
/* If an error occurred during request building, there is no point in
* queueing the HCI command. We can simply return.
*/
if (req->err)
return;
skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
if (!skb) {
bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
opcode);
req->err = -ENOMEM;
return;
}
if (skb_queue_empty(&req->cmd_q))
bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
hci_skb_event(skb) = event;
skb_queue_tail(&req->cmd_q, skb);
}
static int hci_cmd_sync_run(struct hci_request *req)
{
struct hci_dev *hdev = req->hdev;
struct sk_buff *skb;
unsigned long flags;
bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
/* If an error occurred during request building, remove all HCI
* commands queued on the HCI request queue.
*/
if (req->err) {
skb_queue_purge(&req->cmd_q);
return req->err;
}
/* Do not allow empty requests */
if (skb_queue_empty(&req->cmd_q))
return -ENODATA;
skb = skb_peek_tail(&req->cmd_q);
bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
spin_lock_irqsave(&hdev->cmd_q.lock, flags);
skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
queue_work(hdev->workqueue, &hdev->cmd_work);
return 0;
}
/* This function requires the caller holds hdev->req_lock. */
struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u8 event, u32 timeout,
struct sock *sk)
{
struct hci_request req;
struct sk_buff *skb;
int err = 0;
bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
hci_req_init(&req, hdev);
hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
hdev->req_status = HCI_REQ_PEND;
err = hci_cmd_sync_run(&req);
if (err < 0)
return ERR_PTR(err);
err = wait_event_interruptible_timeout(hdev->req_wait_q,
hdev->req_status != HCI_REQ_PEND,
timeout);
if (err == -ERESTARTSYS)
return ERR_PTR(-EINTR);
switch (hdev->req_status) {
case HCI_REQ_DONE:
err = -bt_to_errno(hdev->req_result);
break;
case HCI_REQ_CANCELED:
err = -hdev->req_result;
break;
default:
err = -ETIMEDOUT;
break;
}
hdev->req_status = 0;
hdev->req_result = 0;
skb = hdev->req_skb;
hdev->req_skb = NULL;
bt_dev_dbg(hdev, "end: err %d", err);
if (err < 0) {
kfree_skb(skb);
return ERR_PTR(err);
}
return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_sk);
/* This function requires the caller holds hdev->req_lock. */
struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u32 timeout)
{
return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
}
EXPORT_SYMBOL(__hci_cmd_sync);
/* Send HCI command and wait for command complete event */
struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u32 timeout)
{
struct sk_buff *skb;
if (!test_bit(HCI_UP, &hdev->flags))
return ERR_PTR(-ENETDOWN);
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
hci_req_sync_lock(hdev);
skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
hci_req_sync_unlock(hdev);
return skb;
}
EXPORT_SYMBOL(hci_cmd_sync);
/* This function requires the caller holds hdev->req_lock. */
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u8 event, u32 timeout)
{
return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
NULL);
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);
/* This function requires the caller holds hdev->req_lock. */
int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u8 event, u32 timeout,
struct sock *sk)
{
struct sk_buff *skb;
u8 status;
skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
PTR_ERR(skb));
return PTR_ERR(skb);
}
/* If command return a status event skb will be set to NULL as there are
* no parameters, in case of failure IS_ERR(skb) would have be set to
* the actual error would be found with PTR_ERR(skb).
*/
if (!skb)
return 0;
status = skb->data[0];
kfree_skb(skb);
return status;
}
EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u32 timeout)
{
return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
NULL);
}
EXPORT_SYMBOL(__hci_cmd_sync_status);
static void hci_cmd_sync_work(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
bt_dev_dbg(hdev, "");
/* Dequeue all entries and run them */
while (1) {
struct hci_cmd_sync_work_entry *entry;
mutex_lock(&hdev->cmd_sync_work_lock);
entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
struct hci_cmd_sync_work_entry,
list);
if (entry)
list_del(&entry->list);
mutex_unlock(&hdev->cmd_sync_work_lock);
if (!entry)
break;
bt_dev_dbg(hdev, "entry %p", entry);
if (entry->func) {
int err;
hci_req_sync_lock(hdev);
err = entry->func(hdev, entry->data);
if (entry->destroy)
entry->destroy(hdev, entry->data, err);
hci_req_sync_unlock(hdev);
}
kfree(entry);
}
}
static void hci_cmd_sync_cancel_work(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
cancel_delayed_work_sync(&hdev->cmd_timer);
cancel_delayed_work_sync(&hdev->ncmd_timer);
atomic_set(&hdev->cmd_cnt, 1);
wake_up_interruptible(&hdev->req_wait_q);
}
static int hci_scan_disable_sync(struct hci_dev *hdev);
static int scan_disable_sync(struct hci_dev *hdev, void *data)
{
return hci_scan_disable_sync(hdev);
}
static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
{
return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
}
static void le_scan_disable(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev,
le_scan_disable.work);
int status;
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
goto _return;
cancel_delayed_work(&hdev->le_scan_restart);
status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
if (status) {
bt_dev_err(hdev, "failed to disable LE scan: %d", status);
goto _return;
}
hdev->discovery.scan_start = 0;
/* If we were running LE only scan, change discovery state. If
* we were running both LE and BR/EDR inquiry simultaneously,
* and BR/EDR inquiry is already finished, stop discovery,
* otherwise BR/EDR inquiry will stop discovery when finished.
* If we will resolve remote device name, do not change
* discovery state.
*/
if (hdev->discovery.type == DISCOV_TYPE_LE)
goto discov_stopped;
if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
goto _return;
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
hdev->discovery.state != DISCOVERY_RESOLVING)
goto discov_stopped;
goto _return;
}
status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
if (status) {
bt_dev_err(hdev, "inquiry failed: status %d", status);
goto discov_stopped;
}
goto _return;
discov_stopped:
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
_return:
hci_dev_unlock(hdev);
}
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
u8 filter_dup);
static int hci_le_scan_restart_sync(struct hci_dev *hdev)
{
/* If controller is not scanning we are done. */
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
return 0;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
LE_SCAN_FILTER_DUP_ENABLE);
}
static int le_scan_restart_sync(struct hci_dev *hdev, void *data)
{
return hci_le_scan_restart_sync(hdev);
}
static void le_scan_restart(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev,
le_scan_restart.work);
unsigned long timeout, duration, scan_start, now;
int status;
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL);
if (status) {
bt_dev_err(hdev, "failed to restart LE scan: status %d",
status);
goto unlock;
}
if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
!hdev->discovery.scan_start)
goto unlock;
/* When the scan was started, hdev->le_scan_disable has been queued
* after duration from scan_start. During scan restart this job
* has been canceled, and we need to queue it again after proper
* timeout, to make sure that scan does not run indefinitely.
*/
duration = hdev->discovery.scan_duration;
scan_start = hdev->discovery.scan_start;
now = jiffies;
if (now - scan_start <= duration) {
int elapsed;
if (now >= scan_start)
elapsed = now - scan_start;
else
elapsed = ULONG_MAX - scan_start + now;
timeout = duration - elapsed;
} else {
timeout = 0;
}
queue_delayed_work(hdev->req_workqueue,
&hdev->le_scan_disable, timeout);
unlock:
hci_dev_unlock(hdev);
}
static int reenable_adv_sync(struct hci_dev *hdev, void *data)
{
bt_dev_dbg(hdev, "");
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
list_empty(&hdev->adv_instances))
return 0;
if (hdev->cur_adv_instance) {
return hci_schedule_adv_instance_sync(hdev,
hdev->cur_adv_instance,
true);
} else {
if (ext_adv_capable(hdev)) {
hci_start_ext_adv_sync(hdev, 0x00);
} else {
hci_update_adv_data_sync(hdev, 0x00);
hci_update_scan_rsp_data_sync(hdev, 0x00);
hci_enable_advertising_sync(hdev);
}
}
return 0;
}
static void reenable_adv(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev,
reenable_adv_work);
int status;
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
if (status)
bt_dev_err(hdev, "failed to reenable ADV: %d", status);
hci_dev_unlock(hdev);
}
static void cancel_adv_timeout(struct hci_dev *hdev)
{
if (hdev->adv_instance_timeout) {
hdev->adv_instance_timeout = 0;
cancel_delayed_work(&hdev->adv_instance_expire);
}
}
/* For a single instance:
* - force == true: The instance will be removed even when its remaining
* lifetime is not zero.
* - force == false: the instance will be deactivated but kept stored unless
* the remaining lifetime is zero.
*
* For instance == 0x00:
* - force == true: All instances will be removed regardless of their timeout
* setting.
* - force == false: Only instances that have a timeout will be removed.
*/
int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
u8 instance, bool force)
{
struct adv_info *adv_instance, *n, *next_instance = NULL;
int err;
u8 rem_inst;
/* Cancel any timeout concerning the removed instance(s). */
if (!instance || hdev->cur_adv_instance == instance)
cancel_adv_timeout(hdev);
/* Get the next instance to advertise BEFORE we remove
* the current one. This can be the same instance again
* if there is only one instance.
*/
if (instance && hdev->cur_adv_instance == instance)
next_instance = hci_get_next_instance(hdev, instance);
if (instance == 0x00) {
list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
list) {
if (!(force || adv_instance->timeout))
continue;
rem_inst = adv_instance->instance;
err = hci_remove_adv_instance(hdev, rem_inst);
if (!err)
mgmt_advertising_removed(sk, hdev, rem_inst);
}
} else {
adv_instance = hci_find_adv_instance(hdev, instance);
if (force || (adv_instance && adv_instance->timeout &&
!adv_instance->remaining_time)) {
/* Don't advertise a removed instance. */
if (next_instance &&
next_instance->instance == instance)
next_instance = NULL;
err = hci_remove_adv_instance(hdev, instance);
if (!err)
mgmt_advertising_removed(sk, hdev, instance);
}
}
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
return 0;
if (next_instance && !ext_adv_capable(hdev))
return hci_schedule_adv_instance_sync(hdev,
next_instance->instance,
false);
return 0;
}
static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
{
u8 instance = *(u8 *)data;
kfree(data);
hci_clear_adv_instance_sync(hdev, NULL, instance, false);
if (list_empty(&hdev->adv_instances))
return hci_disable_advertising_sync(hdev);
return 0;
}
static void adv_timeout_expire(struct work_struct *work)
{
u8 *inst_ptr;
struct hci_dev *hdev = container_of(work, struct hci_dev,
adv_instance_expire.work);
bt_dev_dbg(hdev, "");
hci_dev_lock(hdev);
hdev->adv_instance_timeout = 0;
if (hdev->cur_adv_instance == 0x00)
goto unlock;
inst_ptr = kmalloc(1, GFP_KERNEL);
if (!inst_ptr)
goto unlock;
*inst_ptr = hdev->cur_adv_instance;
hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
unlock:
hci_dev_unlock(hdev);
}
void hci_cmd_sync_init(struct hci_dev *hdev)
{
INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
mutex_init(&hdev->cmd_sync_work_lock);
INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
}
void hci_cmd_sync_clear(struct hci_dev *hdev)
{
struct hci_cmd_sync_work_entry *entry, *tmp;
cancel_work_sync(&hdev->cmd_sync_work);
cancel_work_sync(&hdev->reenable_adv_work);
list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
if (entry->destroy)
entry->destroy(hdev, entry->data, -ECANCELED);
list_del(&entry->list);
kfree(entry);
}
}
void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
{
bt_dev_dbg(hdev, "err 0x%2.2x", err);
if (hdev->req_status == HCI_REQ_PEND) {
hdev->req_result = err;
hdev->req_status = HCI_REQ_CANCELED;
cancel_delayed_work_sync(&hdev->cmd_timer);
cancel_delayed_work_sync(&hdev->ncmd_timer);
atomic_set(&hdev->cmd_cnt, 1);
wake_up_interruptible(&hdev->req_wait_q);
}
}
void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
{
bt_dev_dbg(hdev, "err 0x%2.2x", err);
if (hdev->req_status == HCI_REQ_PEND) {
hdev->req_result = err;
hdev->req_status = HCI_REQ_CANCELED;
queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
}
}
EXPORT_SYMBOL(hci_cmd_sync_cancel);
int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
void *data, hci_cmd_sync_work_destroy_t destroy)
{
struct hci_cmd_sync_work_entry *entry;
if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
return -ENODEV;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->func = func;
entry->data = data;
entry->destroy = destroy;
mutex_lock(&hdev->cmd_sync_work_lock);
list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
mutex_unlock(&hdev->cmd_sync_work_lock);
queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
return 0;
}
EXPORT_SYMBOL(hci_cmd_sync_queue);
int hci_update_eir_sync(struct hci_dev *hdev)
{
struct hci_cp_write_eir cp;
bt_dev_dbg(hdev, "");
if (!hdev_is_powered(hdev))
return 0;
if (!lmp_ext_inq_capable(hdev))
return 0;
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
return 0;
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
return 0;
memset(&cp, 0, sizeof(cp));
eir_create(hdev, cp.data);
if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
return 0;
memcpy(hdev->eir, cp.data, sizeof(cp.data));
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static u8 get_service_classes(struct hci_dev *hdev)
{
struct bt_uuid *uuid;
u8 val = 0;
list_for_each_entry(uuid, &hdev->uuids, list)
val |= uuid->svc_hint;
return val;
}
int hci_update_class_sync(struct hci_dev *hdev)
{
u8 cod[3];
bt_dev_dbg(hdev, "");
if (!hdev_is_powered(hdev))
return 0;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
return 0;
cod[0] = hdev->minor_class;
cod[1] = hdev->major_class;
cod[2] = get_service_classes(hdev);
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
cod[1] |= 0x20;
if (memcmp(cod, hdev->dev_class, 3) == 0)
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
sizeof(cod), cod, HCI_CMD_TIMEOUT);
}
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
/* If there is no connection we are OK to advertise. */
if (hci_conn_num(hdev, LE_LINK) == 0)
return true;
/* Check le_states if there is any connection in peripheral role. */
if (hdev->conn_hash.le_num_peripheral > 0) {
/* Peripheral connection state and non connectable mode
* bit 20.
*/
if (!connectable && !(hdev->le_states[2] & 0x10))
return false;
/* Peripheral connection state and connectable mode bit 38
* and scannable bit 21.
*/
if (connectable && (!(hdev->le_states[4] & 0x40) ||
!(hdev->le_states[2] & 0x20)))
return false;
}
/* Check le_states if there is any connection in central role. */
if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
/* Central connection state and non connectable mode bit 18. */
if (!connectable && !(hdev->le_states[2] & 0x02))
return false;
/* Central connection state and connectable mode bit 35 and
* scannable 19.
*/
if (connectable && (!(hdev->le_states[4] & 0x08) ||
!(hdev->le_states[2] & 0x08)))
return false;
}
return true;
}
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
/* If privacy is not enabled don't use RPA */
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
return false;
/* If basic privacy mode is enabled use RPA */
if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
return true;
/* If limited privacy mode is enabled don't use RPA if we're
* both discoverable and bondable.
*/
if ((flags & MGMT_ADV_FLAG_DISCOV) &&
hci_dev_test_flag(hdev, HCI_BONDABLE))
return false;
/* We're neither bondable nor discoverable in the limited
* privacy mode, therefore use RPA.
*/
return true;
}
static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
{
/* If we're advertising or initiating an LE connection we can't
* go ahead and change the random address at this time. This is
* because the eventual initiator address used for the
* subsequently created connection will be undefined (some
* controllers use the new address and others the one we had
* when the operation started).
*
* In this kind of scenario skip the update and let the random
* address be updated at the next cycle.
*/
if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
hci_lookup_le_connect(hdev)) {
bt_dev_dbg(hdev, "Deferring random address update");
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
return 0;
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
6, rpa, HCI_CMD_TIMEOUT);
}
int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
bool rpa, u8 *own_addr_type)
{
int err;
/* If privacy is enabled use a resolvable private address. If
* current RPA has expired or there is something else than
* the current RPA in use, then generate a new one.
*/
if (rpa) {
/* If Controller supports LL Privacy use own address type is
* 0x03
*/
if (use_ll_privacy(hdev))
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
else
*own_addr_type = ADDR_LE_DEV_RANDOM;
/* Check if RPA is valid */
if (rpa_valid(hdev))
return 0;
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
if (err < 0) {
bt_dev_err(hdev, "failed to generate new RPA");
return err;
}
err = hci_set_random_addr_sync(hdev, &hdev->rpa);
if (err)
return err;
return 0;
}
/* In case of required privacy without resolvable private address,
* use an non-resolvable private address. This is useful for active
* scanning and non-connectable advertising.
*/
if (require_privacy) {
bdaddr_t nrpa;
while (true) {
/* The non-resolvable private address is generated
* from random six bytes with the two most significant
* bits cleared.
*/
get_random_bytes(&nrpa, 6);
nrpa.b[5] &= 0x3f;
/* The non-resolvable private address shall not be
* equal to the public address.
*/
if (bacmp(&hdev->bdaddr, &nrpa))
break;
}
*own_addr_type = ADDR_LE_DEV_RANDOM;
return hci_set_random_addr_sync(hdev, &nrpa);
}
/* If forcing static address is in use or there is no public
* address use the static address as random address (but skip
* the HCI command if the current random address is already the
* static one.
*
* In case BR/EDR has been disabled on a dual-mode controller
* and a static address has been configured, then use that
* address instead of the public BR/EDR address.
*/
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
!bacmp(&hdev->bdaddr, BDADDR_ANY) ||
(!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
bacmp(&hdev->static_addr, BDADDR_ANY))) {
*own_addr_type = ADDR_LE_DEV_RANDOM;
if (bacmp(&hdev->static_addr, &hdev->random_addr))
return hci_set_random_addr_sync(hdev,
&hdev->static_addr);
return 0;
}
/* Neither privacy nor static address is being used so use a
* public address.
*/
*own_addr_type = ADDR_LE_DEV_PUBLIC;
return 0;
}
static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_ext_adv_enable *cp;
struct hci_cp_ext_adv_set *set;
u8 data[sizeof(*cp) + sizeof(*set) * 1];
u8 size;
/* If request specifies an instance that doesn't exist, fail */
if (instance > 0) {
struct adv_info *adv;
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
/* If not enabled there is nothing to do */
if (!adv->enabled)
return 0;
}
memset(data, 0, sizeof(data));
cp = (void *)data;
set = (void *)cp->data;
/* Instance 0x00 indicates all advertising instances will be disabled */
cp->num_of_sets = !!instance;
cp->enable = 0x00;
set->handle = instance;
size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
size, data, HCI_CMD_TIMEOUT);
}
static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
bdaddr_t *random_addr)
{
struct hci_cp_le_set_adv_set_rand_addr cp;
int err;
if (!instance) {
/* Instance 0x00 doesn't have an adv_info, instead it uses
* hdev->random_addr to track its address so whenever it needs
* to be updated this also set the random address since
* hdev->random_addr is shared with scan state machine.
*/
err = hci_set_random_addr_sync(hdev, random_addr);
if (err)
return err;
}
memset(&cp, 0, sizeof(cp));
cp.handle = instance;
bacpy(&cp.bdaddr, random_addr);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_ext_adv_params cp;
bool connectable;
u32 flags;
bdaddr_t random_addr;
u8 own_addr_type;
int err;
struct adv_info *adv;
bool secondary_adv;
if (instance > 0) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
} else {
adv = NULL;
}
/* Updating parameters of an active instance will return a
* Command Disallowed error, so we must first disable the
* instance if it is active.
*/
if (adv && !adv->pending) {
err = hci_disable_ext_adv_instance_sync(hdev, instance);
if (err)
return err;
}
flags = hci_adv_instance_flags(hdev, instance);
/* If the "connectable" instance flag was not set, then choose between
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
*/
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
mgmt_get_connectable(hdev);
if (!is_advertising_allowed(hdev, connectable))
return -EPERM;
/* Set require_privacy to true only when non-connectable
* advertising is used. In that case it is fine to use a
* non-resolvable private address.
*/
err = hci_get_random_address(hdev, !connectable,
adv_use_rpa(hdev, flags), adv,
&own_addr_type, &random_addr);
if (err < 0)
return err;
memset(&cp, 0, sizeof(cp));
if (adv) {
hci_cpu_to_le24(adv->min_interval, cp.min_interval);
hci_cpu_to_le24(adv->max_interval, cp.max_interval);
cp.tx_power = adv->tx_power;
} else {
hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
}
secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
if (connectable) {
if (secondary_adv)
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
else
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
} else if (hci_adv_instance_is_scannable(hdev, instance) ||
(flags & MGMT_ADV_PARAM_SCAN_RSP)) {
if (secondary_adv)
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
else
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
} else {
if (secondary_adv)
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
else
cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
}
/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
* contains the peers Identity Address and the Peer_Address_Type
* parameter contains the peers Identity Type (i.e., 0x00 or 0x01).
* These parameters are used to locate the corresponding local IRK in
* the resolving list; this IRK is used to generate their own address
* used in the advertisement.
*/
if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
hci_copy_identity_address(hdev, &cp.peer_addr,
&cp.peer_addr_type);
cp.own_addr_type = own_addr_type;
cp.channel_map = hdev->le_adv_channel_map;
cp.handle = instance;
if (flags & MGMT_ADV_FLAG_SEC_2M) {
cp.primary_phy = HCI_ADV_PHY_1M;
cp.secondary_phy = HCI_ADV_PHY_2M;
} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
cp.primary_phy = HCI_ADV_PHY_CODED;
cp.secondary_phy = HCI_ADV_PHY_CODED;
} else {
/* In all other cases use 1M */
cp.primary_phy = HCI_ADV_PHY_1M;
cp.secondary_phy = HCI_ADV_PHY_1M;
}
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err)
return err;
if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
bacmp(&random_addr, BDADDR_ANY)) {
/* Check if random address need to be updated */
if (adv) {
if (!bacmp(&random_addr, &adv->random_addr))
return 0;
} else {
if (!bacmp(&random_addr, &hdev->random_addr))
return 0;
}
return hci_set_adv_set_random_addr_sync(hdev, instance,
&random_addr);
}
return 0;
}
static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
{
struct {
struct hci_cp_le_set_ext_scan_rsp_data cp;
u8 data[HCI_MAX_EXT_AD_LENGTH];
} pdu;
u8 len;
struct adv_info *adv = NULL;
int err;
memset(&pdu, 0, sizeof(pdu));
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv || !adv->scan_rsp_changed)
return 0;
}
len = eir_create_scan_rsp(hdev, instance, pdu.data);
pdu.cp.handle = instance;
pdu.cp.length = len;
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
sizeof(pdu.cp) + len, &pdu.cp,
HCI_CMD_TIMEOUT);
if (err)
return err;
if (adv) {
adv->scan_rsp_changed = false;
} else {
memcpy(hdev->scan_rsp_data, pdu.data, len);
hdev->scan_rsp_data_len = len;
}
return 0;
}
static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_scan_rsp_data cp;
u8 len;
memset(&cp, 0, sizeof(cp));
len = eir_create_scan_rsp(hdev, instance, cp.data);
if (hdev->scan_rsp_data_len == len &&
!memcmp(cp.data, hdev->scan_rsp_data, len))
return 0;
memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
hdev->scan_rsp_data_len = len;
cp.length = len;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
{
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
if (ext_adv_capable(hdev))
return hci_set_ext_scan_rsp_data_sync(hdev, instance);
return __hci_set_scan_rsp_data_sync(hdev, instance);
}
int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_ext_adv_enable *cp;
struct hci_cp_ext_adv_set *set;
u8 data[sizeof(*cp) + sizeof(*set) * 1];
struct adv_info *adv;
if (instance > 0) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
/* If already enabled there is nothing to do */
if (adv->enabled)
return 0;
} else {
adv = NULL;
}
cp = (void *)data;
set = (void *)cp->data;
memset(cp, 0, sizeof(*cp));
cp->enable = 0x01;
cp->num_of_sets = 0x01;
memset(set, 0, sizeof(*set));
set->handle = instance;
/* Set duration per instance since controller is responsible for
* scheduling it.
*/
if (adv && adv->timeout) {
u16 duration = adv->timeout * MSEC_PER_SEC;
/* Time = N * 10 ms */
set->duration = cpu_to_le16(duration / 10);
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
sizeof(*cp) +
sizeof(*set) * cp->num_of_sets,
data, HCI_CMD_TIMEOUT);
}
int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
{
int err;
err = hci_setup_ext_adv_instance_sync(hdev, instance);
if (err)
return err;
err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
if (err)
return err;
return hci_enable_ext_advertising_sync(hdev, instance);
}
static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_per_adv_enable cp;
/* If periodic advertising already disabled there is nothing to do. */
if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
return 0;
memset(&cp, 0, sizeof(cp));
cp.enable = 0x00;
cp.handle = instance;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
u16 min_interval, u16 max_interval)
{
struct hci_cp_le_set_per_adv_params cp;
memset(&cp, 0, sizeof(cp));
if (!min_interval)
min_interval = DISCOV_LE_PER_ADV_INT_MIN;
if (!max_interval)
max_interval = DISCOV_LE_PER_ADV_INT_MAX;
cp.handle = instance;
cp.min_interval = cpu_to_le16(min_interval);
cp.max_interval = cpu_to_le16(max_interval);
cp.periodic_properties = 0x0000;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
struct {
struct hci_cp_le_set_per_adv_data cp;
u8 data[HCI_MAX_PER_AD_LENGTH];
} pdu;
u8 len;
memset(&pdu, 0, sizeof(pdu));
if (instance) {
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
if (!adv || !adv->periodic)
return 0;
}
len = eir_create_per_adv_data(hdev, instance, pdu.data);
pdu.cp.length = len;
pdu.cp.handle = instance;
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
sizeof(pdu.cp) + len, &pdu,
HCI_CMD_TIMEOUT);
}
static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_per_adv_enable cp;
/* If periodic advertising already enabled there is nothing to do. */
if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
return 0;
memset(&cp, 0, sizeof(cp));
cp.enable = 0x01;
cp.handle = instance;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Checks if periodic advertising data contains a Basic Announcement and if it
* does generates a Broadcast ID and add Broadcast Announcement.
*/
static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
{
u8 bid[3];
u8 ad[4 + 3];
/* Skip if NULL adv as instance 0x00 is used for general purpose
* advertising so it cannot used for the likes of Broadcast Announcement
* as it can be overwritten at any point.
*/
if (!adv)
return 0;
/* Check if PA data doesn't contains a Basic Audio Announcement then
* there is nothing to do.
*/
if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
0x1851, NULL))
return 0;
/* Check if advertising data already has a Broadcast Announcement since
* the process may want to control the Broadcast ID directly and in that
* case the kernel shall no interfere.
*/
if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
NULL))
return 0;
/* Generate Broadcast ID */
get_random_bytes(bid, sizeof(bid));
eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
return hci_update_adv_data_sync(hdev, adv->instance);
}
int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
u8 *data, u32 flags, u16 min_interval,
u16 max_interval, u16 sync_interval)
{
struct adv_info *adv = NULL;
int err;
bool added = false;
hci_disable_per_advertising_sync(hdev, instance);
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
/* Create an instance if that could not be found */
if (!adv) {
adv = hci_add_per_instance(hdev, instance, flags,
data_len, data,
sync_interval,
sync_interval);
if (IS_ERR(adv))
return PTR_ERR(adv);
added = true;
}
}
/* Only start advertising if instance 0 or if a dedicated instance has
* been added.
*/
if (!adv || added) {
err = hci_start_ext_adv_sync(hdev, instance);
if (err < 0)
goto fail;
err = hci_adv_bcast_annoucement(hdev, adv);
if (err < 0)
goto fail;
}
err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
max_interval);
if (err < 0)
goto fail;
err = hci_set_per_adv_data_sync(hdev, instance);
if (err < 0)
goto fail;
err = hci_enable_per_advertising_sync(hdev, instance);
if (err < 0)
goto fail;
return 0;
fail:
if (added)
hci_remove_adv_instance(hdev, instance);
return err;
}
static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
{
int err;
if (ext_adv_capable(hdev))
return hci_start_ext_adv_sync(hdev, instance);
err = hci_update_adv_data_sync(hdev, instance);
if (err)
return err;
err = hci_update_scan_rsp_data_sync(hdev, instance);
if (err)
return err;
return hci_enable_advertising_sync(hdev);
}
int hci_enable_advertising_sync(struct hci_dev *hdev)
{
struct adv_info *adv_instance;
struct hci_cp_le_set_adv_param cp;
u8 own_addr_type, enable = 0x01;
bool connectable;
u16 adv_min_interval, adv_max_interval;
u32 flags;
u8 status;
if (ext_adv_capable(hdev))
return hci_enable_ext_advertising_sync(hdev,
hdev->cur_adv_instance);
flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
/* If the "connectable" instance flag was not set, then choose between
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
*/
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
mgmt_get_connectable(hdev);
if (!is_advertising_allowed(hdev, connectable))
return -EINVAL;
status = hci_disable_advertising_sync(hdev);
if (status)
return status;
/* Clear the HCI_LE_ADV bit temporarily so that the
* hci_update_random_address knows that it's safe to go ahead
* and write a new random address. The flag will be set back on
* as soon as the SET_ADV_ENABLE HCI command completes.
*/
hci_dev_clear_flag(hdev, HCI_LE_ADV);
/* Set require_privacy to true only when non-connectable
* advertising is used. In that case it is fine to use a
* non-resolvable private address.
*/
status = hci_update_random_address_sync(hdev, !connectable,
adv_use_rpa(hdev, flags),
&own_addr_type);
if (status)
return status;
memset(&cp, 0, sizeof(cp));
if (adv_instance) {
adv_min_interval = adv_instance->min_interval;
adv_max_interval = adv_instance->max_interval;
} else {
adv_min_interval = hdev->le_adv_min_interval;
adv_max_interval = hdev->le_adv_max_interval;
}
if (connectable) {
cp.type = LE_ADV_IND;
} else {
if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
cp.type = LE_ADV_SCAN_IND;
else
cp.type = LE_ADV_NONCONN_IND;
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
}
}
cp.min_interval = cpu_to_le16(adv_min_interval);
cp.max_interval = cpu_to_le16(adv_max_interval);
cp.own_address_type = own_addr_type;
cp.channel_map = hdev->le_adv_channel_map;
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (status)
return status;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
}
static int enable_advertising_sync(struct hci_dev *hdev, void *data)
{
return hci_enable_advertising_sync(hdev);
}
int hci_enable_advertising(struct hci_dev *hdev)
{
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
list_empty(&hdev->adv_instances))
return 0;
return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
}
int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
struct sock *sk)
{
int err;
if (!ext_adv_capable(hdev))
return 0;
err = hci_disable_ext_adv_instance_sync(hdev, instance);
if (err)
return err;
/* If request specifies an instance that doesn't exist, fail */
if (instance > 0 && !hci_find_adv_instance(hdev, instance))
return -EINVAL;
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
sizeof(instance), &instance, 0,
HCI_CMD_TIMEOUT, sk);
}
static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
{
struct adv_info *adv = data;
u8 instance = 0;
if (adv)
instance = adv->instance;
return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
}
int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
{
struct adv_info *adv = NULL;
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -EINVAL;
}
return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
}
int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
{
struct hci_cp_le_term_big cp;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
cp.reason = reason;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
struct {
struct hci_cp_le_set_ext_adv_data cp;
u8 data[HCI_MAX_EXT_AD_LENGTH];
} pdu;
u8 len;
struct adv_info *adv = NULL;
int err;
memset(&pdu, 0, sizeof(pdu));
if (instance) {
adv = hci_find_adv_instance(hdev, instance);
if (!adv || !adv->adv_data_changed)
return 0;
}
len = eir_create_adv_data(hdev, instance, pdu.data);
pdu.cp.length = len;
pdu.cp.handle = instance;
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
sizeof(pdu.cp) + len, &pdu.cp,
HCI_CMD_TIMEOUT);
if (err)
return err;
/* Update data if the command succeed */
if (adv) {
adv->adv_data_changed = false;
} else {
memcpy(hdev->adv_data, pdu.data, len);
hdev->adv_data_len = len;
}
return 0;
}
static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
struct hci_cp_le_set_adv_data cp;
u8 len;
memset(&cp, 0, sizeof(cp));
len = eir_create_adv_data(hdev, instance, cp.data);
/* There's nothing to do if the data hasn't changed */
if (hdev->adv_data_len == len &&
memcmp(cp.data, hdev->adv_data, len) == 0)
return 0;
memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
hdev->adv_data_len = len;
cp.length = len;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
{
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
if (ext_adv_capable(hdev))
return hci_set_ext_adv_data_sync(hdev, instance);
return hci_set_adv_data_sync(hdev, instance);
}
int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
bool force)
{
struct adv_info *adv = NULL;
u16 timeout;
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
return -EPERM;
if (hdev->adv_instance_timeout)
return -EBUSY;
adv = hci_find_adv_instance(hdev, instance);
if (!adv)
return -ENOENT;
/* A zero timeout means unlimited advertising. As long as there is
* only one instance, duration should be ignored. We still set a timeout
* in case further instances are being added later on.
*
* If the remaining lifetime of the instance is more than the duration
* then the timeout corresponds to the duration, otherwise it will be
* reduced to the remaining instance lifetime.
*/
if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
timeout = adv->duration;
else
timeout = adv->remaining_time;
/* The remaining time is being reduced unless the instance is being
* advertised without time limit.
*/
if (adv->timeout)
adv->remaining_time = adv->remaining_time - timeout;
/* Only use work for scheduling instances with legacy advertising */
if (!ext_adv_capable(hdev)) {
hdev->adv_instance_timeout = timeout;
queue_delayed_work(hdev->req_workqueue,
&hdev->adv_instance_expire,
msecs_to_jiffies(timeout * 1000));
}
/* If we're just re-scheduling the same instance again then do not
* execute any HCI commands. This happens when a single instance is
* being advertised.
*/
if (!force && hdev->cur_adv_instance == instance &&
hci_dev_test_flag(hdev, HCI_LE_ADV))
return 0;
hdev->cur_adv_instance = instance;
return hci_start_adv_sync(hdev, instance);
}
static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
{
int err;
if (!ext_adv_capable(hdev))
return 0;
/* Disable instance 0x00 to disable all instances */
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
if (err)
return err;
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
0, NULL, 0, HCI_CMD_TIMEOUT, sk);
}
static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
{
struct adv_info *adv, *n;
int err = 0;
if (ext_adv_capable(hdev))
/* Remove all existing sets */
err = hci_clear_adv_sets_sync(hdev, sk);
if (ext_adv_capable(hdev))
return err;
/* This is safe as long as there is no command send while the lock is
* held.
*/
hci_dev_lock(hdev);
/* Cleanup non-ext instances */
list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
u8 instance = adv->instance;
int err;
if (!(force || adv->timeout))
continue;
err = hci_remove_adv_instance(hdev, instance);
if (!err)
mgmt_advertising_removed(sk, hdev, instance);
}
hci_dev_unlock(hdev);
return 0;
}
static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
struct sock *sk)
{
int err = 0;
/* If we use extended advertising, instance has to be removed first. */
if (ext_adv_capable(hdev))
err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
if (ext_adv_capable(hdev))
return err;
/* This is safe as long as there is no command send while the lock is
* held.
*/
hci_dev_lock(hdev);
err = hci_remove_adv_instance(hdev, instance);
if (!err)
mgmt_advertising_removed(sk, hdev, instance);
hci_dev_unlock(hdev);
return err;
}
/* For a single instance:
* - force == true: The instance will be removed even when its remaining
* lifetime is not zero.
* - force == false: the instance will be deactivated but kept stored unless
* the remaining lifetime is zero.
*
* For instance == 0x00:
* - force == true: All instances will be removed regardless of their timeout
* setting.
* - force == false: Only instances that have a timeout will be removed.
*/
int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
u8 instance, bool force)
{
struct adv_info *next = NULL;
int err;
/* Cancel any timeout concerning the removed instance(s). */
if (!instance || hdev->cur_adv_instance == instance)
cancel_adv_timeout(hdev);
/* Get the next instance to advertise BEFORE we remove
* the current one. This can be the same instance again
* if there is only one instance.
*/
if (hdev->cur_adv_instance == instance)
next = hci_get_next_instance(hdev, instance);
if (!instance) {
err = hci_clear_adv_sync(hdev, sk, force);
if (err)
return err;
} else {
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
if (force || (adv && adv->timeout && !adv->remaining_time)) {
/* Don't advertise a removed instance. */
if (next && next->instance == instance)
next = NULL;
err = hci_remove_adv_sync(hdev, instance, sk);
if (err)
return err;
}
}
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
return 0;
if (next && !ext_adv_capable(hdev))
hci_schedule_adv_instance_sync(hdev, next->instance, false);
return 0;
}
int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
{
struct hci_cp_read_rssi cp;
cp.handle = handle;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
sizeof(*cp), cp, HCI_CMD_TIMEOUT);
}
int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
{
struct hci_cp_read_tx_power cp;
cp.handle = handle;
cp.type = type;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_disable_advertising_sync(struct hci_dev *hdev)
{
u8 enable = 0x00;
int err = 0;
/* If controller is not advertising we are done. */
if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
return 0;
if (ext_adv_capable(hdev))
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
if (ext_adv_capable(hdev))
return err;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
}
static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
u8 filter_dup)
{
struct hci_cp_le_set_ext_scan_enable cp;
memset(&cp, 0, sizeof(cp));
cp.enable = val;
if (hci_dev_test_flag(hdev, HCI_MESH))
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
else
cp.filter_dup = filter_dup;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
u8 filter_dup)
{
struct hci_cp_le_set_scan_enable cp;
if (use_ext_scan(hdev))
return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
memset(&cp, 0, sizeof(cp));
cp.enable = val;
if (val && hci_dev_test_flag(hdev, HCI_MESH))
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
else
cp.filter_dup = filter_dup;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
{
if (!use_ll_privacy(hdev))
return 0;
/* If controller is not/already resolving we are done. */
if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
sizeof(val), &val, HCI_CMD_TIMEOUT);
}
static int hci_scan_disable_sync(struct hci_dev *hdev)
{
int err;
/* If controller is not scanning we are done. */
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
return 0;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
if (err) {
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
return err;
}
return err;
}
static bool scan_use_rpa(struct hci_dev *hdev)
{
return hci_dev_test_flag(hdev, HCI_PRIVACY);
}
static void hci_start_interleave_scan(struct hci_dev *hdev)
{
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
queue_delayed_work(hdev->req_workqueue,
&hdev->interleave_scan, 0);
}
static bool is_interleave_scanning(struct hci_dev *hdev)
{
return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}
static void cancel_interleave_scan(struct hci_dev *hdev)
{
bt_dev_dbg(hdev, "cancelling interleave scan");
cancel_delayed_work_sync(&hdev->interleave_scan);
hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}
/* Return true if interleave_scan wasn't started until exiting this function,
* otherwise, return false
*/
static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
{
/* Do interleaved scan only if all of the following are true:
* - There is at least one ADV monitor
* - At least one pending LE connection or one device to be scanned for
* - Monitor offloading is not supported
* If so, we should alternate between allowlist scan and one without
* any filters to save power.
*/
bool use_interleaving = hci_is_adv_monitoring(hdev) &&
!(list_empty(&hdev->pend_le_conns) &&
list_empty(&hdev->pend_le_reports)) &&
hci_get_adv_monitor_offload_ext(hdev) ==
HCI_ADV_MONITOR_EXT_NONE;
bool is_interleaving = is_interleave_scanning(hdev);
if (use_interleaving && !is_interleaving) {
hci_start_interleave_scan(hdev);
bt_dev_dbg(hdev, "starting interleave scan");
return true;
}
if (!use_interleaving && is_interleaving)
cancel_interleave_scan(hdev);
return false;
}
/* Removes connection to resolve list if needed.*/
static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 bdaddr_type)
{
struct hci_cp_le_del_from_resolv_list cp;
struct bdaddr_list_with_irk *entry;
if (!use_ll_privacy(hdev))
return 0;
/* Check if the IRK has been programmed */
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
bdaddr_type);
if (!entry)
return 0;
cp.bdaddr_type = bdaddr_type;
bacpy(&cp.bdaddr, bdaddr);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 bdaddr_type)
{
struct hci_cp_le_del_from_accept_list cp;
int err;
/* Check if device is on accept list before removing it */
if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
return 0;
cp.bdaddr_type = bdaddr_type;
bacpy(&cp.bdaddr, bdaddr);
/* Ignore errors when removing from resolving list as that is likely
* that the device was never added.
*/
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err) {
bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
return err;
}
bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
cp.bdaddr_type);
return 0;
}
/* Adds connection to resolve list if needed.
* Setting params to NULL programs local hdev->irk
*/
static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
struct hci_conn_params *params)
{
struct hci_cp_le_add_to_resolv_list cp;
struct smp_irk *irk;
struct bdaddr_list_with_irk *entry;
if (!use_ll_privacy(hdev))
return 0;
/* Attempt to program local identity address, type and irk if params is
* NULL.
*/
if (!params) {
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
return 0;
hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
memcpy(cp.peer_irk, hdev->irk, 16);
goto done;
}
irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
if (!irk)
return 0;
/* Check if the IK has _not_ been programmed yet. */
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
&params->addr,
params->addr_type);
if (entry)
return 0;
cp.bdaddr_type = params->addr_type;
bacpy(&cp.bdaddr, &params->addr);
memcpy(cp.peer_irk, irk->val, 16);
/* Default privacy mode is always Network */
params->privacy_mode = HCI_NETWORK_PRIVACY;
done:
if (hci_dev_test_flag(hdev, HCI_PRIVACY))
memcpy(cp.local_irk, hdev->irk, 16);
else
memset(cp.local_irk, 0, 16);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Set Device Privacy Mode. */
static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
struct hci_conn_params *params)
{
struct hci_cp_le_set_privacy_mode cp;
struct smp_irk *irk;
/* If device privacy mode has already been set there is nothing to do */
if (params->privacy_mode == HCI_DEVICE_PRIVACY)
return 0;
/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
* indicates that LL Privacy has been enabled and
* HCI_OP_LE_SET_PRIVACY_MODE is supported.
*/
if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
return 0;
irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
if (!irk)
return 0;
memset(&cp, 0, sizeof(cp));
cp.bdaddr_type = irk->addr_type;
bacpy(&cp.bdaddr, &irk->bdaddr);
cp.mode = HCI_DEVICE_PRIVACY;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Adds connection to allow list if needed, if the device uses RPA (has IRK)
* this attempts to program the device in the resolving list as well and
* properly set the privacy mode.
*/
static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
struct hci_conn_params *params,
u8 *num_entries)
{
struct hci_cp_le_add_to_accept_list cp;
int err;
/* During suspend, only wakeable devices can be in acceptlist */
if (hdev->suspended &&
!(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
return 0;
/* Select filter policy to accept all advertising */
if (*num_entries >= hdev->le_accept_list_size)
return -ENOSPC;
/* Accept list can not be used with RPAs */
if (!use_ll_privacy(hdev) &&
hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
return -EINVAL;
/* Attempt to program the device in the resolving list first to avoid
* having to rollback in case it fails since the resolving list is
* dynamic it can probably be smaller than the accept list.
*/
err = hci_le_add_resolve_list_sync(hdev, params);
if (err) {
bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
return err;
}
/* Set Privacy Mode */
err = hci_le_set_privacy_mode_sync(hdev, params);
if (err) {
bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
return err;
}
/* Check if already in accept list */
if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
params->addr_type))
return 0;
*num_entries += 1;
cp.bdaddr_type = params->addr_type;
bacpy(&cp.bdaddr, &params->addr);
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err) {
bt_dev_err(hdev, "Unable to add to allow list: %d", err);
/* Rollback the device from the resolving list */
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
return err;
}
bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
cp.bdaddr_type);
return 0;
}
/* This function disables/pause all advertising instances */
static int hci_pause_advertising_sync(struct hci_dev *hdev)
{
int err;
int old_state;
/* If already been paused there is nothing to do. */
if (hdev->advertising_paused)
return 0;
bt_dev_dbg(hdev, "Pausing directed advertising");
/* Stop directed advertising */
old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
if (old_state) {
/* When discoverable timeout triggers, then just make sure
* the limited discoverable flag is cleared. Even in the case
* of a timeout triggered from general discoverable, it is
* safe to unconditionally clear the flag.
*/
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
hdev->discov_timeout = 0;
}
bt_dev_dbg(hdev, "Pausing advertising instances");
/* Call to disable any advertisements active on the controller.
* This will succeed even if no advertisements are configured.
*/
err = hci_disable_advertising_sync(hdev);
if (err)
return err;
/* If we are using software rotation, pause the loop */
if (!ext_adv_capable(hdev))
cancel_adv_timeout(hdev);
hdev->advertising_paused = true;
hdev->advertising_old_state = old_state;
return 0;
}
/* This function enables all user advertising instances */
static int hci_resume_advertising_sync(struct hci_dev *hdev)
{
struct adv_info *adv, *tmp;
int err;
/* If advertising has not been paused there is nothing to do. */
if (!hdev->advertising_paused)
return 0;
/* Resume directed advertising */
hdev->advertising_paused = false;
if (hdev->advertising_old_state) {
hci_dev_set_flag(hdev, HCI_ADVERTISING);
hdev->advertising_old_state = 0;
}
bt_dev_dbg(hdev, "Resuming advertising instances");
if (ext_adv_capable(hdev)) {
/* Call for each tracked instance to be re-enabled */
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
err = hci_enable_ext_advertising_sync(hdev,
adv->instance);
if (!err)
continue;
/* If the instance cannot be resumed remove it */
hci_remove_ext_adv_instance_sync(hdev, adv->instance,
NULL);
}
} else {
/* Schedule for most recent instance to be restarted and begin
* the software rotation loop
*/
err = hci_schedule_adv_instance_sync(hdev,
hdev->cur_adv_instance,
true);
}
hdev->advertising_paused = false;
return err;
}
struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
bool extended, struct sock *sk)
{
u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
HCI_OP_READ_LOCAL_OOB_DATA;
return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
}
/* Device must not be scanning when updating the accept list.
*
* Update is done using the following sequence:
*
* use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
* Remove Devices From Accept List ->
* (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
* Add Devices to Accept List ->
* (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
* use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
* Enable Scanning
*
* In case of failure advertising shall be restored to its original state and
* return would disable accept list since either accept or resolving list could
* not be programmed.
*
*/
static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
{
struct hci_conn_params *params;
struct bdaddr_list *b, *t;
u8 num_entries = 0;
bool pend_conn, pend_report;
u8 filter_policy;
int err;
/* Pause advertising if resolving list can be used as controllers are
* cannot accept resolving list modifications while advertising.
*/
if (use_ll_privacy(hdev)) {
err = hci_pause_advertising_sync(hdev);
if (err) {
bt_dev_err(hdev, "pause advertising failed: %d", err);
return 0x00;
}
}
/* Disable address resolution while reprogramming accept list since
* devices that do have an IRK will be programmed in the resolving list
* when LL Privacy is enabled.
*/
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
if (err) {
bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
goto done;
}
/* Go through the current accept list programmed into the
* controller one by one and check if that address is connected or is
* still in the list of pending connections or list of devices to
* report. If not present in either list, then remove it from
* the controller.
*/
list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
continue;
pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
&b->bdaddr,
b->bdaddr_type);
pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
&b->bdaddr,
b->bdaddr_type);
/* If the device is not likely to connect or report,
* remove it from the acceptlist.
*/
if (!pend_conn && !pend_report) {
hci_le_del_accept_list_sync(hdev, &b->bdaddr,
b->bdaddr_type);
continue;
}
num_entries++;
}
/* Since all no longer valid accept list entries have been
* removed, walk through the list of pending connections
* and ensure that any new device gets programmed into
* the controller.
*
* If the list of the devices is larger than the list of
* available accept list entries in the controller, then
* just abort and return filer policy value to not use the
* accept list.
*/
list_for_each_entry(params, &hdev->pend_le_conns, action) {
err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
if (err)
goto done;
}
/* After adding all new pending connections, walk through
* the list of pending reports and also add these to the
* accept list if there is still space. Abort if space runs out.
*/
list_for_each_entry(params, &hdev->pend_le_reports, action) {
err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
if (err)
goto done;
}
/* Use the allowlist unless the following conditions are all true:
* - We are not currently suspending
* - There are 1 or more ADV monitors registered and it's not offloaded
* - Interleaved scanning is not currently using the allowlist
*/
if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
err = -EINVAL;
done:
filter_policy = err ? 0x00 : 0x01;
/* Enable address resolution when LL Privacy is enabled. */
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
if (err)
bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
/* Resume advertising if it was paused */
if (use_ll_privacy(hdev))
hci_resume_advertising_sync(hdev);
/* Select filter policy to use accept list */
return filter_policy;
}
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->type == LE_LINK && c->state == BT_CONNECT &&
test_bit(HCI_CONN_SCANNING, &c->flags)) {
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
return false;
}
static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
u16 interval, u16 window,
u8 own_addr_type, u8 filter_policy)
{
struct hci_cp_le_set_ext_scan_params *cp;
struct hci_cp_le_scan_phy_params *phy;
u8 data[sizeof(*cp) + sizeof(*phy) * 2];
u8 num_phy = 0;
cp = (void *)data;
phy = (void *)cp->data;
memset(data, 0, sizeof(data));
cp->own_addr_type = own_addr_type;
cp->filter_policy = filter_policy;
if (scan_1m(hdev) || scan_2m(hdev)) {
cp->scanning_phys |= LE_SCAN_PHY_1M;
phy->type = type;
phy->interval = cpu_to_le16(interval);
phy->window = cpu_to_le16(window);
num_phy++;
phy++;
}
if (scan_coded(hdev)) {
cp->scanning_phys |= LE_SCAN_PHY_CODED;
phy->type = type;
phy->interval = cpu_to_le16(interval);
phy->window = cpu_to_le16(window);
num_phy++;
phy++;
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
sizeof(*cp) + sizeof(*phy) * num_phy,
data, HCI_CMD_TIMEOUT);
}
static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
u16 interval, u16 window,
u8 own_addr_type, u8 filter_policy)
{
struct hci_cp_le_set_scan_param cp;
if (use_ext_scan(hdev))
return hci_le_set_ext_scan_param_sync(hdev, type, interval,
window, own_addr_type,
filter_policy);
memset(&cp, 0, sizeof(cp));
cp.type = type;
cp.interval = cpu_to_le16(interval);
cp.window = cpu_to_le16(window);
cp.own_address_type = own_addr_type;
cp.filter_policy = filter_policy;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
u16 window, u8 own_addr_type, u8 filter_policy,
u8 filter_dup)
{
int err;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
err = hci_le_set_scan_param_sync(hdev, type, interval, window,
own_addr_type, filter_policy);
if (err)
return err;
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
}
static int hci_passive_scan_sync(struct hci_dev *hdev)
{
u8 own_addr_type;
u8 filter_policy;
u16 window, interval;
u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
int err;
if (hdev->scanning_paused) {
bt_dev_dbg(hdev, "Scanning is paused for suspend");
return 0;
}
err = hci_scan_disable_sync(hdev);
if (err) {
bt_dev_err(hdev, "disable scanning failed: %d", err);
return err;
}
/* Set require_privacy to false since no SCAN_REQ are send
* during passive scanning. Not using an non-resolvable address
* here is important so that peer devices using direct
* advertising with our address will be correctly reported
* by the controller.
*/
if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
&own_addr_type))
return 0;
if (hdev->enable_advmon_interleave_scan &&
hci_update_interleaved_scan_sync(hdev))
return 0;
bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
/* Adding or removing entries from the accept list must
* happen before enabling scanning. The controller does
* not allow accept list modification while scanning.
*/
filter_policy = hci_update_accept_list_sync(hdev);
/* When the controller is using random resolvable addresses and
* with that having LE privacy enabled, then controllers with
* Extended Scanner Filter Policies support can now enable support
* for handling directed advertising.
*
* So instead of using filter polices 0x00 (no acceptlist)
* and 0x01 (acceptlist enabled) use the new filter policies
* 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
*/
if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
(hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
filter_policy |= 0x02;
if (hdev->suspended) {
window = hdev->le_scan_window_suspend;
interval = hdev->le_scan_int_suspend;
} else if (hci_is_le_conn_scanning(hdev)) {
window = hdev->le_scan_window_connect;
interval = hdev->le_scan_int_connect;
} else if (hci_is_adv_monitoring(hdev)) {
window = hdev->le_scan_window_adv_monitor;
interval = hdev->le_scan_int_adv_monitor;
} else {
window = hdev->le_scan_window;
interval = hdev->le_scan_interval;
}
/* Disable all filtering for Mesh */
if (hci_dev_test_flag(hdev, HCI_MESH)) {
filter_policy = 0;
filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
}
bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
own_addr_type, filter_policy, filter_dups);
}
/* This function controls the passive scanning based on hdev->pend_le_conns
* list. If there are pending LE connection we start the background scanning,
* otherwise we stop it in the following sequence:
*
* If there are devices to scan:
*
* Disable Scanning -> Update Accept List ->
* use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
* Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
* Enable Scanning
*
* Otherwise:
*
* Disable Scanning
*/
int hci_update_passive_scan_sync(struct hci_dev *hdev)
{
int err;
if (!test_bit(HCI_UP, &hdev->flags) ||
test_bit(HCI_INIT, &hdev->flags) ||
hci_dev_test_flag(hdev, HCI_SETUP) ||
hci_dev_test_flag(hdev, HCI_CONFIG) ||
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
hci_dev_test_flag(hdev, HCI_UNREGISTER))
return 0;
/* No point in doing scanning if LE support hasn't been enabled */
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
/* If discovery is active don't interfere with it */
if (hdev->discovery.state != DISCOVERY_STOPPED)
return 0;
/* Reset RSSI and UUID filters when starting background scanning
* since these filters are meant for service discovery only.
*
* The Start Discovery and Start Service Discovery operations
* ensure to set proper values for RSSI threshold and UUID
* filter list. So it is safe to just reset them here.
*/
hci_discovery_filter_clear(hdev);
bt_dev_dbg(hdev, "ADV monitoring is %s",
hci_is_adv_monitoring(hdev) ? "on" : "off");
if (!hci_dev_test_flag(hdev, HCI_MESH) &&
list_empty(&hdev->pend_le_conns) &&
list_empty(&hdev->pend_le_reports) &&
!hci_is_adv_monitoring(hdev) &&
!hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
/* If there is no pending LE connections or devices
* to be scanned for or no ADV monitors, we should stop the
* background scanning.
*/
bt_dev_dbg(hdev, "stopping background scanning");
err = hci_scan_disable_sync(hdev);
if (err)
bt_dev_err(hdev, "stop background scanning failed: %d",
err);
} else {
/* If there is at least one pending LE connection, we should
* keep the background scan running.
*/
/* If controller is connecting, we should not start scanning
* since some controllers are not able to scan and connect at
* the same time.
*/
if (hci_lookup_le_connect(hdev))
return 0;
bt_dev_dbg(hdev, "start background scanning");
err = hci_passive_scan_sync(hdev);
if (err)
bt_dev_err(hdev, "start background scanning failed: %d",
err);
}
return err;
}
static int update_scan_sync(struct hci_dev *hdev, void *data)
{
return hci_update_scan_sync(hdev);
}
int hci_update_scan(struct hci_dev *hdev)
{
return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
}
static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
{
return hci_update_passive_scan_sync(hdev);
}
int hci_update_passive_scan(struct hci_dev *hdev)
{
/* Only queue if it would have any effect */
if (!test_bit(HCI_UP, &hdev->flags) ||
test_bit(HCI_INIT, &hdev->flags) ||
hci_dev_test_flag(hdev, HCI_SETUP) ||
hci_dev_test_flag(hdev, HCI_CONFIG) ||
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
hci_dev_test_flag(hdev, HCI_UNREGISTER))
return 0;
return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
}
int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
{
int err;
if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
return 0;
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
sizeof(val), &val, HCI_CMD_TIMEOUT);
if (!err) {
if (val) {
hdev->features[1][0] |= LMP_HOST_SC;
hci_dev_set_flag(hdev, HCI_SC_ENABLED);
} else {
hdev->features[1][0] &= ~LMP_HOST_SC;
hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
}
}
return err;
}
int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
{
int err;
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
lmp_host_ssp_capable(hdev))
return 0;
if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
}
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
if (err)
return err;
return hci_write_sc_support_sync(hdev, 0x01);
}
int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
{
struct hci_cp_write_le_host_supported cp;
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
!lmp_bredr_capable(hdev))
return 0;
/* Check first if we already have the right host state
* (host features set)
*/
if (le == lmp_host_le_capable(hdev) &&
simul == lmp_host_le_br_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
cp.le = le;
cp.simul = simul;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_powered_update_adv_sync(struct hci_dev *hdev)
{
struct adv_info *adv, *tmp;
int err;
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
return 0;
/* If RPA Resolution has not been enable yet it means the
* resolving list is empty and we should attempt to program the
* local IRK in order to support using own_addr_type
* ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
*/
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
hci_le_add_resolve_list_sync(hdev, NULL);
hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
}
/* Make sure the controller has a good default for
* advertising data. This also applies to the case
* where BR/EDR was toggled during the AUTO_OFF phase.
*/
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
list_empty(&hdev->adv_instances)) {
if (ext_adv_capable(hdev)) {
err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
if (!err)
hci_update_scan_rsp_data_sync(hdev, 0x00);
} else {
err = hci_update_adv_data_sync(hdev, 0x00);
if (!err)
hci_update_scan_rsp_data_sync(hdev, 0x00);
}
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
hci_enable_advertising_sync(hdev);
}
/* Call for each tracked instance to be scheduled */
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
hci_schedule_adv_instance_sync(hdev, adv->instance, true);
return 0;
}
static int hci_write_auth_enable_sync(struct hci_dev *hdev)
{
u8 link_sec;
link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
sizeof(link_sec), &link_sec,
HCI_CMD_TIMEOUT);
}
int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
{
struct hci_cp_write_page_scan_activity cp;
u8 type;
int err = 0;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
return 0;
memset(&cp, 0, sizeof(cp));
if (enable) {
type = PAGE_SCAN_TYPE_INTERLACED;
/* 160 msec page scan interval */
cp.interval = cpu_to_le16(0x0100);
} else {
type = hdev->def_page_scan_type;
cp.interval = cpu_to_le16(hdev->def_page_scan_int);
}
cp.window = cpu_to_le16(hdev->def_page_scan_window);
if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
__cpu_to_le16(hdev->page_scan_window) != cp.window) {
err = __hci_cmd_sync_status(hdev,
HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err)
return err;
}
if (hdev->page_scan_type != type)
err = __hci_cmd_sync_status(hdev,
HCI_OP_WRITE_PAGE_SCAN_TYPE,
sizeof(type), &type,
HCI_CMD_TIMEOUT);
return err;
}
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
{
struct bdaddr_list *b;
list_for_each_entry(b, &hdev->accept_list, list) {
struct hci_conn *conn;
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
if (!conn)
return true;
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
return true;
}
return false;
}
static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
{
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
sizeof(val), &val,
HCI_CMD_TIMEOUT);
}
int hci_update_scan_sync(struct hci_dev *hdev)
{
u8 scan;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (!hdev_is_powered(hdev))
return 0;
if (mgmt_powering_down(hdev))
return 0;
if (hdev->scanning_paused)
return 0;
if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
disconnected_accept_list_entries(hdev))
scan = SCAN_PAGE;
else
scan = SCAN_DISABLED;
if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
scan |= SCAN_INQUIRY;
if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
return 0;
return hci_write_scan_enable_sync(hdev, scan);
}
int hci_update_name_sync(struct hci_dev *hdev)
{
struct hci_cp_write_local_name cp;
memset(&cp, 0, sizeof(cp));
memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
/* This function perform powered update HCI command sequence after the HCI init
* sequence which end up resetting all states, the sequence is as follows:
*
* HCI_SSP_ENABLED(Enable SSP)
* HCI_LE_ENABLED(Enable LE)
* HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
* Update adv data)
* Enable Authentication
* lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
* Set Name -> Set EIR)
*/
int hci_powered_update_sync(struct hci_dev *hdev)
{
int err;
/* Register the available SMP channels (BR/EDR and LE) only when
* successfully powering on the controller. This late
* registration is required so that LE SMP can clearly decide if
* the public address or static address is used.
*/
smp_register(hdev);
err = hci_write_ssp_mode_sync(hdev, 0x01);
if (err)
return err;
err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
if (err)
return err;
err = hci_powered_update_adv_sync(hdev);
if (err)
return err;
err = hci_write_auth_enable_sync(hdev);
if (err)
return err;
if (lmp_bredr_capable(hdev)) {
if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
hci_write_fast_connectable_sync(hdev, true);
else
hci_write_fast_connectable_sync(hdev, false);
hci_update_scan_sync(hdev);
hci_update_class_sync(hdev);
hci_update_name_sync(hdev);
hci_update_eir_sync(hdev);
}
return 0;
}
/**
* hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
* (BD_ADDR) for a HCI device from
* a firmware node property.
* @hdev: The HCI device
*
* Search the firmware node for 'local-bd-address'.
*
* All-zero BD addresses are rejected, because those could be properties
* that exist in the firmware tables, but were not updated by the firmware. For
* example, the DTS could define 'local-bd-address', with zero BD addresses.
*/
static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
{
struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
bdaddr_t ba;
int ret;
ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
(u8 *)&ba, sizeof(ba));
if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
return;
bacpy(&hdev->public_addr, &ba);
}
struct hci_init_stage {
int (*func)(struct hci_dev *hdev);
};
/* Run init stage NULL terminated function table */
static int hci_init_stage_sync(struct hci_dev *hdev,
const struct hci_init_stage *stage)
{
size_t i;
for (i = 0; stage[i].func; i++) {
int err;
err = stage[i].func(hdev);
if (err)
return err;
}
return 0;
}
/* Read Local Version */
static int hci_read_local_version_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read BD Address */
static int hci_read_bd_addr_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
0, NULL, HCI_CMD_TIMEOUT);
}
#define HCI_INIT(_func) \
{ \
.func = _func, \
}
static const struct hci_init_stage hci_init0[] = {
/* HCI_OP_READ_LOCAL_VERSION */
HCI_INIT(hci_read_local_version_sync),
/* HCI_OP_READ_BD_ADDR */
HCI_INIT(hci_read_bd_addr_sync),
{}
};
int hci_reset_sync(struct hci_dev *hdev)
{
int err;
set_bit(HCI_RESET, &hdev->flags);
err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
HCI_CMD_TIMEOUT);
if (err)
return err;
return 0;
}
static int hci_init0_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
/* Reset */
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
err = hci_reset_sync(hdev);
if (err)
return err;
}
return hci_init_stage_sync(hdev, hci_init0);
}
static int hci_unconf_init_sync(struct hci_dev *hdev)
{
int err;
if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
return 0;
err = hci_init0_sync(hdev);
if (err < 0)
return err;
if (hci_dev_test_flag(hdev, HCI_SETUP))
hci_debugfs_create_basic(hdev);
return 0;
}
/* Read Local Supported Features. */
static int hci_read_local_features_sync(struct hci_dev *hdev)
{
/* Not all AMP controllers support this command */
if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
0, NULL, HCI_CMD_TIMEOUT);
}
/* BR Controller init stage 1 command sequence */
static const struct hci_init_stage br_init1[] = {
/* HCI_OP_READ_LOCAL_FEATURES */
HCI_INIT(hci_read_local_features_sync),
/* HCI_OP_READ_LOCAL_VERSION */
HCI_INIT(hci_read_local_version_sync),
/* HCI_OP_READ_BD_ADDR */
HCI_INIT(hci_read_bd_addr_sync),
{}
};
/* Read Local Commands */
static int hci_read_local_cmds_sync(struct hci_dev *hdev)
{
/* All Bluetooth 1.2 and later controllers should support the
* HCI command for reading the local supported commands.
*
* Unfortunately some controllers indicate Bluetooth 1.2 support,
* but do not have support for this command. If that is the case,
* the driver can quirk the behavior and skip reading the local
* supported commands.
*/
if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
!test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
0, NULL, HCI_CMD_TIMEOUT);
return 0;
}
/* Read Local AMP Info */
static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Data Blk size */
static int hci_read_data_block_size_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Flow Control Mode */
static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Location Data */
static int hci_read_location_data_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
0, NULL, HCI_CMD_TIMEOUT);
}
/* AMP Controller init stage 1 command sequence */
static const struct hci_init_stage amp_init1[] = {
/* HCI_OP_READ_LOCAL_VERSION */
HCI_INIT(hci_read_local_version_sync),
/* HCI_OP_READ_LOCAL_COMMANDS */
HCI_INIT(hci_read_local_cmds_sync),
/* HCI_OP_READ_LOCAL_AMP_INFO */
HCI_INIT(hci_read_local_amp_info_sync),
/* HCI_OP_READ_DATA_BLOCK_SIZE */
HCI_INIT(hci_read_data_block_size_sync),
/* HCI_OP_READ_FLOW_CONTROL_MODE */
HCI_INIT(hci_read_flow_control_mode_sync),
/* HCI_OP_READ_LOCATION_DATA */
HCI_INIT(hci_read_location_data_sync),
};
static int hci_init1_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
/* Reset */
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
err = hci_reset_sync(hdev);
if (err)
return err;
}
switch (hdev->dev_type) {
case HCI_PRIMARY:
hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
return hci_init_stage_sync(hdev, br_init1);
case HCI_AMP:
hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
return hci_init_stage_sync(hdev, amp_init1);
default:
bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
break;
}
return 0;
}
/* AMP Controller init stage 2 command sequence */
static const struct hci_init_stage amp_init2[] = {
/* HCI_OP_READ_LOCAL_FEATURES */
HCI_INIT(hci_read_local_features_sync),
};
/* Read Buffer Size (ACL mtu, max pkt, etc.) */
static int hci_read_buffer_size_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Class of Device */
static int hci_read_dev_class_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Local Name */
static int hci_read_local_name_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Voice Setting */
static int hci_read_voice_setting_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Number of Supported IAC */
static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read Current IAC LAP */
static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
u8 cond_type, bdaddr_t *bdaddr,
u8 auto_accept)
{
struct hci_cp_set_event_filter cp;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
return 0;
memset(&cp, 0, sizeof(cp));
cp.flt_type = flt_type;
if (flt_type != HCI_FLT_CLEAR_ALL) {
cp.cond_type = cond_type;
bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
cp.addr_conn_flt.auto_accept = auto_accept;
}
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
flt_type == HCI_FLT_CLEAR_ALL ?
sizeof(cp.flt_type) : sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static int hci_clear_event_filter_sync(struct hci_dev *hdev)
{
if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
return 0;
/* In theory the state machine should not reach here unless
* a hci_set_event_filter_sync() call succeeds, but we do
* the check both for parity and as a future reminder.
*/
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
return 0;
return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
BDADDR_ANY, 0x00);
}
/* Connection accept timeout ~20 secs */
static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
{
__le16 param = cpu_to_le16(0x7d00);
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
sizeof(param), &param, HCI_CMD_TIMEOUT);
}
/* BR Controller init stage 2 command sequence */
static const struct hci_init_stage br_init2[] = {
/* HCI_OP_READ_BUFFER_SIZE */
HCI_INIT(hci_read_buffer_size_sync),
/* HCI_OP_READ_CLASS_OF_DEV */
HCI_INIT(hci_read_dev_class_sync),
/* HCI_OP_READ_LOCAL_NAME */
HCI_INIT(hci_read_local_name_sync),
/* HCI_OP_READ_VOICE_SETTING */
HCI_INIT(hci_read_voice_setting_sync),
/* HCI_OP_READ_NUM_SUPPORTED_IAC */
HCI_INIT(hci_read_num_supported_iac_sync),
/* HCI_OP_READ_CURRENT_IAC_LAP */
HCI_INIT(hci_read_current_iac_lap_sync),
/* HCI_OP_SET_EVENT_FLT */
HCI_INIT(hci_clear_event_filter_sync),
/* HCI_OP_WRITE_CA_TIMEOUT */
HCI_INIT(hci_write_ca_timeout_sync),
{}
};
static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
{
u8 mode = 0x01;
if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
return 0;
/* When SSP is available, then the host features page
* should also be available as well. However some
* controllers list the max_page as 0 as long as SSP
* has not been enabled. To achieve proper debugging
* output, force the minimum max_page to 1 at least.
*/
hdev->max_page = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
}
static int hci_write_eir_sync(struct hci_dev *hdev)
{
struct hci_cp_write_eir cp;
if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
return 0;
memset(hdev->eir, 0, sizeof(hdev->eir));
memset(&cp, 0, sizeof(cp));
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
{
u8 mode;
if (!lmp_inq_rssi_capable(hdev) &&
!test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
return 0;
/* If Extended Inquiry Result events are supported, then
* they are clearly preferred over Inquiry Result with RSSI
* events.
*/
mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
}
static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
{
if (!lmp_inq_tx_pwr_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
{
struct hci_cp_read_local_ext_features cp;
if (!lmp_ext_feat_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
cp.page = page;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
{
return hci_read_local_ext_features_sync(hdev, 0x01);
}
/* HCI Controller init stage 2 command sequence */
static const struct hci_init_stage hci_init2[] = {
/* HCI_OP_READ_LOCAL_COMMANDS */
HCI_INIT(hci_read_local_cmds_sync),
/* HCI_OP_WRITE_SSP_MODE */
HCI_INIT(hci_write_ssp_mode_1_sync),
/* HCI_OP_WRITE_EIR */
HCI_INIT(hci_write_eir_sync),
/* HCI_OP_WRITE_INQUIRY_MODE */
HCI_INIT(hci_write_inquiry_mode_sync),
/* HCI_OP_READ_INQ_RSP_TX_POWER */
HCI_INIT(hci_read_inq_rsp_tx_power_sync),
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
HCI_INIT(hci_read_local_ext_features_1_sync),
/* HCI_OP_WRITE_AUTH_ENABLE */
HCI_INIT(hci_write_auth_enable_sync),
{}
};
/* Read LE Buffer Size */
static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
{
/* Use Read LE Buffer Size V2 if supported */
if (hdev->commands[41] & 0x20)
return __hci_cmd_sync_status(hdev,
HCI_OP_LE_READ_BUFFER_SIZE_V2,
0, NULL, HCI_CMD_TIMEOUT);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read LE Local Supported Features */
static int hci_le_read_local_features_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read LE Supported States */
static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
{
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
0, NULL, HCI_CMD_TIMEOUT);
}
/* LE Controller init stage 2 command sequence */
static const struct hci_init_stage le_init2[] = {
/* HCI_OP_LE_READ_BUFFER_SIZE */
HCI_INIT(hci_le_read_buffer_size_sync),
/* HCI_OP_LE_READ_LOCAL_FEATURES */
HCI_INIT(hci_le_read_local_features_sync),
/* HCI_OP_LE_READ_SUPPORTED_STATES */
HCI_INIT(hci_le_read_supported_states_sync),
{}
};
static int hci_init2_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
if (hdev->dev_type == HCI_AMP)
return hci_init_stage_sync(hdev, amp_init2);
err = hci_init_stage_sync(hdev, hci_init2);
if (err)
return err;
if (lmp_bredr_capable(hdev)) {
err = hci_init_stage_sync(hdev, br_init2);
if (err)
return err;
} else {
hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
}
if (lmp_le_capable(hdev)) {
err = hci_init_stage_sync(hdev, le_init2);
if (err)
return err;
/* LE-only controllers have LE implicitly enabled */
if (!lmp_bredr_capable(hdev))
hci_dev_set_flag(hdev, HCI_LE_ENABLED);
}
return 0;
}
static int hci_set_event_mask_sync(struct hci_dev *hdev)
{
/* The second byte is 0xff instead of 0x9f (two reserved bits
* disabled) since a Broadcom 1.2 dongle doesn't respond to the
* command otherwise.
*/
u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
/* CSR 1.1 dongles does not accept any bitfield so don't try to set
* any event mask for pre 1.2 devices.
*/
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
return 0;
if (lmp_bredr_capable(hdev)) {
events[4] |= 0x01; /* Flow Specification Complete */
/* Don't set Disconnect Complete when suspended as that
* would wakeup the host when disconnecting due to
* suspend.
*/
if (hdev->suspended)
events[0] &= 0xef;
} else {
/* Use a different default for LE-only devices */
memset(events, 0, sizeof(events));
events[1] |= 0x20; /* Command Complete */
events[1] |= 0x40; /* Command Status */
events[1] |= 0x80; /* Hardware Error */
/* If the controller supports the Disconnect command, enable
* the corresponding event. In addition enable packet flow
* control related events.
*/
if (hdev->commands[0] & 0x20) {
/* Don't set Disconnect Complete when suspended as that
* would wakeup the host when disconnecting due to
* suspend.
*/
if (!hdev->suspended)
events[0] |= 0x10; /* Disconnection Complete */
events[2] |= 0x04; /* Number of Completed Packets */
events[3] |= 0x02; /* Data Buffer Overflow */
}
/* If the controller supports the Read Remote Version
* Information command, enable the corresponding event.
*/
if (hdev->commands[2] & 0x80)
events[1] |= 0x08; /* Read Remote Version Information
* Complete
*/
if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
events[0] |= 0x80; /* Encryption Change */
events[5] |= 0x80; /* Encryption Key Refresh Complete */
}
}
if (lmp_inq_rssi_capable(hdev) ||
test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
events[4] |= 0x02; /* Inquiry Result with RSSI */
if (lmp_ext_feat_capable(hdev))
events[4] |= 0x04; /* Read Remote Extended Features Complete */
if (lmp_esco_capable(hdev)) {
events[5] |= 0x08; /* Synchronous Connection Complete */
events[5] |= 0x10; /* Synchronous Connection Changed */
}
if (lmp_sniffsubr_capable(hdev))
events[5] |= 0x20; /* Sniff Subrating */
if (lmp_pause_enc_capable(hdev))
events[5] |= 0x80; /* Encryption Key Refresh Complete */
if (lmp_ext_inq_capable(hdev))
events[5] |= 0x40; /* Extended Inquiry Result */
if (lmp_no_flush_capable(hdev))
events[7] |= 0x01; /* Enhanced Flush Complete */
if (lmp_lsto_capable(hdev))
events[6] |= 0x80; /* Link Supervision Timeout Changed */
if (lmp_ssp_capable(hdev)) {
events[6] |= 0x01; /* IO Capability Request */
events[6] |= 0x02; /* IO Capability Response */
events[6] |= 0x04; /* User Confirmation Request */
events[6] |= 0x08; /* User Passkey Request */
events[6] |= 0x10; /* Remote OOB Data Request */
events[6] |= 0x20; /* Simple Pairing Complete */
events[7] |= 0x04; /* User Passkey Notification */
events[7] |= 0x08; /* Keypress Notification */
events[7] |= 0x10; /* Remote Host Supported
* Features Notification
*/
}
if (lmp_le_capable(hdev))
events[7] |= 0x20; /* LE Meta-Event */
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
sizeof(events), events, HCI_CMD_TIMEOUT);
}
static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
{
struct hci_cp_read_stored_link_key cp;
if (!(hdev->commands[6] & 0x20) ||
test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
return 0;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, BDADDR_ANY);
cp.read_all = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_setup_link_policy_sync(struct hci_dev *hdev)
{
struct hci_cp_write_def_link_policy cp;
u16 link_policy = 0;
if (!(hdev->commands[5] & 0x10))
return 0;
memset(&cp, 0, sizeof(cp));
if (lmp_rswitch_capable(hdev))
link_policy |= HCI_LP_RSWITCH;
if (lmp_hold_capable(hdev))
link_policy |= HCI_LP_HOLD;
if (lmp_sniff_capable(hdev))
link_policy |= HCI_LP_SNIFF;
if (lmp_park_capable(hdev))
link_policy |= HCI_LP_PARK;
cp.policy = cpu_to_le16(link_policy);
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[8] & 0x01))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[18] & 0x04) ||
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
0, NULL, HCI_CMD_TIMEOUT);
}
static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
{
/* Some older Broadcom based Bluetooth 1.2 controllers do not
* support the Read Page Scan Type command. Check support for
* this command in the bit mask of supported commands.
*/
if (!(hdev->commands[13] & 0x01))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read features beyond page 1 if available */
static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
{
u8 page;
int err;
if (!lmp_ext_feat_capable(hdev))
return 0;
for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
page++) {
err = hci_read_local_ext_features_sync(hdev, page);
if (err)
return err;
}
return 0;
}
/* HCI Controller init stage 3 command sequence */
static const struct hci_init_stage hci_init3[] = {
/* HCI_OP_SET_EVENT_MASK */
HCI_INIT(hci_set_event_mask_sync),
/* HCI_OP_READ_STORED_LINK_KEY */
HCI_INIT(hci_read_stored_link_key_sync),
/* HCI_OP_WRITE_DEF_LINK_POLICY */
HCI_INIT(hci_setup_link_policy_sync),
/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
HCI_INIT(hci_read_page_scan_activity_sync),
/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
HCI_INIT(hci_read_def_err_data_reporting_sync),
/* HCI_OP_READ_PAGE_SCAN_TYPE */
HCI_INIT(hci_read_page_scan_type_sync),
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
HCI_INIT(hci_read_local_ext_features_all_sync),
{}
};
static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
{
u8 events[8];
if (!lmp_le_capable(hdev))
return 0;
memset(events, 0, sizeof(events));
if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
events[0] |= 0x10; /* LE Long Term Key Request */
/* If controller supports the Connection Parameters Request
* Link Layer Procedure, enable the corresponding event.
*/
if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
/* LE Remote Connection Parameter Request */
events[0] |= 0x20;
/* If the controller supports the Data Length Extension
* feature, enable the corresponding event.
*/
if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
events[0] |= 0x40; /* LE Data Length Change */
/* If the controller supports LL Privacy feature or LE Extended Adv,
* enable the corresponding event.
*/
if (use_enhanced_conn_complete(hdev))
events[1] |= 0x02; /* LE Enhanced Connection Complete */
/* If the controller supports Extended Scanner Filter
* Policies, enable the corresponding event.
*/
if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
events[1] |= 0x04; /* LE Direct Advertising Report */
/* If the controller supports Channel Selection Algorithm #2
* feature, enable the corresponding event.
*/
if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
events[2] |= 0x08; /* LE Channel Selection Algorithm */
/* If the controller supports the LE Set Scan Enable command,
* enable the corresponding advertising report event.
*/
if (hdev->commands[26] & 0x08)
events[0] |= 0x02; /* LE Advertising Report */
/* If the controller supports the LE Create Connection
* command, enable the corresponding event.
*/
if (hdev->commands[26] & 0x10)
events[0] |= 0x01; /* LE Connection Complete */
/* If the controller supports the LE Connection Update
* command, enable the corresponding event.
*/
if (hdev->commands[27] & 0x04)
events[0] |= 0x04; /* LE Connection Update Complete */
/* If the controller supports the LE Read Remote Used Features
* command, enable the corresponding event.
*/
if (hdev->commands[27] & 0x20)
/* LE Read Remote Used Features Complete */
events[0] |= 0x08;
/* If the controller supports the LE Read Local P-256
* Public Key command, enable the corresponding event.
*/
if (hdev->commands[34] & 0x02)
/* LE Read Local P-256 Public Key Complete */
events[0] |= 0x80;
/* If the controller supports the LE Generate DHKey
* command, enable the corresponding event.
*/
if (hdev->commands[34] & 0x04)
events[1] |= 0x01; /* LE Generate DHKey Complete */
/* If the controller supports the LE Set Default PHY or
* LE Set PHY commands, enable the corresponding event.
*/
if (hdev->commands[35] & (0x20 | 0x40))
events[1] |= 0x08; /* LE PHY Update Complete */
/* If the controller supports LE Set Extended Scan Parameters
* and LE Set Extended Scan Enable commands, enable the
* corresponding event.
*/
if (use_ext_scan(hdev))
events[1] |= 0x10; /* LE Extended Advertising Report */
/* If the controller supports the LE Extended Advertising
* command, enable the corresponding event.
*/
if (ext_adv_capable(hdev))
events[2] |= 0x02; /* LE Advertising Set Terminated */
if (cis_capable(hdev)) {
events[3] |= 0x01; /* LE CIS Established */
if (cis_peripheral_capable(hdev))
events[3] |= 0x02; /* LE CIS Request */
}
if (bis_capable(hdev)) {
events[3] |= 0x04; /* LE Create BIG Complete */
events[3] |= 0x08; /* LE Terminate BIG Complete */
events[3] |= 0x10; /* LE BIG Sync Established */
events[3] |= 0x20; /* LE BIG Sync Loss */
}
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
sizeof(events), events, HCI_CMD_TIMEOUT);
}
/* Read LE Advertising Channel TX Power */
static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
{
if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
/* HCI TS spec forbids mixing of legacy and extended
* advertising commands wherein READ_ADV_TX_POWER is
* also included. So do not call it if extended adv
* is supported otherwise controller will return
* COMMAND_DISALLOWED for extended commands.
*/
return __hci_cmd_sync_status(hdev,
HCI_OP_LE_READ_ADV_TX_POWER,
0, NULL, HCI_CMD_TIMEOUT);
}
return 0;
}
/* Read LE Min/Max Tx Power*/
static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[38] & 0x80) ||
test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Read LE Accept List Size */
static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[26] & 0x40))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Clear LE Accept List */
static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[26] & 0x80))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Read LE Resolving List Size */
static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[34] & 0x40))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Clear LE Resolving List */
static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[34] & 0x20))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Set RPA timeout */
static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
{
__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
if (!(hdev->commands[35] & 0x04))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
sizeof(timeout), &timeout,
HCI_CMD_TIMEOUT);
}
/* Read LE Maximum Data Length */
static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
{
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Read LE Suggested Default Data Length */
static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
{
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Read LE Number of Supported Advertising Sets */
static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
{
if (!ext_adv_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev,
HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Write LE Host Supported */
static int hci_set_le_support_sync(struct hci_dev *hdev)
{
struct hci_cp_write_le_host_supported cp;
/* LE-only devices do not support explicit enablement */
if (!lmp_bredr_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
cp.le = 0x01;
cp.simul = 0x00;
}
if (cp.le == lmp_host_le_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* LE Set Host Feature */
static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
{
struct hci_cp_le_set_host_feature cp;
if (!iso_capable(hdev))
return 0;
memset(&cp, 0, sizeof(cp));
/* Isochronous Channels (Host Support) */
cp.bit_number = 32;
cp.bit_value = 1;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* LE Controller init stage 3 command sequence */
static const struct hci_init_stage le_init3[] = {
/* HCI_OP_LE_SET_EVENT_MASK */
HCI_INIT(hci_le_set_event_mask_sync),
/* HCI_OP_LE_READ_ADV_TX_POWER */
HCI_INIT(hci_le_read_adv_tx_power_sync),
/* HCI_OP_LE_READ_TRANSMIT_POWER */
HCI_INIT(hci_le_read_tx_power_sync),
/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
HCI_INIT(hci_le_read_accept_list_size_sync),
/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
HCI_INIT(hci_le_clear_accept_list_sync),
/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
HCI_INIT(hci_le_read_resolv_list_size_sync),
/* HCI_OP_LE_CLEAR_RESOLV_LIST */
HCI_INIT(hci_le_clear_resolv_list_sync),
/* HCI_OP_LE_SET_RPA_TIMEOUT */
HCI_INIT(hci_le_set_rpa_timeout_sync),
/* HCI_OP_LE_READ_MAX_DATA_LEN */
HCI_INIT(hci_le_read_max_data_len_sync),
/* HCI_OP_LE_READ_DEF_DATA_LEN */
HCI_INIT(hci_le_read_def_data_len_sync),
/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
HCI_INIT(hci_le_read_num_support_adv_sets_sync),
/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
HCI_INIT(hci_set_le_support_sync),
/* HCI_OP_LE_SET_HOST_FEATURE */
HCI_INIT(hci_le_set_host_feature_sync),
{}
};
static int hci_init3_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
err = hci_init_stage_sync(hdev, hci_init3);
if (err)
return err;
if (lmp_le_capable(hdev))
return hci_init_stage_sync(hdev, le_init3);
return 0;
}
static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
{
struct hci_cp_delete_stored_link_key cp;
/* Some Broadcom based Bluetooth controllers do not support the
* Delete Stored Link Key command. They are clearly indicating its
* absence in the bit mask of supported commands.
*
* Check the supported commands and only if the command is marked
* as supported send it. If not supported assume that the controller
* does not have actual support for stored link keys which makes this
* command redundant anyway.
*
* Some controllers indicate that they support handling deleting
* stored link keys, but they don't. The quirk lets a driver
* just disable this command.
*/
if (!(hdev->commands[6] & 0x80) ||
test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
return 0;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, BDADDR_ANY);
cp.delete_all = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
{
u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
bool changed = false;
/* Set event mask page 2 if the HCI command for it is supported */
if (!(hdev->commands[22] & 0x04))
return 0;
/* If Connectionless Peripheral Broadcast central role is supported
* enable all necessary events for it.
*/
if (lmp_cpb_central_capable(hdev)) {
events[1] |= 0x40; /* Triggered Clock Capture */
events[1] |= 0x80; /* Synchronization Train Complete */
events[2] |= 0x08; /* Truncated Page Complete */
events[2] |= 0x20; /* CPB Channel Map Change */
changed = true;
}
/* If Connectionless Peripheral Broadcast peripheral role is supported
* enable all necessary events for it.
*/
if (lmp_cpb_peripheral_capable(hdev)) {
events[2] |= 0x01; /* Synchronization Train Received */
events[2] |= 0x02; /* CPB Receive */
events[2] |= 0x04; /* CPB Timeout */
events[2] |= 0x10; /* Peripheral Page Response Timeout */
changed = true;
}
/* Enable Authenticated Payload Timeout Expired event if supported */
if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
events[2] |= 0x80;
changed = true;
}
/* Some Broadcom based controllers indicate support for Set Event
* Mask Page 2 command, but then actually do not support it. Since
* the default value is all bits set to zero, the command is only
* required if the event mask has to be changed. In case no change
* to the event mask is needed, skip this command.
*/
if (!changed)
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
sizeof(events), events, HCI_CMD_TIMEOUT);
}
/* Read local codec list if the HCI command is supported */
static int hci_read_local_codecs_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[29] & 0x20))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
HCI_CMD_TIMEOUT);
}
/* Read local pairing options if the HCI command is supported */
static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[41] & 0x08))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Get MWS transport configuration if the HCI command is supported */
static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
{
if (!(hdev->commands[30] & 0x08))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Check for Synchronization Train support */
static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
{
if (!lmp_sync_train_capable(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
0, NULL, HCI_CMD_TIMEOUT);
}
/* Enable Secure Connections if supported and configured */
static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
{
u8 support = 0x01;
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
!bredr_sc_enabled(hdev))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
sizeof(support), &support,
HCI_CMD_TIMEOUT);
}
/* Set erroneous data reporting if supported to the wideband speech
* setting value
*/
static int hci_set_err_data_report_sync(struct hci_dev *hdev)
{
struct hci_cp_write_def_err_data_reporting cp;
bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
if (!(hdev->commands[18] & 0x08) ||
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING))
return 0;
if (enabled == hdev->err_data_reporting)
return 0;
memset(&cp, 0, sizeof(cp));
cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
ERR_DATA_REPORTING_DISABLED;
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static const struct hci_init_stage hci_init4[] = {
/* HCI_OP_DELETE_STORED_LINK_KEY */
HCI_INIT(hci_delete_stored_link_key_sync),
/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
HCI_INIT(hci_set_event_mask_page_2_sync),
/* HCI_OP_READ_LOCAL_CODECS */
HCI_INIT(hci_read_local_codecs_sync),
/* HCI_OP_READ_LOCAL_PAIRING_OPTS */
HCI_INIT(hci_read_local_pairing_opts_sync),
/* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
HCI_INIT(hci_get_mws_transport_config_sync),
/* HCI_OP_READ_SYNC_TRAIN_PARAMS */
HCI_INIT(hci_read_sync_train_params_sync),
/* HCI_OP_WRITE_SC_SUPPORT */
HCI_INIT(hci_write_sc_support_1_sync),
/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
HCI_INIT(hci_set_err_data_report_sync),
{}
};
/* Set Suggested Default Data Length to maximum if supported */
static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
{
struct hci_cp_le_write_def_data_len cp;
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
return 0;
memset(&cp, 0, sizeof(cp));
cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
/* Set Default PHY parameters if command is supported */
static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
{
struct hci_cp_le_set_default_phy cp;
if (!(hdev->commands[35] & 0x20))
return 0;
memset(&cp, 0, sizeof(cp));
cp.all_phys = 0x00;
cp.tx_phys = hdev->le_tx_def_phys;
cp.rx_phys = hdev->le_rx_def_phys;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static const struct hci_init_stage le_init4[] = {
/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
HCI_INIT(hci_le_set_write_def_data_len_sync),
/* HCI_OP_LE_SET_DEFAULT_PHY */
HCI_INIT(hci_le_set_default_phy_sync),
{}
};
static int hci_init4_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
err = hci_init_stage_sync(hdev, hci_init4);
if (err)
return err;
if (lmp_le_capable(hdev))
return hci_init_stage_sync(hdev, le_init4);
return 0;
}
static int hci_init_sync(struct hci_dev *hdev)
{
int err;
err = hci_init1_sync(hdev);
if (err < 0)
return err;
if (hci_dev_test_flag(hdev, HCI_SETUP))
hci_debugfs_create_basic(hdev);
err = hci_init2_sync(hdev);
if (err < 0)
return err;
/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
* BR/EDR/LE type controllers. AMP controllers only need the
* first two stages of init.
*/
if (hdev->dev_type != HCI_PRIMARY)
return 0;
err = hci_init3_sync(hdev);
if (err < 0)
return err;
err = hci_init4_sync(hdev);
if (err < 0)
return err;
/* This function is only called when the controller is actually in
* configured state. When the controller is marked as unconfigured,
* this initialization procedure is not run.
*
* It means that it is possible that a controller runs through its
* setup phase and then discovers missing settings. If that is the
* case, then this function will not be called. It then will only
* be called during the config phase.
*
* So only when in setup phase or config phase, create the debugfs
* entries and register the SMP channels.
*/
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!hci_dev_test_flag(hdev, HCI_CONFIG))
return 0;
hci_debugfs_create_common(hdev);
if (lmp_bredr_capable(hdev))
hci_debugfs_create_bredr(hdev);
if (lmp_le_capable(hdev))
hci_debugfs_create_le(hdev);
return 0;
}
#define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
static const struct {
unsigned long quirk;
const char *desc;
} hci_broken_table[] = {
HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
"HCI Read Local Supported Commands not supported"),
HCI_QUIRK_BROKEN(STORED_LINK_KEY,
"HCI Delete Stored Link Key command is advertised, "
"but not supported."),
HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
"HCI Read Transmit Power Level command is advertised, "
"but not supported."),
HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
"HCI Set Event Filter command not supported."),
HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
"HCI Enhanced Setup Synchronous Connection command is "
"advertised, but not supported.")
};
/* This function handles hdev setup stage:
*
* Calls hdev->setup
* Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
*/
static int hci_dev_setup_sync(struct hci_dev *hdev)
{
int ret = 0;
bool invalid_bdaddr;
size_t i;
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
return 0;
bt_dev_dbg(hdev, "");
hci_sock_dev_event(hdev, HCI_DEV_SETUP);
if (hdev->setup)
ret = hdev->setup(hdev);
for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
}
/* The transport driver can set the quirk to mark the
* BD_ADDR invalid before creating the HCI device or in
* its setup callback.
*/
invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
if (!ret) {
if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
if (!bacmp(&hdev->public_addr, BDADDR_ANY))
hci_dev_get_bd_addr_from_property(hdev);
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
hdev->set_bdaddr) {
ret = hdev->set_bdaddr(hdev,
&hdev->public_addr);
/* If setting of the BD_ADDR from the device
* property succeeds, then treat the address
* as valid even if the invalid BD_ADDR
* quirk indicates otherwise.
*/
if (!ret)
invalid_bdaddr = false;
}
}
}
/* The transport driver can set these quirks before
* creating the HCI device or in its setup callback.
*
* For the invalid BD_ADDR quirk it is possible that
* it becomes a valid address if the bootloader does
* provide it (see above).
*
* In case any of them is set, the controller has to
* start up as unconfigured.
*/
if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
invalid_bdaddr)
hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
/* For an unconfigured controller it is required to
* read at least the version information provided by
* the Read Local Version Information command.
*
* If the set_bdaddr driver callback is provided, then
* also the original Bluetooth public device address
* will be read using the Read BD Address command.
*/
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
return hci_unconf_init_sync(hdev);
return ret;
}
/* This function handles hdev init stage:
*
* Calls hci_dev_setup_sync to perform setup stage
* Calls hci_init_sync to perform HCI command init sequence
*/
static int hci_dev_init_sync(struct hci_dev *hdev)
{
int ret;
bt_dev_dbg(hdev, "");
atomic_set(&hdev->cmd_cnt, 1);
set_bit(HCI_INIT, &hdev->flags);
ret = hci_dev_setup_sync(hdev);
if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
/* If public address change is configured, ensure that
* the address gets programmed. If the driver does not
* support changing the public address, fail the power
* on procedure.
*/
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
hdev->set_bdaddr)
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
else
ret = -EADDRNOTAVAIL;
}
if (!ret) {
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
ret = hci_init_sync(hdev);
if (!ret && hdev->post_init)
ret = hdev->post_init(hdev);
}
}
/* If the HCI Reset command is clearing all diagnostic settings,
* then they need to be reprogrammed after the init procedure
* completed.
*/
if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
ret = hdev->set_diag(hdev, true);
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
msft_do_open(hdev);
aosp_do_open(hdev);
}
clear_bit(HCI_INIT, &hdev->flags);
return ret;
}
int hci_dev_open_sync(struct hci_dev *hdev)
{
int ret;
bt_dev_dbg(hdev, "");
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
ret = -ENODEV;
goto done;
}
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!hci_dev_test_flag(hdev, HCI_CONFIG)) {
/* Check for rfkill but allow the HCI setup stage to
* proceed (which in itself doesn't cause any RF activity).
*/
if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
ret = -ERFKILL;
goto done;
}
/* Check for valid public address or a configured static
* random address, but let the HCI setup proceed to
* be able to determine if there is a public address
* or not.
*
* In case of user channel usage, it is not important
* if a public address or static random address is
* available.
*
* This check is only valid for BR/EDR controllers
* since AMP controllers do not have an address.
*/
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hdev->dev_type == HCI_PRIMARY &&
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
!bacmp(&hdev->static_addr, BDADDR_ANY)) {
ret = -EADDRNOTAVAIL;
goto done;
}
}
if (test_bit(HCI_UP, &hdev->flags)) {
ret = -EALREADY;
goto done;
}
if (hdev->open(hdev)) {
ret = -EIO;
goto done;
}
set_bit(HCI_RUNNING, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_OPEN);
ret = hci_dev_init_sync(hdev);
if (!ret) {
hci_dev_hold(hdev);
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
hci_adv_instances_set_rpa_expired(hdev, true);
set_bit(HCI_UP, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_UP);
hci_leds_update_powered(hdev, true);
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
!hci_dev_test_flag(hdev, HCI_CONFIG) &&
!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hci_dev_test_flag(hdev, HCI_MGMT) &&
hdev->dev_type == HCI_PRIMARY) {
ret = hci_powered_update_sync(hdev);
mgmt_power_on(hdev, ret);
}
} else {
/* Init failed, cleanup */
flush_work(&hdev->tx_work);
/* Since hci_rx_work() is possible to awake new cmd_work
* it should be flushed first to avoid unexpected call of
* hci_cmd_work()
*/
flush_work(&hdev->rx_work);
flush_work(&hdev->cmd_work);
skb_queue_purge(&hdev->cmd_q);
skb_queue_purge(&hdev->rx_q);
if (hdev->flush)
hdev->flush(hdev);
if (hdev->sent_cmd) {
kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = NULL;
}
clear_bit(HCI_RUNNING, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
hdev->close(hdev);
hdev->flags &= BIT(HCI_RAW);
}
done:
return ret;
}
/* This function requires the caller holds hdev->lock */
static void hci_pend_le_actions_clear(struct hci_dev *hdev)
{
struct hci_conn_params *p;
list_for_each_entry(p, &hdev->le_conn_params, list) {
if (p->conn) {
hci_conn_drop(p->conn);
hci_conn_put(p->conn);
p->conn = NULL;
}
list_del_init(&p->action);
}
BT_DBG("All LE pending actions cleared");
}
static int hci_dev_shutdown(struct hci_dev *hdev)
{
int err = 0;
/* Similar to how we first do setup and then set the exclusive access
* bit for userspace, we must first unset userchannel and then clean up.
* Otherwise, the kernel can't properly use the hci channel to clean up
* the controller (some shutdown routines require sending additional
* commands to the controller for example).
*/
bool was_userchannel =
hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
test_bit(HCI_UP, &hdev->flags)) {
/* Execute vendor specific shutdown routine */
if (hdev->shutdown)
err = hdev->shutdown(hdev);
}
if (was_userchannel)
hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
return err;
}
int hci_dev_close_sync(struct hci_dev *hdev)
{
bool auto_off;
int err = 0;
bt_dev_dbg(hdev, "");
cancel_delayed_work(&hdev->power_off);
cancel_delayed_work(&hdev->ncmd_timer);
cancel_delayed_work(&hdev->le_scan_disable);
cancel_delayed_work(&hdev->le_scan_restart);
hci_request_cancel_all(hdev);
if (hdev->adv_instance_timeout) {
cancel_delayed_work_sync(&hdev->adv_instance_expire);
hdev->adv_instance_timeout = 0;
}
err = hci_dev_shutdown(hdev);
if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
cancel_delayed_work_sync(&hdev->cmd_timer);
return err;
}
hci_leds_update_powered(hdev, false);
/* Flush RX and TX works */
flush_work(&hdev->tx_work);
flush_work(&hdev->rx_work);
if (hdev->discov_timeout > 0) {
hdev->discov_timeout = 0;
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
}
if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
cancel_delayed_work(&hdev->service_cache);
if (hci_dev_test_flag(hdev, HCI_MGMT)) {
struct adv_info *adv_instance;
cancel_delayed_work_sync(&hdev->rpa_expired);
list_for_each_entry(adv_instance, &hdev->adv_instances, list)
cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
}
/* Avoid potential lockdep warnings from the *_flush() calls by
* ensuring the workqueue is empty up front.
*/
drain_workqueue(hdev->workqueue);
hci_dev_lock(hdev);
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
hci_dev_test_flag(hdev, HCI_MGMT))
__mgmt_power_off(hdev);
hci_inquiry_cache_flush(hdev);
hci_pend_le_actions_clear(hdev);
hci_conn_hash_flush(hdev);
/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
smp_unregister(hdev);
hci_dev_unlock(hdev);
hci_sock_dev_event(hdev, HCI_DEV_DOWN);
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
aosp_do_close(hdev);
msft_do_close(hdev);
}
if (hdev->flush)
hdev->flush(hdev);
/* Reset device */
skb_queue_purge(&hdev->cmd_q);
atomic_set(&hdev->cmd_cnt, 1);
if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
!auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
set_bit(HCI_INIT, &hdev->flags);
hci_reset_sync(hdev);
clear_bit(HCI_INIT, &hdev->flags);
}
/* flush cmd work */
flush_work(&hdev->cmd_work);
/* Drop queues */
skb_queue_purge(&hdev->rx_q);
skb_queue_purge(&hdev->cmd_q);
skb_queue_purge(&hdev->raw_q);
/* Drop last sent command */
if (hdev->sent_cmd) {
cancel_delayed_work_sync(&hdev->cmd_timer);
kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = NULL;
}
clear_bit(HCI_RUNNING, &hdev->flags);
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
/* After this point our queues are empty and no tasks are scheduled. */
hdev->close(hdev);
/* Clear flags */
hdev->flags &= BIT(HCI_RAW);
hci_dev_clear_volatile_flags(hdev);
/* Controller radio is available but is currently powered down */
hdev->amp_status = AMP_STATUS_POWERED_DOWN;
memset(hdev->eir, 0, sizeof(hdev->eir));
memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
bacpy(&hdev->random_addr, BDADDR_ANY);
hci_dev_put(hdev);
return err;
}
/* This function perform power on HCI command sequence as follows:
*
* If controller is already up (HCI_UP) performs hci_powered_update_sync
* sequence otherwise run hci_dev_open_sync which will follow with
* hci_powered_update_sync after the init sequence is completed.
*/
static int hci_power_on_sync(struct hci_dev *hdev)
{
int err;
if (test_bit(HCI_UP, &hdev->flags) &&
hci_dev_test_flag(hdev, HCI_MGMT) &&
hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
cancel_delayed_work(&hdev->power_off);
return hci_powered_update_sync(hdev);
}
err = hci_dev_open_sync(hdev);
if (err < 0)
return err;
/* During the HCI setup phase, a few error conditions are
* ignored and they need to be checked now. If they are still
* valid, it is important to return the device back off.
*/
if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
(hdev->dev_type == HCI_PRIMARY &&
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
!bacmp(&hdev->static_addr, BDADDR_ANY))) {
hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
hci_dev_close_sync(hdev);
} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
HCI_AUTO_OFF_TIMEOUT);
}
if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
/* For unconfigured devices, set the HCI_RAW flag
* so that userspace can easily identify them.
*/
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
set_bit(HCI_RAW, &hdev->flags);
/* For fully configured devices, this will send
* the Index Added event. For unconfigured devices,
* it will send Unconfigued Index Added event.
*
* Devices with HCI_QUIRK_RAW_DEVICE are ignored
* and no event will be send.
*/
mgmt_index_added(hdev);
} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
/* When the controller is now configured, then it
* is important to clear the HCI_RAW flag.
*/
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
clear_bit(HCI_RAW, &hdev->flags);
/* Powering on the controller with HCI_CONFIG set only
* happens with the transition from unconfigured to
* configured. This will send the Index Added event.
*/
mgmt_index_added(hdev);
}
return 0;
}
static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
{
struct hci_cp_remote_name_req_cancel cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, addr);
return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_stop_discovery_sync(struct hci_dev *hdev)
{
struct discovery_state *d = &hdev->discovery;
struct inquiry_entry *e;
int err;
bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
if (test_bit(HCI_INQUIRY, &hdev->flags)) {
err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
0, NULL, HCI_CMD_TIMEOUT);
if (err)
return err;
}
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
cancel_delayed_work(&hdev->le_scan_disable);
cancel_delayed_work(&hdev->le_scan_restart);
err = hci_scan_disable_sync(hdev);
if (err)
return err;
}
} else {
err = hci_scan_disable_sync(hdev);
if (err)
return err;
}
/* Resume advertising if it was paused */
if (use_ll_privacy(hdev))
hci_resume_advertising_sync(hdev);
/* No further actions needed for LE-only discovery */
if (d->type == DISCOV_TYPE_LE)
return 0;
if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
NAME_PENDING);
if (!e)
return 0;
return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
}
return 0;
}
static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
u8 reason)
{
struct hci_cp_disconn_phy_link cp;
memset(&cp, 0, sizeof(cp));
cp.phy_handle = HCI_PHY_HANDLE(handle);
cp.reason = reason;
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
u8 reason)
{
struct hci_cp_disconnect cp;
if (conn->type == AMP_LINK)
return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
memset(&cp, 0, sizeof(cp));
cp.handle = cpu_to_le16(conn->handle);
cp.reason = reason;
/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
* suspending.
*/
if (!hdev->suspended)
return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
sizeof(cp), &cp,
HCI_EV_DISCONN_COMPLETE,
HCI_CMD_TIMEOUT, NULL);
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
}
static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
struct hci_conn *conn)
{
if (test_bit(HCI_CONN_SCANNING, &conn->flags))
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
6, &conn->dst, HCI_CMD_TIMEOUT);
}
static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
{
if (conn->type == LE_LINK)
return hci_le_connect_cancel_sync(hdev, conn);
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
return 0;
return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
6, &conn->dst, HCI_CMD_TIMEOUT);
}
static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
u8 reason)
{
struct hci_cp_reject_sync_conn_req cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, &conn->dst);
cp.reason = reason;
/* SCO rejection has its own limited set of
* allowed error values (0x0D-0x0F).
*/
if (reason < 0x0d || reason > 0x0f)
cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
u8 reason)
{
struct hci_cp_reject_conn_req cp;
if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
return hci_reject_sco_sync(hdev, conn, reason);
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, &conn->dst);
cp.reason = reason;
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
{
int err;
switch (conn->state) {
case BT_CONNECTED:
case BT_CONFIG:
return hci_disconnect_sync(hdev, conn, reason);
case BT_CONNECT:
err = hci_connect_cancel_sync(hdev, conn);
/* Cleanup hci_conn object if it cannot be cancelled as it
* likelly means the controller and host stack are out of sync.
*/
if (err) {
hci_dev_lock(hdev);
hci_conn_failed(conn, err);
hci_dev_unlock(hdev);
}
return err;
case BT_CONNECT2:
return hci_reject_conn_sync(hdev, conn, reason);
default:
conn->state = BT_CLOSED;
break;
}
return 0;
}
static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
{
struct hci_conn *conn, *tmp;
int err;
list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
err = hci_abort_conn_sync(hdev, conn, reason);
if (err)
return err;
}
return 0;
}
/* This function perform power off HCI command sequence as follows:
*
* Clear Advertising
* Stop Discovery
* Disconnect all connections
* hci_dev_close_sync
*/
static int hci_power_off_sync(struct hci_dev *hdev)
{
int err;
/* If controller is already down there is nothing to do */
if (!test_bit(HCI_UP, &hdev->flags))
return 0;
if (test_bit(HCI_ISCAN, &hdev->flags) ||
test_bit(HCI_PSCAN, &hdev->flags)) {
err = hci_write_scan_enable_sync(hdev, 0x00);
if (err)
return err;
}
err = hci_clear_adv_sync(hdev, NULL, false);
if (err)
return err;
err = hci_stop_discovery_sync(hdev);
if (err)
return err;
/* Terminated due to Power Off */
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
if (err)
return err;
return hci_dev_close_sync(hdev);
}
int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
{
if (val)
return hci_power_on_sync(hdev);
return hci_power_off_sync(hdev);
}
static int hci_write_iac_sync(struct hci_dev *hdev)
{
struct hci_cp_write_current_iac_lap cp;
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
return 0;
memset(&cp, 0, sizeof(cp));
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
/* Limited discoverable mode */
cp.num_iac = min_t(u8, hdev->num_iac, 2);
cp.iac_lap[0] = 0x00; /* LIAC */
cp.iac_lap[1] = 0x8b;
cp.iac_lap[2] = 0x9e;
cp.iac_lap[3] = 0x33; /* GIAC */
cp.iac_lap[4] = 0x8b;
cp.iac_lap[5] = 0x9e;
} else {
/* General discoverable mode */
cp.num_iac = 1;
cp.iac_lap[0] = 0x33; /* GIAC */
cp.iac_lap[1] = 0x8b;
cp.iac_lap[2] = 0x9e;
}
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
(cp.num_iac * 3) + 1, &cp,
HCI_CMD_TIMEOUT);
}
int hci_update_discoverable_sync(struct hci_dev *hdev)
{
int err = 0;
if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
err = hci_write_iac_sync(hdev);
if (err)
return err;
err = hci_update_scan_sync(hdev);
if (err)
return err;
err = hci_update_class_sync(hdev);
if (err)
return err;
}
/* Advertising instances don't use the global discoverable setting, so
* only update AD if advertising was enabled using Set Advertising.
*/
if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
err = hci_update_adv_data_sync(hdev, 0x00);
if (err)
return err;
/* Discoverable mode affects the local advertising
* address in limited privacy mode.
*/
if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
if (ext_adv_capable(hdev))
err = hci_start_ext_adv_sync(hdev, 0x00);
else
err = hci_enable_advertising_sync(hdev);
}
}
return err;
}
static int update_discoverable_sync(struct hci_dev *hdev, void *data)
{
return hci_update_discoverable_sync(hdev);
}
int hci_update_discoverable(struct hci_dev *hdev)
{
/* Only queue if it would have any effect */
if (hdev_is_powered(hdev) &&
hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
NULL);
return 0;
}
int hci_update_connectable_sync(struct hci_dev *hdev)
{
int err;
err = hci_update_scan_sync(hdev);
if (err)
return err;
/* If BR/EDR is not enabled and we disable advertising as a
* by-product of disabling connectable, we need to update the
* advertising flags.
*/
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
/* Update the advertising parameters if necessary */
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
!list_empty(&hdev->adv_instances)) {
if (ext_adv_capable(hdev))
err = hci_start_ext_adv_sync(hdev,
hdev->cur_adv_instance);
else
err = hci_enable_advertising_sync(hdev);
if (err)
return err;
}
return hci_update_passive_scan_sync(hdev);
}
static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
{
const u8 giac[3] = { 0x33, 0x8b, 0x9e };
const u8 liac[3] = { 0x00, 0x8b, 0x9e };
struct hci_cp_inquiry cp;
bt_dev_dbg(hdev, "");
if (hci_dev_test_flag(hdev, HCI_INQUIRY))
return 0;
hci_dev_lock(hdev);
hci_inquiry_cache_flush(hdev);
hci_dev_unlock(hdev);
memset(&cp, 0, sizeof(cp));
if (hdev->discovery.limited)
memcpy(&cp.lap, liac, sizeof(cp.lap));
else
memcpy(&cp.lap, giac, sizeof(cp.lap));
cp.length = length;
return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
{
u8 own_addr_type;
/* Accept list is not used for discovery */
u8 filter_policy = 0x00;
/* Default is to enable duplicates filter */
u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
int err;
bt_dev_dbg(hdev, "");
/* If controller is scanning, it means the passive scanning is
* running. Thus, we should temporarily stop it in order to set the
* discovery scanning parameters.
*/
err = hci_scan_disable_sync(hdev);
if (err) {
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
return err;
}
cancel_interleave_scan(hdev);
/* Pause advertising since active scanning disables address resolution
* which advertising depend on in order to generate its RPAs.
*/
if (use_ll_privacy(hdev) && hci_dev_test_flag(hdev, HCI_PRIVACY)) {
err = hci_pause_advertising_sync(hdev);
if (err) {
bt_dev_err(hdev, "pause advertising failed: %d", err);
goto failed;
}
}
/* Disable address resolution while doing active scanning since the
* accept list shall not be used and all reports shall reach the host
* anyway.
*/
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
if (err) {
bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
err);
goto failed;
}
/* All active scans will be done with either a resolvable private
* address (when privacy feature has been enabled) or non-resolvable
* private address.
*/
err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
&own_addr_type);
if (err < 0)
own_addr_type = ADDR_LE_DEV_PUBLIC;
if (hci_is_adv_monitoring(hdev)) {
/* Duplicate filter should be disabled when some advertisement
* monitor is activated, otherwise AdvMon can only receive one
* advertisement for one peer(*) during active scanning, and
* might report loss to these peers.
*
* Note that different controllers have different meanings of
* |duplicate|. Some of them consider packets with the same
* address as duplicate, and others consider packets with the
* same address and the same RSSI as duplicate. Although in the
* latter case we don't need to disable duplicate filter, but
* it is common to have active scanning for a short period of
* time, the power impact should be neglectable.
*/
filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
}
err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
hdev->le_scan_window_discovery,
own_addr_type, filter_policy, filter_dup);
if (!err)
return err;
failed:
/* Resume advertising if it was paused */
if (use_ll_privacy(hdev))
hci_resume_advertising_sync(hdev);
/* Resume passive scanning */
hci_update_passive_scan_sync(hdev);
return err;
}
static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
{
int err;
bt_dev_dbg(hdev, "");
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
if (err)
return err;
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
}
int hci_start_discovery_sync(struct hci_dev *hdev)
{
unsigned long timeout;
int err;
bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
switch (hdev->discovery.type) {
case DISCOV_TYPE_BREDR:
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
case DISCOV_TYPE_INTERLEAVED:
/* When running simultaneous discovery, the LE scanning time
* should occupy the whole discovery time sine BR/EDR inquiry
* and LE scanning are scheduled by the controller.
*
* For interleaving discovery in comparison, BR/EDR inquiry
* and LE scanning are done sequentially with separate
* timeouts.
*/
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
&hdev->quirks)) {
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
/* During simultaneous discovery, we double LE scan
* interval. We must leave some time for the controller
* to do BR/EDR inquiry.
*/
err = hci_start_interleaved_discovery_sync(hdev);
break;
}
timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
break;
case DISCOV_TYPE_LE:
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
break;
default:
return -EINVAL;
}
if (err)
return err;
bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
/* When service discovery is used and the controller has a
* strict duplicate filter, it is important to remember the
* start and duration of the scan. This is required for
* restarting scanning during the discovery phase.
*/
if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
hdev->discovery.result_filtering) {
hdev->discovery.scan_start = jiffies;
hdev->discovery.scan_duration = timeout;
}
queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
timeout);
return 0;
}
static void hci_suspend_monitor_sync(struct hci_dev *hdev)
{
switch (hci_get_adv_monitor_offload_ext(hdev)) {
case HCI_ADV_MONITOR_EXT_MSFT:
msft_suspend_sync(hdev);
break;
default:
return;
}
}
/* This function disables discovery and mark it as paused */
static int hci_pause_discovery_sync(struct hci_dev *hdev)
{
int old_state = hdev->discovery.state;
int err;
/* If discovery already stopped/stopping/paused there nothing to do */
if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
hdev->discovery_paused)
return 0;
hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
err = hci_stop_discovery_sync(hdev);
if (err)
return err;
hdev->discovery_paused = true;
hdev->discovery_old_state = old_state;
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
return 0;
}
static int hci_update_event_filter_sync(struct hci_dev *hdev)
{
struct bdaddr_list_with_flags *b;
u8 scan = SCAN_DISABLED;
bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
int err;
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
return 0;
/* Some fake CSR controllers lock up after setting this type of
* filter, so avoid sending the request altogether.
*/
if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
return 0;
/* Always clear event filter when starting */
hci_clear_event_filter_sync(hdev);
list_for_each_entry(b, &hdev->accept_list, list) {
if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
continue;
bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
HCI_CONN_SETUP_ALLOW_BDADDR,
&b->bdaddr,
HCI_CONN_SETUP_AUTO_ON);
if (err)
bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
&b->bdaddr);
else
scan = SCAN_PAGE;
}
if (scan && !scanning)
hci_write_scan_enable_sync(hdev, scan);
else if (!scan && scanning)
hci_write_scan_enable_sync(hdev, scan);
return 0;
}
/* This function disables scan (BR and LE) and mark it as paused */
static int hci_pause_scan_sync(struct hci_dev *hdev)
{
if (hdev->scanning_paused)
return 0;
/* Disable page scan if enabled */
if (test_bit(HCI_PSCAN, &hdev->flags))
hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
hci_scan_disable_sync(hdev);
hdev->scanning_paused = true;
return 0;
}
/* This function performs the HCI suspend procedures in the follow order:
*
* Pause discovery (active scanning/inquiry)
* Pause Directed Advertising/Advertising
* Pause Scanning (passive scanning in case discovery was not active)
* Disconnect all connections
* Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
* otherwise:
* Update event mask (only set events that are allowed to wake up the host)
* Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
* Update passive scanning (lower duty cycle)
* Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
*/
int hci_suspend_sync(struct hci_dev *hdev)
{
int err;
/* If marked as suspended there nothing to do */
if (hdev->suspended)
return 0;
/* Mark device as suspended */
hdev->suspended = true;
/* Pause discovery if not already stopped */
hci_pause_discovery_sync(hdev);
/* Pause other advertisements */
hci_pause_advertising_sync(hdev);
/* Suspend monitor filters */
hci_suspend_monitor_sync(hdev);
/* Prevent disconnects from causing scanning to be re-enabled */
hci_pause_scan_sync(hdev);
if (hci_conn_count(hdev)) {
/* Soft disconnect everything (power off) */
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
if (err) {
/* Set state to BT_RUNNING so resume doesn't notify */
hdev->suspend_state = BT_RUNNING;
hci_resume_sync(hdev);
return err;
}
/* Update event mask so only the allowed event can wakeup the
* host.
*/
hci_set_event_mask_sync(hdev);
}
/* Only configure accept list if disconnect succeeded and wake
* isn't being prevented.
*/
if (!hdev->wakeup || !hdev->wakeup(hdev)) {
hdev->suspend_state = BT_SUSPEND_DISCONNECT;
return 0;
}
/* Unpause to take care of updating scanning params */
hdev->scanning_paused = false;
/* Enable event filter for paired devices */
hci_update_event_filter_sync(hdev);
/* Update LE passive scan if enabled */
hci_update_passive_scan_sync(hdev);
/* Pause scan changes again. */
hdev->scanning_paused = true;
hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
return 0;
}
/* This function resumes discovery */
static int hci_resume_discovery_sync(struct hci_dev *hdev)
{
int err;
/* If discovery not paused there nothing to do */
if (!hdev->discovery_paused)
return 0;
hdev->discovery_paused = false;
hci_discovery_set_state(hdev, DISCOVERY_STARTING);
err = hci_start_discovery_sync(hdev);
hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
DISCOVERY_FINDING);
return err;
}
static void hci_resume_monitor_sync(struct hci_dev *hdev)
{
switch (hci_get_adv_monitor_offload_ext(hdev)) {
case HCI_ADV_MONITOR_EXT_MSFT:
msft_resume_sync(hdev);
break;
default:
return;
}
}
/* This function resume scan and reset paused flag */
static int hci_resume_scan_sync(struct hci_dev *hdev)
{
if (!hdev->scanning_paused)
return 0;
hdev->scanning_paused = false;
hci_update_scan_sync(hdev);
/* Reset passive scanning to normal */
hci_update_passive_scan_sync(hdev);
return 0;
}
/* This function performs the HCI suspend procedures in the follow order:
*
* Restore event mask
* Clear event filter
* Update passive scanning (normal duty cycle)
* Resume Directed Advertising/Advertising
* Resume discovery (active scanning/inquiry)
*/
int hci_resume_sync(struct hci_dev *hdev)
{
/* If not marked as suspended there nothing to do */
if (!hdev->suspended)
return 0;
hdev->suspended = false;
/* Restore event mask */
hci_set_event_mask_sync(hdev);
/* Clear any event filters and restore scan state */
hci_clear_event_filter_sync(hdev);
/* Resume scanning */
hci_resume_scan_sync(hdev);
/* Resume monitor filters */
hci_resume_monitor_sync(hdev);
/* Resume other advertisements */
hci_resume_advertising_sync(hdev);
/* Resume discovery */
hci_resume_discovery_sync(hdev);
return 0;
}
static bool conn_use_rpa(struct hci_conn *conn)
{
struct hci_dev *hdev = conn->hdev;
return hci_dev_test_flag(hdev, HCI_PRIVACY);
}
static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
struct hci_conn *conn)
{
struct hci_cp_le_set_ext_adv_params cp;
int err;
bdaddr_t random_addr;
u8 own_addr_type;
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
&own_addr_type);
if (err)
return err;
/* Set require_privacy to false so that the remote device has a
* chance of identifying us.
*/
err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
&own_addr_type, &random_addr);
if (err)
return err;
memset(&cp, 0, sizeof(cp));
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
cp.own_addr_type = own_addr_type;
cp.channel_map = hdev->le_adv_channel_map;
cp.tx_power = HCI_TX_POWER_INVALID;
cp.primary_phy = HCI_ADV_PHY_1M;
cp.secondary_phy = HCI_ADV_PHY_1M;
cp.handle = 0x00; /* Use instance 0 for directed adv */
cp.own_addr_type = own_addr_type;
cp.peer_addr_type = conn->dst_type;
bacpy(&cp.peer_addr, &conn->dst);
/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
* advertising_event_property LE_LEGACY_ADV_DIRECT_IND
* does not supports advertising data when the advertising set already
* contains some, the controller shall return erroc code 'Invalid
* HCI Command Parameters(0x12).
* So it is required to remove adv set for handle 0x00. since we use
* instance 0 for directed adv.
*/
err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
if (err)
return err;
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (err)
return err;
/* Check if random address need to be updated */
if (own_addr_type == ADDR_LE_DEV_RANDOM &&
bacmp(&random_addr, BDADDR_ANY) &&
bacmp(&random_addr, &hdev->random_addr)) {
err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
&random_addr);
if (err)
return err;
}
return hci_enable_ext_advertising_sync(hdev, 0x00);
}
static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
struct hci_conn *conn)
{
struct hci_cp_le_set_adv_param cp;
u8 status;
u8 own_addr_type;
u8 enable;
if (ext_adv_capable(hdev))
return hci_le_ext_directed_advertising_sync(hdev, conn);
/* Clear the HCI_LE_ADV bit temporarily so that the
* hci_update_random_address knows that it's safe to go ahead
* and write a new random address. The flag will be set back on
* as soon as the SET_ADV_ENABLE HCI command completes.
*/
hci_dev_clear_flag(hdev, HCI_LE_ADV);
/* Set require_privacy to false so that the remote device has a
* chance of identifying us.
*/
status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
&own_addr_type);
if (status)
return status;
memset(&cp, 0, sizeof(cp));
/* Some controllers might reject command if intervals are not
* within range for undirected advertising.
* BCM20702A0 is known to be affected by this.
*/
cp.min_interval = cpu_to_le16(0x0020);
cp.max_interval = cpu_to_le16(0x0020);
cp.type = LE_ADV_DIRECT_IND;
cp.own_address_type = own_addr_type;
cp.direct_addr_type = conn->dst_type;
bacpy(&cp.direct_addr, &conn->dst);
cp.channel_map = hdev->le_adv_channel_map;
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
if (status)
return status;
enable = 0x01;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
}
static void set_ext_conn_params(struct hci_conn *conn,
struct hci_cp_le_ext_conn_param *p)
{
struct hci_dev *hdev = conn->hdev;
memset(p, 0, sizeof(*p));
p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
p->conn_latency = cpu_to_le16(conn->le_conn_latency);
p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
p->min_ce_len = cpu_to_le16(0x0000);
p->max_ce_len = cpu_to_le16(0x0000);
}
static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
struct hci_conn *conn, u8 own_addr_type)
{
struct hci_cp_le_ext_create_conn *cp;
struct hci_cp_le_ext_conn_param *p;
u8 data[sizeof(*cp) + sizeof(*p) * 3];
u32 plen;
cp = (void *)data;
p = (void *)cp->data;
memset(cp, 0, sizeof(*cp));
bacpy(&cp->peer_addr, &conn->dst);
cp->peer_addr_type = conn->dst_type;
cp->own_addr_type = own_addr_type;
plen = sizeof(*cp);
if (scan_1m(hdev)) {
cp->phys |= LE_SCAN_PHY_1M;
set_ext_conn_params(conn, p);
p++;
plen += sizeof(*p);
}
if (scan_2m(hdev)) {
cp->phys |= LE_SCAN_PHY_2M;
set_ext_conn_params(conn, p);
p++;
plen += sizeof(*p);
}
if (scan_coded(hdev)) {
cp->phys |= LE_SCAN_PHY_CODED;
set_ext_conn_params(conn, p);
plen += sizeof(*p);
}
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
plen, data,
HCI_EV_LE_ENHANCED_CONN_COMPLETE,
conn->conn_timeout, NULL);
}
int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
{
struct hci_cp_le_create_conn cp;
struct hci_conn_params *params;
u8 own_addr_type;
int err;
/* If requested to connect as peripheral use directed advertising */
if (conn->role == HCI_ROLE_SLAVE) {
/* If we're active scanning and simultaneous roles is not
* enabled simply reject the attempt.
*/
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
hdev->le_scan_type == LE_SCAN_ACTIVE &&
!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
hci_conn_del(conn);
return -EBUSY;
}
/* Pause advertising while doing directed advertising. */
hci_pause_advertising_sync(hdev);
err = hci_le_directed_advertising_sync(hdev, conn);
goto done;
}
/* Disable advertising if simultaneous roles is not in use. */
if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
hci_pause_advertising_sync(hdev);
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
if (params) {
conn->le_conn_min_interval = params->conn_min_interval;
conn->le_conn_max_interval = params->conn_max_interval;
conn->le_conn_latency = params->conn_latency;
conn->le_supv_timeout = params->supervision_timeout;
} else {
conn->le_conn_min_interval = hdev->le_conn_min_interval;
conn->le_conn_max_interval = hdev->le_conn_max_interval;
conn->le_conn_latency = hdev->le_conn_latency;
conn->le_supv_timeout = hdev->le_supv_timeout;
}
/* If controller is scanning, we stop it since some controllers are
* not able to scan and connect at the same time. Also set the
* HCI_LE_SCAN_INTERRUPTED flag so that the command complete
* handler for scan disabling knows to set the correct discovery
* state.
*/
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
hci_scan_disable_sync(hdev);
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
}
/* Update random address, but set require_privacy to false so
* that we never connect with an non-resolvable address.
*/
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
&own_addr_type);
if (err)
goto done;
if (use_ext_conn(hdev)) {
err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
goto done;
}
memset(&cp, 0, sizeof(cp));
cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
bacpy(&cp.peer_addr, &conn->dst);
cp.peer_addr_type = conn->dst_type;
cp.own_address_type = own_addr_type;
cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
cp.min_ce_len = cpu_to_le16(0x0000);
cp.max_ce_len = cpu_to_le16(0x0000);
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
*
* If this event is unmasked and the HCI_LE_Connection_Complete event
* is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
* sent when a new connection has been created.
*/
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
sizeof(cp), &cp,
use_enhanced_conn_complete(hdev) ?
HCI_EV_LE_ENHANCED_CONN_COMPLETE :
HCI_EV_LE_CONN_COMPLETE,
conn->conn_timeout, NULL);
done:
/* Re-enable advertising after the connection attempt is finished. */
hci_resume_advertising_sync(hdev);
return err;
}
int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
{
struct hci_cp_le_remove_cig cp;
memset(&cp, 0, sizeof(cp));
cp.cig_id = handle;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
&cp, HCI_CMD_TIMEOUT);
}
int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
{
struct hci_cp_le_big_term_sync cp;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
{
struct hci_cp_le_pa_term_sync cp;
memset(&cp, 0, sizeof(cp));
cp.handle = cpu_to_le16(handle);
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
}
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
bool use_rpa, struct adv_info *adv_instance,
u8 *own_addr_type, bdaddr_t *rand_addr)
{
int err;
bacpy(rand_addr, BDADDR_ANY);
/* If privacy is enabled use a resolvable private address. If
* current RPA has expired then generate a new one.
*/
if (use_rpa) {
/* If Controller supports LL Privacy use own address type is
* 0x03
*/
if (use_ll_privacy(hdev))
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
else
*own_addr_type = ADDR_LE_DEV_RANDOM;
if (adv_instance) {
if (adv_rpa_valid(adv_instance))
return 0;
} else {
if (rpa_valid(hdev))
return 0;
}
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
if (err < 0) {
bt_dev_err(hdev, "failed to generate new RPA");
return err;
}
bacpy(rand_addr, &hdev->rpa);
return 0;
}
/* In case of required privacy without resolvable private address,
* use an non-resolvable private address. This is useful for
* non-connectable advertising.
*/
if (require_privacy) {
bdaddr_t nrpa;
while (true) {
/* The non-resolvable private address is generated
* from random six bytes with the two most significant
* bits cleared.
*/
get_random_bytes(&nrpa, 6);
nrpa.b[5] &= 0x3f;
/* The non-resolvable private address shall not be
* equal to the public address.
*/
if (bacmp(&hdev->bdaddr, &nrpa))
break;
}
*own_addr_type = ADDR_LE_DEV_RANDOM;
bacpy(rand_addr, &nrpa);
return 0;
}
/* No privacy so use a public address. */
*own_addr_type = ADDR_LE_DEV_PUBLIC;
return 0;
}
static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
{
u8 instance = *(u8 *)data;
kfree(data);
return hci_update_adv_data_sync(hdev, instance);
}
int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
{
u8 *inst_ptr = kmalloc(1, GFP_KERNEL);
if (!inst_ptr)
return -ENOMEM;
*inst_ptr = instance;
return hci_cmd_sync_queue(hdev, _update_adv_data_sync, inst_ptr, NULL);
}